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Our surrounding world is abundant with multimodal stimuli which emit multi-
sensory information in the form of analog signals. Humans perceive the natural
world in a multimodal way: vision, hearing, touch. Nowadays, propelled by our
digital technology, we are also witnessing a rapid explosion of digital multime-
dia data. Humans understand the multimodal world in a seemingly effortless
manner, although there are vast information processing resources dedicated
to the corresponding tasks by the brain. Computer techniques, despite re-
cent advances, still significantly lag humans in understanding multimedia and
performing high-level cognitive tasks. Some of these limitations are inborn,
i.e., stem from the complexity of the data and their multimodality. Other
shortcomings, though, are due to the inadequacy of most approaches used
in multimedia analysis, which are essentially monomodal. Namely, they rely
mainly on information from a single modality and on tools effective for this
modality while they underutilize the information in other modalities and their
cross-interaction. To some extent, this happens because most researchers and
groups are still monomedia specialists. Another reason is that the problem of
fusing the modalities has not still reached maturity, both from a mathemati-
cal modeling and a computational viewpoint. Consequently, a major scientific
and technological challenge is to develop truly multimodal approaches that
integrate several modalities toward improving the goals of multimedia under-
standing. In this chapter we review research on the theory and applications
of several multimedia analysis approaches that improve robustness and per-
formance through cross-modal integration.

1.1 Motivations and Problems

Digital technology provides us with multimedia data whose size and complex-
ity keeps rapidly expanding. To analyze and understand them we must face
major challenges which include the following:
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Data are Voluminous: Nowadays we are witnessing a rapid explosion of dig-
ital multimedia data. They are produced by a variety of sources includ-
ing: video cameras, TV, digital photography (personal and professional
albums, photo agencies), digital audio and other digital entertainment
devices, digital audiovisual libraries, multimodal Web. As a numeric ex-
ample, 24 hr of TV produces 430 Gb (raw, uncompressed) data, 2.160.000
still (frame) images.

Data are Dynamic: Dynamic websites, TV and other broadcast news quickly
get obsolete.

Different Temporal Rates are of importance in the various media. For exam-
ple, 25-30 image-frames/sec in video, 44.000 sound samples/sec in audio,
100 feature-frames/sec in speech, 4 syllables/sec in language processing.

Cross-Media asynchrony, since image and audio scene boundaries may be
different. Examples include possible asynchrony between the voice heard
and the face seen, or between a sports visual event (e.g., a goal in soccer)
and the speaker’s comment that comes later.

Monomedia specialization: Most researchers and groups are specialists in a
single modality, e.g., speech processing and recognition, or image/video
processing and computer vision, or natural language processing.

The rapid explosion of multimedia data creates an increasing difficulty in
finding relevant information, which has spurred enormous efforts to develop
tools for automatic detection, recognition, and semantic analysis of multime-
dia content. The overall goal is multimedia understanding, which requires to
use content in a nontrivial way. For example, understanding goes beyond just
displaying images or playing a music CD, for which we do not need to analyze
the content of the data. In contrast, examples that require understanding in-
clude multimedia archiving, re-purposing, making websites from TV streams.
This multimedia explosion also poses the need to develop efficient solutions for
problems in several ambitious technology areas. Two such grand challenges3

are: (i) Natural access and high-level interaction with multimedia databases,
and (ii) Detecting, recognizing and interpreting objects, events, and human
behavior in multimedia videos by processing combined audio-video-text data.

Thus, as mentioned in this book’s Introduction, one of the grand goals
in multimedia understanding is cross-media integration for improving perfor-
mance in the various scientific and technological problems that arise in systems
dealing with multiple modalities. And this is exactly the central topic of this
review chapter. Among the features of this chapter, we include brief reviews of
ideas and results from cross-modal integration in human perception, since the
multimodal human brain is a great source of inspiration. Further, we survey
several types of probabilistic approaches and models for multimodal fusion.
Examples of modalities to integrate include combinations of:

• vision and speech/audio

3 These challenges were also identified at http://www.muscle-noe.org/
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• vision (or speech) and tactile
• image/video (or speech/audio) and text
• multiple-cue versions of vision and/or speech
• other semantic information or metadata.

Many previous research efforts in (human or machine) cross-modal integra-
tion deal with combining multiple cues, i.e., multiple streams of information
from the same modality. A frequent example is vision, where multiple cues
are often combined to increase the robustness in estimating properties of the
visual world scene; e.g., stereo disparity is combined with texture to estimate
depth. In general, if we wish to refine the definition of multimodality, we shall
call multicue the intramodal integration of several cues within the same
modality and multimodal the intermodal integration of several modalities.
For example, to estimate the depth of object surfaces by combining stereo
and texture is a multicue approach, whereas combining vision and haptics is
a multimodal approach. However, for expressional simplicity, we may often
use only the term ‘multimodal’ to refer to both intermodal and intramodal
approaches.

The combinations of modalities (or cues) can be either of the cross-
interaction type or of the cross-integration type. Interaction implies an in-
formation reaction-diffusion among modalities with feedback control of one
modality by others. Integration involves exploiting heterogeneous informa-
tion cumulatively from various modalities in a data feature fusion toward
improved performance. A simpler way to see this differentiation is to consider
strong- versus weak-coupling of modalities (discussed later in Section 1.3).
Some broad areas of research problems in multimedia where integration of
(strongly-coupled or weakly-coupled) modalities occurs include the following:

• Features: The extraction of critical features in each modality, e.g., au-
dio, vision, text, is in a well-advanced state and is served by the fields
of signal processing and pattern recognition. See Section 1.4 for a brief
survey. However, when combining several modalities, it is quite challeng-
ing to integrate monomodal4 features in a way that is robust (since in-
dividual stream reliabilities may vary dynamically), efficient in terms of
size and synchrony, and optimum in terms of overall performance. Thus,
some ongoing research challenges in this classic problem of multimedia
include: (i) Selection, robust extraction, and dimensionality reduction of
each modality’s features, given the presence of other modalities and their
corresponding features. (ii) Optimal fusion of the separate feature streams
(from different modalities or cues). A typical example is the area of audio-
visual speech recognition, where the audio feature extraction has advanced,
but there is still ongoing research for robust extraction of low-dimensional
visual speech features and optimal fusion of the audio and visual features.

4 In this chapter, the term monomodal is used as equivalent to unimodal.
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• Models: Most aspects of multimedia understanding involve problems
in pattern recognition and machine learning. One can select appropriate
methodologies and algorithms from the vast arena of these fields, includ-
ing both static and dynamic classification models. However, in multimodal
processing and integration, the big challenge is how to adapt or extend
these models so that they can work with and decide optimally for multi-
modal data. For instance, an important issue is whether to fuse the data at
an early, intermediate, or late stage of the integration procedure. Another
challenge is to deal with the time-dependent nature of these data when the
modalities are not synchronous. These issues are discussed in Section 1.5.

• Applications: The application areas of multimedia are numerous and
keep growing. Examples that involve cross-modal integration include the
following: (See also Section 1.7 for a brief survey of some applications.)

– Audiovisual Speech: The two problems of automatically recognizing
speech and inverting speech, i.e., recovering the geometry of the vocal
tract, are ill-posed. Integrating the auditory information with visual
information (e.g., video features around the speaker’s mouth area) im-
poses additional constraints which may help regularizing the solution
of these problems.

– Cross-Media Interaction Scenarios in Human Computer Interfaces
(HCIs): Human-computer interaction has started becoming a reality
due to recent advances in speech recognition, natural language process-
ing, object detection-tracking using vision and tactile sensors. However,
building a natural and efficient HCI that combines all the required dif-
ferent modalities (e.g., speech, vision, graphics, text, tactile) toward
improving the overall performance becomes a significant technical chal-
lenge in this case where the modalities can interact strongly. A review
of this area is given in the book’s Chapter ??.

– Multimodal Saliency: Audiovisual Attention Modeling and Salient
Event Detection is a significant research problem with applications
in audiovisual event detection, bimodal emotion recognition, dialogue
detection, and video summarization. A significant effort in this area is
spent on multimodal feature extraction and fusion for attention mod-
eling. (See Chapter ??.)

– Video Analysis and Integration of Asynchronous Time-Evolving Modal-
ities: Video processing is usually done separately on sound and on
images. However, the solution of many video analysis tasks can be im-
proved and become more robust by integrating these two modalities
and possibly text. Major difficulties exist, however, because the vari-
ous media are not temporally coherent and provide different kinds of
data. Several chapters in this book deal with these problems.

– Combining Text and Vision or Text and Audio for Semantic Labeling:
The challenging research goal here is to use structural and textual
information for semantic interpretation of image or audio data. Such
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technologies will empower a full semantic analysis and classification of
data for which currently almost everything beyond text is ignored.

The areas of human or machine cross-modal integration are both huge, and
hence our coverage in this chapter will not be exhaustive. Instead, we sample
key ideas and survey indicative applications. The rest of this chapter is orga-
nized as follows. In Section 1.2 we briefly summarize how various branches of
psychology view perception, how certain aspects of perceptual inference can
be modeled via Bayesian estimation and decision theory, and then we present
examples of multicue or multimodal perception from psychophysics. In Sec-
tion 1.3 we classify sensor data fusion schemes using a Bayesian formulation.
The following four sections review the main problem areas in multimedia
analysis and integration: feature extraction from the three main modalities
(speech-audio, image-video, and text) in Section 1.4; stochastic models for
cross-modal integration in Section 1.5; integrated multimedia content analy-
sis beyond descriptors in Section 1.6; and a few sample applications areas in
Section 1.7. Finally, we conclude in Section 1.8 by outlining promising future
directions.

1.2 Multimodality in Human Perception

Humans need to extract multi-level information about the structures and their
spatio-temporal or cognitive relationships in their world environment. This
information processing could either be innate (inborn) and possibly learned
via evolutionary processes or stimulated by sensory data. This chapter mainly
focuses on the latter. The polarity between innate vs data-driven inference is
conceptually similar to (or inspired by) Plato’s rationalism versus Aristotle’s
empiricism.

Three stages in sensory information processing are sensation, perception
and cognition. Sensation is signal formation caused by the sense organs (i.e.,
the sensors) when excited by the external world stimuli. Perception is the
collection of processes by which we filter, select, organize, recognize, and un-
derstand the sensations. There is an overlap between sensation and percep-
tion, but as broadly stated in [38], “sensations are usually viewed as simple,
basic experiences caused by simple stimuli, whereas perceptions are usually
considered as more complicated experiences elicited by complex, often mean-
ingful, stimuli”. Even more complicated is cognition which refers to infor-
mation analyzing mental processes such as comprehension, learning, memory,
decision-making, planning. A causal hierarchy may be the following:

Sensation −→ Perception −→ Cognition

Since the dividing line is usually hard to draw between sensations and percep-
tions as well as between perception and cognition, henceforth, we shall loosely
refer to perception as the sensory-based inference about the world state, i.e.,
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the process through which the mapping from world stimuli to sensory sig-
nals is inverted. Herein, inference is meant broadly as the collection of the
main tasks of sensory information processing, e.g., spatio-temporal detection
of objects and events, estimation of their properties, localization, recognition,
organization.

Human perception as a means of daily exploration and survival in nature
has been of vital importance since the dawn of humanity. As a physical process
or result of sensor operation, it has attracted the interest of great scientists in
the physical sciences (acoustics, optics, neurobiology). As a main ingredient of
human awareness and consciousness, its understanding has also occupied the
minds of great philosophers, artists and psychologists. Approaches to study
perception range from physiology and neurobiology through cognition-related
psychology disciplines to philosophy disciplines centered around the mind-
body problem. A practical blend of the first two viewpoints is presented by
psychophysics, a subdiscipline of psychology, which explores the relationships
between the external world’s physical stimuli and their induced percepts in
the human mind.

In the rest of this section we summarize how various branches of psychology
view perception, how certain aspects of perceptual inference can be modeled
via Bayesian estimation and decision theory, and then we present examples of
multicue or multimodal perception from psychophysics. Obviously, since this
is a huge area, here we only summarize some indicative cases that have proven
useful in monomodal or multimodal information processing.

1.2.1 Psychology Approaches to Human Perception

For the aspects of sensory-based human perception that we will need in this
review chapter on multimodal integration, most important are the disciplines
of gestalt psychology and cognitive psychology. Before we summarize their
main ideas, we outline a few of their origins from philosophy.

Much like the mind-body debate, ideas and approaches in psychology
evolved from the poles of philosophy and physiology. The former relies primar-
ily on reasoning and introspection, whereas the latter on empirical methods
and observations. As in other sciences, the evolution of ideas in philosophy
[96] often followed a dialectic path, where a new theory was proposed (a
thesis), soon countered by an opposite theory (an antithesis), until a synthe-
sis of the best ideas was formed. This synthesis formed a new thesis, to be
followed by a new antithesis, and so on dialectically. A classic pair of the-
sis and antithesis is Plato’s rationalism versus Aristotle’s empiricism. In the
former we are supposed to acquire most knowledge mainly via theoretical
analysis (understanding and reasoning) independently of the senses, in the
latter mainly via empirical evidence (experience and observations, especially
sensory perception) independently of innate ideas. A similar contrasting con-
troversy continued in modern philosophy between the rationalist Descartes,
whose assertion “I think, therefore I am” cannot be doubted and views the
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mind as more certain than matter, versus the empiricist Locke, who empha-
sized experience and learning and believed that everything knowable (with
the possible exception of logic and mathematics) is derived from perception.
Kant synthesized both their views. Such a synthesis is used in most modern
theories of knowledge, where elements from both rationalism and empiricism
are encountered.

Along the route of empiricism, behaviorism in psychology developed as
a discipline that focuses on observable behaviors as responses to the envi-
ronment, without any consideration to internal processes or mind theories.
According to behaviorism, all what humans do, both externally (actions) and
internally (thoughts), are behaviors.

An avid rival to behaviorism, Gestalt psychology is a mind-brain theory
for which the most important process is the formation of perceptual groups of
observations that correspond to conceptual equivalence classes. An abstraction
of the justification for preferring this grouping is the Latin adage multum non
multa, which distinguishes two meanings of ‘much’: The former emphasizes
how a deeper understanding can grow from analyzing and grouping of fewer
items, whereas the latter is based on quantitative detailed analysis of many
data. Thus, the gestalt theory is a global, holistic approach (as opposed to
the local, atomistic observations of behaviorism). It is concerned with molar
behavior instead of molecular behavior, the former being a coarse-granule
grouping of behavior in external settings, whereas the latter is the fine-granule
behavior taking place internally inside an organism initiated by environmental
stimuli. The gestalt thesis that the whole is greater than the sum of its parts
is particularly relevant for multimodal processing. It implies that grouping in
the sense of fusing modalities creates a unifying percept that subsumes their
simple concatenation.

Founded by Wertheimer, Köhler and Koffka [58, 59] during 20th century’s
first half, gestalt psychology distinguishes between the geographical environ-
ment versus the behavioral environment and emphasizes that perception oc-
curs in the latter. However, the behavioral environment B by itself is not
sufficient to account for all processes and needs to be complemented by the
physiological processes P active during perception. B and P are psychophys-
ically isomorphic. Wertheimer’s principle of psychophysical isomorphism is to
think of physiological processes not as molecular but as molar phenomena.
Köhler [59] refined this principle and proposed the following in the cases of
spatial and temporal order: “(i) Experienced order in space is always struc-
turally identical with a functional order in the distribution of underlying brain
processes. (ii) Experienced order in time is always structurally identical with
a functional order in the sequence of correlated brain processes.”

The main ideas in gestalt psychology have been inspired by or geared
toward problems in visual perception. The perceptual grouping forms objects
by starting from local data or features who satisfy or share several grouping
principles and recursively builds larger visual objects, the Gestalts. The most
important of these principles is the law of Prägnanz, according to which we
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perceive a collection of visual parts in the simplest way that can organize
the partial elements into a stable and coherent form. Other gestalt principles
include proximity, figure-ground, closure, continuity, similarity, and symmetry.
Additional characteristics of the gestalt theory are that, it focuses on a parallel
and continuous processing and favors self-organization.

An outgrowth of gestalt psychology and Piaget’s stage theory for child cog-
nitive development is the field of Cognitive psychology, which (according to
Neisser who introduced the term in 1967) is “the study of how people learn,
structure, store and use knowledge.” A comprehensive introduction can be
found in [110]. This school of psychology is concerned with how humans pro-
cess information for general tasks such as perception, learning, memory, lan-
guage, problem-solving. Unlike behaviorism, it accepts innate mental states,
but it also uses scientific methods of experimentation and observation with-
out resorting to introspection. Due to its emphasis on the mental processes
associating stimuli and responses, it uses computational concepts, like input
and output of mental processes, algorithms and knowledge representation.
As such, it is closer to artificial intelligence, and the two fields have bene-
fited from cross-fertilization. Actually, cognitive psychology has contributed
to artificial intelligence the very useful concept and tool of semantic networks.
For example, WordNet [33] is a semantic network used in natural language
processing.

The most often used practical tools to test gestalt and cognitive theories of
human perception stem from psychophysics and statistics. The psychophysical
methods deal with determination of sensory thresholds, measurements of sen-
sitivity, and signal detection theory. From statistics, the Bayesian framework
has gained popularity and is briefly summarized next.

1.2.2 Bayesian Formulation of Perception

Bayesian statistics provides a general framework for modeling and solving
problems in pattern recognition and machine learning [29, 12, 112] and in
computer vision [39, 37, 67, 17]. Its success in vision has also propelled its
use for modeling perception as Bayesian inference [57, 124]. Elements of the
Bayesian framework for perception can be found in Helmholtz’s belief that
retinal images alone do not carry sufficient information and need to be sup-
plemented with prior knowledge; hence, he viewed perception as unconscious
inference [41]. Although the Bayesian approach to perception has been mainly
developed for vision, we shall use herein the Bayesian formalism to model
multimodal sensory information processing, where ‘multimodal’ may mean
‘multi-sensory’. A unifying Bayesian approach to computer vision, speech and
signal processing and their associated pattern analysis and recognition tasks
is also offered by the ‘Pattern Theory’ field [39, 75].

For intuition and simplicity, we will often restrict to the two main senses,
vision and hearing, and use the term ‘audiovisual’ instead of ‘multimodal sen-
sory’ stimuli/data. Let S be a configuration (of the properties) of an auditory
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and/or visual scene of the external world (e.g., a vector of variables repre-
senting numeric or symbolic features-parameters) that represents the state of
external audiovisual stimuli. Let D be the monomodal or multimodal data
representing signals collected by auditory and/or visual sensors; at a higher
level, D may also represent features extracted from the raw signals. If we view
the sensory signal formation as a mapping S 7→ D from world state S to sen-
sory data D, then perception is essentially the inverse problem of estimating
the world audiovisual state from the sensory observations. If the variations of
the audiovisual state are random in nature, or there is uncertainty in mod-
eling the signal formation or there is observation noise, then we can use a
probabilistic interpretation of the above problem. In this case, Bayes’ formula
offers us a convenient decomposition of the probabilities involved into prior
(before observing the data) and posterior (after observing the data) terms:

P (S|D) =
P (D|S)P (S)

P (D)
(1.1)

where P (·) denotes probability distributions (i.e., probability densities or
probability masses according to the case). The prior distribution P (S) ex-
presses the a priori probability of how likely is the world state S before ob-
serving the data; it models prior knowledge about the random nature (e.g. reg-
ularities) of the scene structure and may include various a priori constraints.
The conditional distribution P (D|S) expresses the probability of observing D
given the world state S; if it is viewed as function of S for fixed D, then it is
called the likelihood function of S. It statistically models the overall causal
generation process of signal data formation from the world state (audiovisual
scene); thus, this probabilistic mapping S 7→ D is called a generative model
in Bayesian networks. The likelihood embodies the reliability of the observed
signal or feature data D which can vary due to possible model uncertainty
and observation noise. The marginal distribution P (D), usually called the
evidence, expresses the probability of observing the data under all mutually
exclusive state configurations; it can be computed by summing the product of
the likelihood times the prior over all such S. Herein, we shall assume that the
world state variables vary continuously and hence P (D) =

∫

P (D|S)P (S)dS.
The distribution P (D) encapsulates data regularities that arise from similar-
ities among audiovisual scenes in nature. Finally, the posterior conditional
distribution P (S|D) expresses the a posteriori probability of the audiovisual
scene S after observing the data D.

The posterior distribution is the main tool for Bayesian inference since it
allows us to use the data as observations to update the estimate of S based on
Bayes’ formula. This updating, applied to perception, agrees with cognitive
psychology’s view that, as we move in the environment we sense the world and
our sensations get mapped to percepts which are accompanied by degrees of
belief; these percepts may change as we acquire new information. In addition
to the posterior, to complete the inference process, we also need a decision
rule. For example, one of the most well-known solutions for finding S is to
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select the Maximum-A-Posteriori (MAP) estimate:

ŜMAP = argmax
S

P (D|S)P (S) (1.2)

The marginal P (D) is viewed as a normalization factor and hence is ignored in
this maximization. The MAP estimate is influenced both from prior knowledge
and from the data observed. Thus, assuming a uniform prior reduces the above
to the equally well-known Maximum Likelihood (ML) estimate

ŜML = argmax
S

P (D|S) (1.3)

A unifying way to view these and other solutions is through Bayesian deci-

sion theory. First, we specify a loss (negative utility) function L(S,A) that
associates a cost L to the decision that assigns a solution A to the true scene
state S. The risk is the expected loss over all possible scenes:

Risk(A) =

∫

L(S,A)P (S|D)dS (1.4)

Then, we find an optimum Bayesian decision, i.e., solution Ŝ, by minimizing
this risk:

Ŝ = argmin
A

Risk(A) (1.5)

If we set L(S,A) = c − δ(S − A) where δ is the Dirac function, which means
that we penalize equally (by a cost c) all wrong decisions, then Risk(A) =
c − P (A|D) and risk minimization yields the MAP estimate as the optimum
Bayesian decision. Other well-known choices for the loss function include the
quadratic error and the absolute error; i.e., assuming scalar S,A, we can select
L(S,A) = |S − A|b with b = 1, 2. For b = 2 the risk is the Mean Square
Error (MSE) and the optimum solution becomes the mean of the posterior
distribution (i.e., the conditional mean given the data), whereas for b = 1
the risk is the Mean Absolute Error (MAE) and the optimum solution is the
median of the distribution.

Returning to the view of perception as the process of inverting the world-
to-signal mapping, this is generally an ill-posed problem. Thus, we need con-
straints to make it well-posed, i.e., to have a unique solution and the solution
to depend continuously on the data. This approach is partially inspired by
Tikhonov’s regularization theory [113], which, to make inverse problems well-
posed, proposes that we introduce some constraints by forcing the solution
to lie in a subspace of the solution space where the problem is well-defined.
For multimodal sensory perception, constraints can be of the following three
types [17]: (i) Physical constraints, which stem from physical laws governing
the multimodal world and are universally valid; (ii) Natural constraints that
depend on the specific tasks (e.g., the smoothness constraints used in com-
puter vision); and (iii) Artificial constraints that are imposed at some higher
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cognitive level. Two important problems are to determine which constraints
to use and how to embed them into the information processing algorithms.

An intuitive approach to incorporate constraints is the Bayesian formalism,
where the plausibilities of different solutions are quantified by probabilities
based on stochastic sensor models for the signal formation and prior expecta-
tions of the world state; the latter are influenced by previous measurements
(as in active vision or ecological optics) and by the constraints we impose on
the system. Then, as true solution we choose the one with the highest prob-
ability. As described in [57], in psychophysics, ideal observers are considered
the theoretical observers who use Bayesian inference to make optimal inter-
pretations. Usually ‘optimality’ is the MAP criterion since this allows an ideal
observer to take into consideration both prior knowledge about the world’s
audiovisual structure as well as knowledge about the audiovisual signal for-
mation by the sensors. In psychophysical tests, the ideal observer’s optimum
performance is a useful reference that is compared with the performance of a
human observer.

Another convenient way to embed constraints for making the inversion of
the world-signal mapping well-posed is via the energy minimization approach,
which has become quite popular in computer vision and is closely related to
regularization [47, 86, 37, 67, 76, 123]. Here the optimum audiovisual scene
state Ŝ is found as the minimizer of the energy functional

E(S;D) = Edata(S;D) + Esmooth(S) (1.6)

where the energy term Edata expresses a norm of the deviation of the scene
S from the data D, whereas the term Esmooth measures the non-smoothness
of S and hence imposes regularization constraints on the solution. The min-
imization of E is equivalent to maximizing the following Gibbs probability
distribution for the posterior

P (S|D) =
exp[−E(S;D)]

Z
(1.7)

where Z is a normalization factor (the partition function). In this case, so-
lutions that are consistent with the constraints correspond to lower energy
states, which are chosen by the minimization process. We can see several
correspondences between the energy and the Bayesian approach if we take
logarithms on both sides of the Bayes formula (1.1): the data-fitting error en-
ergy Edata corresponds to the log likelihood −P (D|S) and the regularization
energy Esmooth is the log prior −P (S). Obviously, the Bayesian formulation
subsumes the energy minimization approach and offers a richer interpreta-
tion using statistical tools. For example, using the popular quadratic energy
functions corresponds to assuming Gaussian distributions. Further, regular-
ization problems that use multiple energy constraint terms correspond to a
Bayesian prior that is the product of the individual priors assuming indepen-
dent sources.
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1.2.3 Examples of Multicue or Multimodal Perception Research

In this section we outline the main findings from a few selected works on mul-
timodal perception. The particular papers were selected either because they
have become classic in the field, like [71] that presents an archetypal example
of (i) the brain combining sound and vision, or because they represent differ-
ent viewpoints of research in multimodal perception that are directly related
to this chapter’s scope, like (ii) promoting individual visual cue features in
weak fusion to facilitate their integration [62]; (iii) exploring the difference
between intramodal versus intermodal fusion [46]; (iv) integrating audio and
visual modalities to improve spatial localization [6, 28, 117]; (v) investigating
the temporal segmentation of multimodal time-evolving scenes into percep-
tual events [125]; and (vi) using gestalt principles to group audio and visual
modalities [72].

McGurk effect: Hearing Lips and Seeing Voices

McGurk and MacDonald’s 1976 paper [71] is a classic on human sensory in-
tegration. The McGurk effect is elicited when a listener’s perceptual report
of a heard syllable is influenced by the sight of the speaker mouthing a dif-
ferent syllable, inducing the report of another syllable. This effect can be
explained by assuming that the finally perceived syllable is the one mostly
compatible with both conflicting stimuli. Specifically, by synchronously com-
bining the original vocalizations and lip movements, dubbed videos of the
type [ba-audio/ga-visual] and [ga-audio/ba-visual] were shown to subjects un-
der audiovisual and audio-only conditions. The audiovisual presentations of
speech caused two distinct types of responses: ‘Fusion’ where the information
from the two modalities is transformed into something new with an element
not presented in either modality, and ‘Combination’ where a composite is
formed comprising relatively unmodified elements from each modality. To [ba-
audio/ga-visual] presentations, almost all adults gave fused responses [da]. To
its complement, [ga-audio/ba-visual], more than half gave combination re-
sponses like [gabga]. The effect is generalizable to other stop consonants.

To explain the [ba-audio/ga-visual] case, first note that /ba/ sounds some-
what similar to /da/. Further, there is some visual similarity between (the ar-
ticulation of) the back consonant in /ga/ and the middle consonant in /da/,
whereas there is no such similarity between /ga/ and the front consonant in
/ba/. If we assume that, when presented with the two modalities, perceivers
attempt to interpret an event by searching for something that has the most
common features or best matches with both modalities, then the unifying per-
cept is /da/. However, in a [ga-audio/ba-visual] presentation, the modalities
share no common features and hence are in conflict. The listener cannot de-
cide between the two modalities and oscillates between them, hearing various
combinations [bagba, gabga, baga, gaba].
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The main conclusions from [71] include: (1) Speech perception seems to
also take into consideration the visual information. Audio-only theories of
speech are inadequate to explain the above phenomena. (2) Audiovisual pre-
sentations of speech create fusion or combination of modalities. (3) One pos-
sible explanation of the two response types is that a human attempts to find
common information in both modalities and achieve a unifying percept.

The above paper has inspired much work in exploring and reaffirming
the bimodality of speech perception. An interesting issue is that of comple-
mentarity, stated in [69] as: “Not only audible and visible speech provide two
independent sources of information, but each also provides strong information
where the other is weak.” For example, /bi/ and /pi/ are visually indistin-
guishable but can be distinguished acoustically based on features such as voice
onset time. In contrast, /mi/ and /ni/ sound very similar but differ visually in
the place of articulation. In both cases, audiovisual speech can aid detecting
the differences.

Modeling Depth Cue Combination using Modified Weak Fusion

Landy et al. [62], taking the application of scene depth reconstruction from
various visual cues as a showcase, examined in detail how the different cues
can be combined to yield a fused final result. For scene depth reconstruction,
the different cues examined are motion parallax (with known camera ego-
motion), stereo, kinetic depth effect, texture, and shading. These alternative
cues are quite different in nature: first of all, motion parallax can provide ab-
solute depth estimates, whereas the other cues provide stereo measurements
up to some unknown parameters, for example up to the unknown viewing dis-
tance parameter. Inter-cue interaction can be employed then to resolve these
parameters and make the measurements from different cues commensurate, in
a process the authors call cue promotion. After cue promotion, all measure-
ments are on the same scale and in common units. Then, promoted cues can
be directly fused in a modified weak fusion scheme. (The simple weak fusion
scheme of [17] does independent processing of each cue followed by a weighted
averaging; see also Section 1.3.)

Beyond cue promotion, the authors introduce in their modified weak fu-
sion scheme two further important enhancements relative to [17]: First, they
underline the importance of dynamic cue weighting, in response to the spatial
(presense or absense of certain cues in the scene) and temporal relative relia-
bility of each cue. Second, they highlight the issue of robustness in combining
the different cues, proposing that an explicit mechanism should be present
for outlier detection and down-weighting. The three constituents, namely cue
promotion, dynamic weighting, and robustness constitute the main aspects of
what they term the modified weak fusion scheme. This scheme generalizes
the weak fusion scheme of [17] in the sense that it allows limited interactions
between the different cues (most notably for cue promotion), while at the same
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time being modular and clearly more easy to verify than arbitrary strong fu-
sion schemes. The authors give a methodology to assess the validity of the
proposed fusion mechanism, as well as sufficient physiological experimental
results in defense of their scheme.

Intramodal versus Intermodal Fusion of Sensory Information

Hillis et al. [46] explored human perception’s capabilities for multimodal fu-
sion to improve estimation of object properties (such as shape surface per-
ception) both in an intramodal (within-senses) scenario of integrating the two
visual cues of stereopsis-disparity and texture as well as in an intermodal
(between-senses) scenario of integrating the two senses of vision and haptics.
As optimal cue integration, they used a simple weak fusion [17, 124] where
(under the Gaussian noise assumption) the Maximum Likelihood Estimate
(MLE) becomes a linear weighted averaging with cue weights being inversely
proportional to the variance of each cue noise. By performing psychophysi-
cal experiments and comparing the three cases of having (i) only single-cue
estimators, (ii) only fused estimators (MLE), and (iii) both single-cue and
fused estimators, they concluded to the following: Fusing cues (and losing
information about the individual estimates) is more likely in the intramodal
(disparity-texture) case than in the visual-haptic case. In the intermodal case,
there may be natural circumstances where it is not beneficial to combine the
two modalities (e.g., when one touches one object while looking at another).

Integration of Visual and Auditory Information for Spatial

Localization

There is ample evidence that the human brain integrates multiple sensory
modalities to accomplish various inference tasks such as spatial localization.
In general, this integration improves performance. However, it may also lead
to illusionary perception phenomena such as the “ventriloquist effect”, where
the movement of a dummy’s mouth alters the perceived location of the ven-
triloquist’s voice and hence creates a localization bias. Such phenomena are
caused when there exist appropriate spatial and temporal disparities between
the visual and auditory modalities. Experimental evidence [11, 117] has shown
that the cross-modal localization bias decreases with increasing spatial and/or
temporal disparity in the two stimuli.

Driver [28] explored variations of the ventriloquist illusion in the presence
of a single visual and two auditory stimuli (target and distractor messages).
He found that, under certain spatial combinations of the stimuli, the ventril-
oquist effect can actually help to enhance selective listening. Specifically, the
simultaneous presence of a human face visually mouthing the target message
and a mislocated sound source generating target and distractor messages can
create an apparent visual source of the target sounds. Thus, before attentional
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selection is completed, ventriloquism causes a cross-modal matching that spa-
tially shifts the target sounds to a virtual instead of the actual location. This
enhances the selective listening of the target message by focusing attention
on the virtual source.

In several controlled experiments on integration of auditory and visual
stimuli with spatio-temporal disparities, Wallace et al. [117] explored the re-
lationship between two important aspects of multisensory integration, the
perceptual unification of the two stimuli and the dependence of localization
bias on their spatio-temporal disparities. They found that: (i) “regardless of
their disparity, whenever the auditory and visual stimuli were perceived as
unified, they were localized at or very near the light. In contrast, when the
stimuli were perceived as not unified, auditory localization was often biased
away from the visual stimulus”; (ii) “localization bias was a reliable, significant
predictor of whether perceptual unity would be reported”.

Battaglia et al. [6] compared two theories of how human observers fuse
the visual and auditory modalities for spatial localization. One theory pre-
dicts a nonlinear integration where the modality whose signal is more reliable
dominates over the other in a winner-take-all scheme. This model is known
as visual capture, because human perception is usually dominated by vision
over hearing. A typical example is watching a film in a movie theater where
the visual information comes from the screen whereas the auditory informa-
tion (loudspeakers’ sound) originates from the sides, but human observers
usually perceive the sound origin as coincident with the location of the vi-
sual stimulus. The other theory advocates for a linear integration of the two
modalities through a weighted visual-auditory average, which corresponds to
a weak fusion scheme [17, 124]. The authors conducted experiments where hu-
man subjects heard broadband noise from several locations and viewed noisy
versions of a random-dot stereogram of a Gaussian bump. In the multimodal
phase of the experiments, a difference in location was introduced between
the visual and auditory stimuli. The results indicate that, in low-noise condi-
tions, the observers’ judgement was usually dominated by vision only. But at
large noise levels, the observers’ judgement shifted to an averaging of the two
modalities. The authors also investigated a hybrid approach and proposed a
Bayesian model that combines both the linear weighted averaging and a prior
expressing an overall bias to vision.

Temporal Segmentation of Videos into Perceptual Events by

Human Brain

Given the major role that the temporal structure has in human perception,
Zacks et al. [125] addressed the two fundamental questions of whether and
how the human perceptual system performs temporal segmentation into per-
ceptual events. Their experimental method involved participants who watched
short videos of daily activities while brain images were acquired with fMRI
scanning. All participants watched each video in three corresponding modes:
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naive passive viewing, intentional viewing seeking active segmentation into
coarse time units and active segmentation into fine time units. The hierarchy
between segmentation into coarse events and fine segmentation into subevents
is conceptually similar to the spatial vision task of segmentation into objects
and subparts. The main authors’ conclusions are that there is significant and
detectable neural activity in the human brain during both intentional and
passive viewing, and this activity occurs around the perceptual event bound-
aries. Further, there is a hierarchical structure between the coarse and fine
levels of segmentation, which are aligned. Finally, the segmented events are
well correlated with environmentally meaningful parts of the video activity.
Regarding this chapter’s scope, we emphasize that, one open research direc-
tion in the above area is to investigate the separate roles of the individual
audio and visual modalities as well as their integrated multimodality in the
above temporal percept segmentation.

Audiovisual Gestalts

Nowadays, gestalt psychology principles have become an inspiration for sev-
eral approaches in computer vision. In a relatively new direction, Desolneux,
Moisan and Morel [25] detect visual gestalts based on a perceptual princi-
ple due to Helmholtz by finding statistically meaningful parts to be grouped
through searching for geometrical structures that largely deviate from ran-
domness. This work was extended by Monaci and Vandergheynst [72] to de-
tecting audiovisual events. The authors’ work in [72] is motivated by strong
evidences from previous computational (e.g., in [45, 22, 105]) and psychophys-
ical experiments (e.g., in [28, 117]) that the integration of audiovisual infor-
mation by humans is strongly assisted by the temporal synchrony of events in
the two modalities. It uses the Gestalt psychology principle of time proxim-
ity to relate audiovisual fusion with gestalt detection where the audiovisual
gestalts are co-occurrences of auditory and visual events. To develop a com-
putational algorithm the authors used the Helmholtz principle, introduced
in image analysis by [25]. By combining sequences of energy features for the
audio and displacement features for the visual stream, they derive synchro-
nization indicator sequences from which they detect statistically meaningful
audiovisual events. Their results re-confirm the significance of the temporal
proximity between audio and visual events for integrating the two modalities.
Computational studies with a similar goal (i.e., the importance of audiovisual
synchrony) have also been done in [45, 22, 105, 5, 52, 101].

1.3 Bayesian Formulation of Fusion

As discussed in Section 1.2.2, inference about the world state is the pro-
cess through which the world-to-signal mapping is inverted. Since this inverse
problem is generally ill-posed, we need constraints to make it well-posed.
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Sensor fusion is needed to: (a) Reduce the dependence of a sensor on
possibly invalid a priori (natural or artificial) constraints. (b) Reduce the
uncertainty in parameter estimation due to errors in the sensor modeling
of the world-to-signal mapping. (c) Reduce uncertainty due to measurement
noise contaminating the noise free data. The book [17] dealt mainly with (a).
An approach to incorporate uncertainty estimation into the fusion problem is
proposed in Chapter ?? of this book.

Let S be the world state to be estimated, e.g., a vector of numeric or
symbolic features-parameters representing properties of an audiovisual scene
of the external world. Let D be the multimodal data representing signals
collected by auditory sensors, visual sensors and other information sources
(e.g., text), or D may represent features extracted from the raw signals. We
write D = (D1,D2,D3, ...) to separate the modalities. For simplicity, in this
section we assume only two modalities, aural and visual, producing data sets
DA and DV , respectively; hence, D = (DA,DV ).

Clark and Yuille [17] have proposed a classification of fusion cases in terms
of weak and strong coupling, which we shall call simply ‘weak fusion’ and
‘strong fusion’. Next we summarize the main ideas for both cases in the
Bayesian framework.

Weak Fusion

A clear case of weak fusion [17] occurs if the aural and visual information
processing modules are independent and have their own likelihoods PA(DA|S),
PV (DV |S) and priors PA(S) and PV (S) and produce two separate posterior
distributions

audio : PA(S|DA) =
PA(DA|S)PA(S)

PA(DA)
(1.8)

vision : PV (S|DV ) =
PV (DV |S)PV (S)

PV (DV )
(1.9)

See Fig. 1.1, where for simplicity we denote the audio data DA by A and the
video data DV by V . Each monomodal posterior could give its own MAP
estimate of the world scene:

Ŝi = argmax
S

Pi(Di|S)Pi(S), i ∈ {A, V }, (1.10)

Afterwards, for fusion, the two separate estimates can be combined somehow
to give a combined audiovisual estimate:

ŜAV = fusion(ŜA, ŜV ) (1.11)

where the fusion function can be either linear (e.g., a weighted average) or
nonlinear (e.g., a max or min combination).
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Consider the above case of weak fusion and suppose we wish to find the
joint maximum a posteriori (MAP) estimate from the combined prior

PAV (S|DA,DV ) = PA(S|DA)PV (S|DV ) =
PA(DA|S)PV (DV |S)PA(S)PV (S)

PA(DA)PV (DV )
(1.12)

If the two monomodal MAP estimates ŜA and ŜV are close, then Yuille and
Bülthoff [124] have shown that the joint MAP estimate is a weighted average of
the two single monomodal MAP estimates ŜA and ŜV . Specifically, assuming
that the two single MAP estimates are close, expanding in Taylor series the
log posterior around the point ŜA ≈ ŜV and keeping up to second order terms
yields

log PAV (S|DA,DV ) ≈ log PA(ŜA|DA) + log PV (ŜV |DV ) (1.13)

−[wa(S − ŜA)2 + wv(S − ŜV )2]/2

where wi = −(d2 log Pi(S|Di)/dS2)(Ŝi), i ∈ {a, v}. Maximization of (1.13)
yields the following MAP estimate for the audiovisual problem:

ŜAV =
waŜA + wvŜV

wa + wv
(1.14)

Since wa, wv > 0, the combined MAP estimate (after weak fusion) is approx-
imately a linear convex combination of the monomodal estimates.

For Gaussian distributions, the second-order expression in (1.13) becomes
exact and the assumption about ŜA ≈ ŜV is not needed. In this case the
weights are inversely proportional to each modality’s variance σ2

i , i ∈ {a, v}.
Since 1/σ2

i measures the reliability of each modality, the weights in the above
scheme are proportional to each modality’s reliability.

A similar situation, i.e., the combined optimum estimate to be the weighted
average of monomodal estimates, would occur again in a weak fusion scheme
where we wish to obtain maximum likelihood (ML) estimates. In this case
too, the combined likelihood factors into two terms

PAV (DA,DV |S) = PA(DA|S)PV (DV |S) (1.15)

Then, by working as in the MAP case, a second-order Taylor series expansion
of the logarithm of (1.15) would yield as optimum multimodal estimate again
a weighted average as in (1.14), but the Ŝ symbols would mean ML estimates
and the weights wi would result from the values of the second derivative of
the monomodal likelihoods at their maxima (which should be close).

Strong Fusion

In the previous weak fusion scheme, the two modalities are processed indepen-
dently, their monomodal optimal (with respect to the MAP or ML criterion)
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estimates are found, and then fusion occurs by combining the two single esti-
mates into a multimodal estimate with a linear or nonlinear function.

In contrast, we have strong fusion [17] if we have a non-separable joint
likelihood and a single prior; this gives as posterior

(a)

(b)

Fig. 1.1. Bayesian formulation of (a) Strong fusion and (b) Weak fusion schemes
for two modalities, audio and vision.
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PAV (S|DA,DV ) =
PAV (DA,DV |S)PAV (S)

PAV (DA,DV )
(1.16)

See Fig. 1.1 for diagrammatic illustration of strong fusion.
An intermediate case between weak and strong coupling is when the like-

lihood is separable and factors into two terms:

PAV (S|DA,DV ) =
PA(DA|S)PV (DV |S)PAV (S)

PAV (DA,DV )
(1.17)

In this case, if the two modalities have the same prior, i.e., PAV (S) = PA(S) =
PV (S), then we have a weak fusion scheme; otherwise we get a strong fusion.

Multi-stream Weights

In several cross-modal integration schemes used in multimedia applications,
such as audiovisual speech recognition, the two modalities (or cues) are simply
fused in the statistical models used for recognition by raising the respective
monomodal likelihoods to various exponents, called stream weights. Without
loss of generality, let us assume that we have two streams, say audio and
video, with data or features DA,DV . The posterior probability of a property
of an audiovisual scene S to be estimated given the multi-stream data D =
(DA,DV ) is given by (1.16). If the two streams are statistically independent,
the joint likelihood PAV (D|S) and marginal distributions PAV (D) become
separable and we obtain (1.12). If needed, we can relax the independence
assumption and assume only that the joint likelihood PAV (D|S) factors into
the two corresponding monomodal likelihoods, in which case we obtain (1.17).
The first case corresponds to simple weak fusion, whereas the second case is
the aforementioned intermediate between weak and strong coupling. In both
cases, raising each monomodal likelihood to a positive power, as usually done
in multi-stream feature combination, creates a modified posterior-like function

B(S|DA,DV ) = [PA(DA|S)]q1 [PV (DV |S)]q2
P (S)

P (D)
(1.18)

This may not even be a proper probability. Another artifact is the following:
Since the rational numbers are dense in the set of reals, we can assume that the
weights are rationals qi = ni/n, i = 1, 2, where n, n1, n2 are positive integers.
If we ignore the common denominator n the integer stream weights correspond
to replacing the product PAPV of the marginal likelihoods with the power-
weighted version Pn1

A Pn2

V . This corresponds to augmenting the multi-stream
data (DA,DV ) by replacing the ith stream with its ni-fold repetition and
treating the repetitions as independent. This repetition builds artificial corre-
lations among subsets of the augmented data and may destroy any assumed
independence of the separate streams. A better approach than power-raising
the stream probabilities is proposed in this book’s Chapter ??.



1 Cross-Modal Integration 21

1.4 Monomodal Features

For multimodal integration, a proper representation of each single modality
is very crucial. Multimedia description standards such as the MPEG-7 par-
ticularly emphasize the role of monomodal descriptors [65]. Two main types
of elements that MPEG-7 uses to describe and manage audio-visual content
are descriptors and descriptor schemes. The Descriptors convey information
about low-level audio features (e.g. temporal and spectral envelopes, pitch,
energy, and descriptors about musical timbre, spoken content and melody
contour) or visual features (e.g. color, edges, shape, texture, motion), as well
as attributes of audio-visual content (e.g. location, time, quality). The De-
scription Schemes convey information about high-level features such as audio
segments and events or visual regions and objects; they consist of a set de-
scriptors and their relationship for a particular task or application, arranged
in a tree structure. The domain of descriptor schemes categorizes them into
three types: audio, visual, and multimedia. The latter combine content de-
scriptions of audio, visual, and possibly text data. Overviews of the MPEG-7
audio, visual, and multimodal descriptors and descriptor schemes can be found
respectively in [89], [104], [97].

Next we discuss some of the most popular techniques to extract features
from the audio, visual, and text data for multimodal applications.

1.4.1 Audio Features

Information carried by the audio modality is certainly polymorphous and
multi-level. Thus, choosing a proper audio representation is not always straight-
forward and depends on the specific application. For multimodal integration,
the need to also compactly capture properties that are complementary to the
other modalities poses additional requirements. This has led to the utilization
of simpler and more focused audio feature extraction schemes in many multi-
modal scenarios. Alternatively, the audio frontend is adopted ‘as-is’ from the
corresponding audio-only application, e.g., speaker identification.

From a different viewpoint, audio descriptions in the multimodal context,
inspired from single modality approaches or not, can be either generic or
specific [68]. Specific refers to high-level representations of audio content, as
for example obtained by applying speech recognition or audio segmentation
and classification; knowledge of the audio class, e.g., music, noise, speech,
or of the words that have been uttered in the case when the audio contains
speech, can be used in a successive multimodal analysis and fusion scheme as
sketched in Section 1.5.1. Such representations can be very useful in multi-
media applications and are usually devised via the employment of advanced
pattern recognition techniques. The focus of the current discussion is however
mainly on the generic, low-level audio features as they are extracted by a
signal-processing front-end. These may be further categorized into spectral or
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temporal features or alternatively, according to [119], into short or long term
audio representations.

Short-Term Features

Short-term features are normally extracted at a high rate and correspond
to short audio segments, typically referred to as frames. They are advanta-
geous in the sense that they allow the description of non-stationary audio
signals whose properties vary quickly, e.g., speech. They cannot represent
however long-term properties, as for example speech prosody. Probably the
most widely used frame-level features are the short-term energy and variants
as well as the zero-crossing rate [119, 122]. Their estimation is performed in
the time-domain and when combined they can provide valuable information
for speech/silence discrimination. Pitch, on the other hand, is extracted ei-
ther by time or frequency analysis. It is the fundamental frequency of an audio
waveform and it is very informative for speech and harmonic music. In speech,
it mainly depends on the speaker’s gender while in music it is influenced by
the strongest note being played. In [70] the pitch is used, along with other
features, for automatic meeting action analysis.

In applications such as audiovisual automatic speech recognition or audio-
visual speaker identification, spectrum related representations are commonly
preferred. This is justified by the relative success of the spectral feature sets
in the corresponding audio-only based applications. Log-Mel filter-bank ener-
gies, Mel-frequency cepstral coefficients (MFCCs), linear prediction cepstral
coefficients (LPCCs) [90], or perceptual linear prediction coefficients (PLP)
are possible variants that have been successfully applied in various multi-
modal contexts [1, 30]. They practically provide a compact representation
of smooth spectral information and their extraction is quite straightforward.
For the most common ones, namely the MFCCs, the extraction process in-
volves filtering the signal with a specially designed filterbank that comprises
triangular or more elaborate filters properly localized in the frequency do-
main. The MFCCs are extracted as the first few Discrete Cosine Transform
(DCT) coefficients of the log-energies of the signals at the filterbank output.
Their efficacy is demonstrated in the context of audiovisual speech recogni-
tion in Chapter ??. Usually, to capture speech dynamics, these features are
also accompanied by their first and second derivatives. These derivatives are
approximated using information from neighboring frames as well and so they
would be more appropriately characterized as long-term features.

Long-Term Features

Long-term feature estimation is based on longer audio segments, usually com-
prising multiple frames. In a sense, long-term features capture variations of the
short-term ones and may be more closely related to audio semantic content.
Many such features were originally applied for audio analysis in single-stream
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approaches and were or can be further customized for multimedia applications
[126, 85]. Examples include various statistics of the short-time energy and the
Zero Crossing Rate (ZCR), such as their average value or standard deviation.
These indicate temporal changes of the corresponding quantities which in turn
facilitate audio segmentation or classification in various classes, e.g., sports or
news clips [119]; a sports clip would have a smoother ZCR contour than a
news clip, since it is characterized by an almost constant noise background
while clean speech during news exhibits a widely and quickly varying ZCR.

Long-term features based on pitch statistics can be equally useful. Only
voiced speech and music have smooth pitch and thus pitch variations can help
detecting voiced and music frames within an audio segment [119]. In a similar
manner, spectral variations in time can help determining between speech and
music; speech is expected to have much faster varying spectral characteristics.
Indeed, temporal stability, i.e., a feature measuring these variations has been
successfully applied in this direction at the first stage of a broadcast news
multimedia indexing framework [80]. It is estimated as the variance of the
generalized cross-correlation of the spectra of adjacent frames. At a different
level, the speaking rate, i.e., how fast speech is uttered, can also be important;
it may change a lot depending on speech pragmatics, namely the goal the
specific speech utterance serves in communication. Being much different in a
monologue or a presentation than during a conversation, the speaking rate
has been exploited in [70] for multimodal meeting analysis.

1.4.2 Visual Features

The visual modality is an extremely rich source of information. Although
high-level visual scene understanding of arbitrary scenes is beyond the reach
of current technology, visual information processing plays a key role in various
application areas, especially in domains where the image/video content is
structured according to well-defined rules. In particular, visual information
processing has proven beneficial in commercially-interesting domains involving
sports video, broadcast news, and movies data, where it has been utilized in
conjunction with audio and text for automatic content analysis, indexing,
summarization, and re-purposing, among others.

A wide range of visual features has been proposed in the literature to ad-
dress the requirements of different multimodal applications. We can categorize
different visual information representations into two broad classes, low and
mid-level generic visual features on the one hand, and high-level application-
specific visual features on the other hand. We discuss next representative
approaches from both categories.

Low and Mid-Level Visual Features

In the first category, low and mid-level visual features have been used to
characterize basic image and video properties, such as color, texture, and
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motion. This class of features are broadly used as generic image descriptors,
most notably for applications such as content-based image/video retrieval
[48, 94, 119], see also Section 1.7.6, and variants of them have been included
as descriptors in the visual part of the MPEG-7 standard [65, 104].

Among the generic visual features, color is perhaps the most widely used.
Color is typically represented in one of standard color-spaces, such as the
RGB or the perceptually better motivated HSV and L∗u∗v∗. The color con-
tent of an image or video frame is typically summarized in a low-dimensional
color histogram signature, and color-based similarity metrics are defined in
terms of these histograms. Since color is a per-pixel attribute, color represen-
tations can be computed very efficiently and are invariant to image scaling
or view-point changes. However, color histograms can be significantly affected
by illumination changes and, most importantly, completely discard geomet-
ric image information since they do not represent the spatial configuration of
pixels. Color features are typically most appropriate either for applications in
which their efficiency is crucial, such as real-time (audiovisual) face and hand
tracking, or for scenarios in which a single color, such as grass’ green in field
games, dominates the scene and thus its detection safely identifies the video
shot.

Another universal image attribute is its texture, roughly corresponding
to a description of its periodic patterns, directional content, and struc-
tural/stochastic complexity. A popular way to describe texture is by the image
response of a multi-scale, oriented transform, such as the Gabor or wavelet
filterbanks. The textural content can then be characterized by the most dom-
inant filterbank responses at each point, or by filterbank channel response
moments across the whole image. Alternative textural representations, such
as Markov-Random-Fields or co-occurrence matrices can also serve as pow-
erful texture descriptors. Another successful recent advance in image texture
modeling encompasses the mid-level vision class of distinctive image features
popularized by the Scale-Invariant Feature Transform (SIFT) representation
[64]. In the SIFT representation, a sparse set of salient scale-space image points
is first selected, and then the image textural content around each salient point
is described in a compact representation. This class of features has built-in
scale invariance properties and has proven particularly effective for reliable
image matching and higher-level object recognition.

The last large class of low and mid-level visual features represents mo-
tion in video, typically computed with block-matching or other optical flow
techniques [4]. On the one hand, global scene motion can be used to recover
camera attributes such translation, rotation, panning, and zooming, as well
as detect scene changes. On the other hand, local object motion is often re-
lated to object saliency; motion features have thus been used widely as event
detectors in surveillance and sports analysis applications. The down-side of
motion-based features is that optical flow computation is a computationally
demanding task.
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We should note here that each of the low and mid-level visual feature
classes described above is typically not adequate for describing by itself the
semantic content of image and video. Thus, most applications typically utilize
more than one visual cues in tandem (intramodal fusion), apart from combin-
ing them with audio or text information (intermodal fusion), or even allow the
user participate in the processing loop, as in the relevance feedback approach
of [95].

High-Level Visual Features

In certain domains high-level image and video understanding is indispensable
and this is usually beyond the reach of the low and mid-level visual descriptors
just described. Typical example applications are audiovisual speech/emotion
recognition or face recognition, which all require high-level models for object
analysis and recognition. We describe next representative models of object
shape and appearance which are carefully tailored for the needs of high-level
object understanding.

An important high-level visual attribute is the object’s shape. Examples of
generic shape representations are the region-based ‘shape context’ [8], which
yields a histogram shape descriptor, and the classical contour-based Fourier
shape descriptor which approximates a closed contour using the coefficients
of a truncated Fourier series; variants thereof are included in the MPEG-7
standard [104]. A more powerful class of object-centric shape features are the
parametric representations of [83] and [20]. Both these techniques capture
shape deformation in a compact parametric shape model which is specifically
tailored for a single class of objects. This object-specific shape model is derived
either by a physics-based Finite Element Modeling (FEM) analysis in [83] or
by a training procedure using a hand-annotated set as in the Active Shape
Model (ASM) [20]. Given such a model, a target shape can then be described
in terms of its first few eigen-modes or eigen-shapes, yielding a highly compact
and specific representation. Such models have been used extensively in the past
for applications such as tracking and feature extraction from human faces.

In parallel to shape, an important class of computer vision models is
concerned with object appearance description. Popularized by the success-
ful “eigen-face” model of [114], this class of models strives for accurate and
compact representation of image appearance content. Such representations are
typically learned from representative training images by means of principal
component analysis or other unsupervised/supervised dimensionality reduc-
tion techniques. A significant recent advance in appearance models is the
Active Appearance Model (AAM) [21] which combines the compact shape
representation of the ASM and the PCA-based appearance modeling of eigen-
faces in a new powerful blend, while at same time being amenable to efficient
calculations. An application of the AAM model in audiovisual speech recog-
nition is illustrated in the book’s Chapter ??.
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1.4.3 Text Features

The basics of text description

Text is a major medium carrying semantic information. In this section, we
focus on the textual features that can be used to describe the content of a
document for applications such as information retrieval for example. The basic
paradigm consists in associating with each document a descriptor, called index
in this domain, composed of a set of words called indexing terms. Such terms
can be chosen from a predefined list (e.g., in a thesaurus) – in this case the
correspondence between a document and this list is not trivial and is often
done manually – or directly from the text itself. The latter is the usual way
to proceed when large collections are to be processed automatically, i.e., in
most search engines on the web.

To develop such a system implies first to choose the terms that should be
extracted. The first stage in this process transforms the text in a sequence of
words or tokens. If this is not too difficult in English, the absence of white
spaces in Chinese for example can make this first step a rather difficult one.
Next, the indexing terms are to be chosen among all the extracted tokens.
They should be discriminant, and thus not appear in all documents, but they
should not be too specific: they must appear in several texts and be infor-
mative [100]. The set of unordered words obtained by this process is called a
bag-of-words.

Many systems associate a weight with each of the indexing terms, in order
to designate which terms are more important or more meaningful. Three crite-
ria are used: the importance of the term within the document, the importance
of the term within the document collection, and the size of the document [98].
The first factor corresponds to a local weight and is usually based on the term
frequency in the document. The second one is global and is often chosen as
the inverse document frequency or one of its variants. The last factor tries to
correct the effects of the size of the document.

Finally, a representation model defines the way the terms should be used
or interpreted and how the query index should be compared to the collection
indexes. Classical families of such models are the set-theoretic models like the
Boolean model, where the documents are represented as sets of terms and
where the comparisons are done using basic set-theoretic operations, the alge-
braic models like Salton’s vector space model [99], where the documents are
represented as vectors and the similarity is expressed as a scalar number, and
probabilistic models [109] where the retrieval problem is seen as a probabilistic
inference problem, making use of tools like Bayes’ theorem.

Natural language processing for enhanced descriptions

The basic tools presented above fail to represent all the details and subtleties
of natural languages, and natural language processing methods have been
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proposed in order to acquire linguistic information and to improve the per-
formance of the description. These tools can work at various levels: at the
morphological level, at the syntactic level or at the semantic level.

Morphology is concerned by the structure of the words, and explains the
links between words like transform, transforms, and transformation. A basic
idea, called lemmatization, is thus to replace all these words in the document
index by the simplest one or the most basic one of the series: goes can be
replaced by go, bikes by bike. According to experiments, such a technique
allows to improve the precision and recall of an information retrieval system
up to 20 %. A second technique pushes the idea further and replaces every
word in the index by its stem, but the results are much dependent on the
quality of the stemming algorithm used and on the language [3]: Swedish or
Slovenian provide more convincing results than English.

The structure of the sentences and of the syntagms are the subject of
syntax. Its use mainly consists in using syntagms as complex indexing terms.
Although they present even more variations than simple terms, their use has
been proven successful when they come in addition to the simple terms, di-
rectly in the same index [100] or in a separate index [61]. The gain in perfor-
mance can reach 5 to 30 %.

At the semantic level, information about the meaning of words and re-
lations between words can be taken into account. Possible relations are syn-
onymy, hypernymy, or more complex relations like the one that links ‘pro-
fessor’ with ‘to teach’ [18]. Such information can be used to expand the
queries. Automatically extracted co-occurring words added to queries have
been proved to improve the results [36], while the use of WordNet [33] leads
to more deceiving results [116]. Another alternative is to use the semantic
information in the index itself, by employing the meaning of the words as
indexing criterion instead of viewing each word as a sequence of letters. Dis-
ambiguation is also an option [54]. In this case also, the use of WordNet does
not clearly improve the results.

As a conclusion, if the basic ways to integrate linguistic information pre-
sented here have largely proven their relevance, really taking into account
word meaning is still a challenge for which no universal technique is yet avail-
able. Tools developed for restricted domains (e.g., more restricted collections
or specific languages) appear however very promising.

1.5 Models for Multimodal Data Integration

What tools can be used to analyze jointly the several media present in a doc-
ument? Many authors tried to avoid developing ad-hoc methods for each new
combination they encountered and relied on the classical techniques that were
available in fields like data analysis, machine learning or signal processing. As
a matter of fact, multimedia is yet another application domain for pattern
recognition techniques.
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Let us first categorize the tasks to be solved in four elementary problems.
Segmentation aims at delimiting events. These events can be shots, scenes or
sequences in an audiovisual stream. Event detection consists in finding pre-
defined events in a document, such as advertisement, dialogues, and goals in
soccer matches. Structuring is close to a complete segmentation of a document.
Its goal is to provide the complete structure of a document, structure that can
include some hierarchy (e.g., shots are gathered in scenes), or some classifica-
tion (e.g., the various segments may be labeled). Finally, classification aims
at providing labels to document parts. Of course, one major application of
classification consists in associating more semantic labels to documents, but
this leads to a very wide variety of problems, e.g., determining the language
of a document, what is its genre, and what sport is shown.

These four categories have close links and many algorithms both segment
and structure, or detect events and classify at the same time. It should be no-
ticed that the first three tasks, as far as multimedia documents are concerned,
deal most of the time with temporal documents and have to take this tempo-
ral dimension into account. On the other hand, the classification often arrives
after other description steps and can be stated as a static problem. As written
above, many temporal or dynamic algorithms also achieve classification tasks.

Several categorizations can be made of the various techniques. Section 1.5.1
introduces the distinction between early, intermediate, and late fusion. In [108],
the authors present other typologies and separate statistical methods, ranging
from rule-based techniques, or simultaneous methods where all the media are
considered at the same time to methods where the media are processed one
after the other. In Section 1.5.2 we describe appropriate representations, as
well as classification tools for static modeling of multimodal data, while in
Section 1.5.3 we describe tools suited for dynamic time-evolving modalities,
including the Hidden Markov Model and its variants, as well as more general
Dynamic Bayesian Networks.

1.5.1 Levels of Integration: Early, Intermediate, and Late Fusion

Approaches

Integration of features extracted from diverse sources is not a trivial task. The
two main problems encountered in this process are the following:

• A decision problem: what should be the final decision when the various
media or sources of information provide contradictory data? Although the
decision problem is common to all systems based on information fusion,
it gets more difficult in the case of multimodal data because the different
modalities are affected dissimilarly by environmental noise, and thus their
relative reliability is time-varying.

• A synchronization problem, which is specific to multimodal integration of
time-evolving data. Synchronization issues arise for two reasons. First, the
natural representation granularity for heterogeneous modalities is differ-
ent. For example, the elementary unit of video signal is the image frame,
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typically sampled at 20-30 Hz, while audio features for speech recognition
are usually extracted at 100 Hz, and the elements of text (words) are gen-
erated at roughly a 1 Hz rate. Second, the boundaries induced by a certain
semantic event to different modalities are only loosely aligned. For exam-
ple, applause (acoustic evidence) and score label update (textual evidence)
typically lag scoring in sports, while visual evidence is concurrent to it.

One can generally classify the various approaches to multimodal integra-
tion into three main categories [42], depending on the stage that the involved
streams are fused, namely early, intermediate and late integration techniques.
In the early integration paradigm, corresponding to the strong fusion model
of Section 1.3, we first concatenate all modality descriptors into a single mul-
timodal feature vector; afterwards, processing proceeds by using conventional
monomodal techniques. Late integration techniques, following the weak fu-
sion model of Section 1.3, largely handle each modality independently using
separate models; the corresponding partial results are subsequently combined
to yield the final decision. While both early and late integration approaches
build on established monomodal modules and are thus easily applicable, they
cannot fully account for the loose synchronization and the fine interaction
between the different modalities. Intermediate integration methods try to ad-
dress this shortcoming by employing novel techniques specifically devised to
handle multimodal data and properly account for multimodal interaction.

Early Integration

For early integration, it suffices to concatenate all monomodal features into
a single aggregate multimodal descriptor, possibly compacted by a dimen-
sionality reduction process. Since early integration corresponds to the strong
fusion model of Section 1.3, it is theoretically the most powerful scheme for
multimodal fusion. In practice, however, early integration schemes can only
be effective if all individual modalities are synchronized. Moreover, early inte-
gration lacks flexibility due to its non-modular nature, and the whole system
needs to be re-built in case the conditions affecting even a single constituent
modality change. For example, in the case of audiovisual speech recognition
based on early integration models, it is necessary to retrain all models for each
acoustic noise condition.

Late Integration

In this approach, each modality is classified independently. Integration is done
at the decision level and is usually based on heuristic rules. For example,
audio and video streams are segmented and classified by two separate Hidden
Markov Models. Dialogues are identified as segments where audio signal is
mainly speech while visual information is an alternation of two views. The
detection of such particular scenes is done by fusion of the decisions.



30 P. Maragos, P. Gros, A. Katsamanis, G. Papandreou

A particular instance of late integration techniques is based on the suc-
cessive analysis approach. The principle of this scheme, as illustrated in video
analysis applications, is the following: The audio or textual signal is employed
in a first stage to detect interesting segments. Image analysis (tracking, spatial
segmentation, edge/line/face detection) is then used in the regions previously
detected to identify a particular event, or more simply to identify the video
segment boundaries. In this first case, audio, or text, are used to restrict the
temporal window where video analysis will be used. An implicit assumption
of such a method is that interesting segment detection is faster with these
modalities (applauds in the sound track or keywords in the textual stream).
This constitutes the first stage of a prediction verification method, whose
second stage is a verification and localization step done on the audio or on
the visual stream. The use order of the various media may be inverted: in a
first stage, visual features are used to detect interesting events. In a second
stage, the state of excitement of the speaker or the public is measured to filter
the most interesting shots. This process is no more a prediction/verification
process, but the audio signal is used to order the visual segments by level of
importance.

Intermediate Integration

Intermediate integration techniques lie in-between early and late integra-
tion methods and are specifically geared towards modeling multimodal time-
evolving data. They achieve a good compromise between modularity and close
intermodal interaction. Specifically, they are modular enough in the sense that
varying environmental conditions affecting individual streams can be handled
by treating each stream separately. Moreover, they allow modeling the loose
synchronization of heterogeneous streams while preserving their natural cor-
relation over time. This class of techniques has proved its potential in var-
ious application areas, such as audiovisual speech recognition presented in
Chapter ??. Various intermediate integration architectures for handling time-
evolving modalities are discussed in Section 1.5.3.

1.5.2 Static Models for Multimodal Data

We first consider static models for processing multimodal information. These
are designed for data that are static themselves, but can also often handle
satisfactorily dynamic data on a frame-by-frame basis.

Modeling Interrelated Multimodal Events

Multimodal data stemming from a common cause often have strong interde-
pendencies. In the case of two sets of continuous vector variables, x and y,
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canonical correlation analysis (CCA) provides a natural representation for an-
alyzing their co-variability [66]. Similarly to the better-known principal com-
ponent analysis (PCA), CCA reduces the dimensionality of the datasets, and
thus produces more compact and parsimonious representations of them. How-
ever, unlike PCA, it is specifically designed so that the preserved subspaces
of x and y are maximally correlated. Therefore CCA is especially suited for
studying the interrelations between x and y. In the case that x and y are
Gaussian, one can prove that the subspaces yielded by CCA are also optimal
in the sense that they maximally retain the mutual information between x and
y [102]. Canonical correlation analysis is also related to linear discriminant
analysis (LDA): similarly to LDA, CCA performs dimensionality reduction
to x discriminatively; however the target variable y in CCA is continuous,
whereas in LDA is discrete.

More specifically, in CCA we seek directions, a (in the x space) and b

(in the y space), so that the projections of the data on the corresponding
directions are maximally correlated, i.e. one maximizes with respect to a and
b the correlation coefficient between the projected data aT x and bT y

ρ(a,b) =
aT Rxyb

√

aT Rxxa
√

bT Ryyb
. (1.19)

Having found the first such pair of canonical correlation directions (a1,b1),
along with the corresponding canonical correlation coefficient ρ1, one contin-
ues iteratively to find another pair (a2,b2) of vectors to maximize ρ(a,b),
subject to aT

1 Rxxa2 = 0 and bT
1 Ryyb2 = 0; the analysis continues iteratively

and one obtains up to k = rank(Rxy) direction pairs (ai,bi) and CCA co-
efficients ρi, with 1 ≥ ρ1 ≥ . . . ≥ ρk ≥ 0, which, in decreasing importance,
capture the directions of co-variability of x and y. For further information on
CCA and algorithms for performing it, one is directed to [66].

Canonical correlation analysis and related ideas have proven fruitful in
several multimodal fusion tasks. By searching in videos for the image ar-
eas that are maximally correlated with the audio one can spot audiovisual
salient events. Applications include speaker localization and tracking, as well
as video-assisted audio source separation (cocktail party effect) [45, 22, 52]. By
maximizing the canonical correlation over a small shift window, one can also
time-align asynchronous data streams, as demonstrated in [101]. Moreover,
CCA is closely related to the optimal Wiener filter for linear regression [102];
this connection has been employed by [51] in recovering speech articulation
from audiovisual data.

Classification of Static Multimodal Data

In the matter of classification with multimedia data, many techniques coming
from classic pattern recognition can be used. Before discussing these tech-
niques, several specificities should be outlined.
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The algorithms can be employed at several levels. Their input can be de-
scriptors or the output of monomodal classifiers [56]. Of course, the way the
various media are mixed is important. The descriptors can be simply con-
catenated. When the various descriptors are of the same nature, the resulting
vector can be reduced through a PCA or discriminant linear analysis. Con-
catenating descriptors of different nature like words with numeric descriptors
is problematic since they correspond to very different kinds of distributions
and metrics.

Simple Bayesian classifiers are a first class of possible classifiers for mul-
timedia data. Support vector machines (SVMs) [115] are heavily used for at
least three reasons. They are quite efficient in dealing with high dimensional
data, they can manage non-linear separation boundaries, and, last but not
least, free implementations are available which are quite simple to use5.

Neural networks of different kinds, like multilayer perceptrons, are also
classical tools in the domain. Convolutional networks have been used for face
detection and proven to be well-suited tools for dealing directly with the
signal [35]. Even if their use is more efficient in some cases, they remain difficult
to apply, because of the complexity of the algorithms that are associated with
them for training and because no widely available implementation exists (for
the convolutional networks in particular).

Finally, Bayesian networks appear to be very flexible tools. Such networks
allow to model any graph of dependency between random variables. The vari-
ables are simply represented as nodes in a graph where edges represent some
dependence between two variables. One of the major advantages of Bayesian
networks comes from the possibility to learn the structure of the network
directly from data, e.g., using the K2 algorithm [19]. Of course, if many vari-
ables are to be taken into account and no hint is given to the algorithm, this
requires lots of training data and the complexity becomes very high. This is a
major difference with Markov models where the structure has to be a priori
defined.

1.5.3 Models for Dynamic Data: Integration of Asynchronous

Time-Evolving Modalities

In the case of dynamic data, two additional difficulties appear: The various
data streams can have different rates and can also lack precise synchroniza-
tion. As an example, movies can have 24, 25 or 30 images per second when
sound frames have a rate of 16 kHz or 48 kHz and speech corresponds to four
syllables per second. It is also clear that TV and radio commentators usually
describe events that have already passed, for example, in live sport programs.
Even if the interval between the event and its comments is rather small for
human perception, it will be translated in terms of dozens of image frames
and hundreds of sound frames. Choosing what part of each stream should be

5 A list is provided on the Wikipedia webpage on SVMs.
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considered at a given instant is thus quite a complex problem. The two basic
formalisms used in the domain are Markov models and Bayesian networks,
the former being a particular case of the latter.

The Principle of Markov Models

Markov models are composed of a graph of states linked by oriented edges.
Each edge represents a possible transition between two states or the possibility
to stay at the same state for several periods of time. Time being assumed to be
discrete, at each instant, the process makes a transition from its actual state
to another one and emits an observation. Such a system is parameterized by
several sets of probabilities. A first set provides the probability distribution
of the initial state from where the process starts at t = 0. The second set
provides the state transition probabilities. The last set provides the probability
distributions of the observations emitted at each state.

Many variants of the basic model have been developed [88, 118]. The prob-
abilities are usually constant over time, but one could use varying probabili-
ties. The basic Markov hypothesis states that the observation emitted and the
transition only depends on the current state: Past is reduced to the current
situation. But here also, a variant is possible where the past could be reduced
to the knowledge of a given number of past instants. That is for example what
happens when using n-gram models.

A Markov model is said to be hidden when the sequence of states is
unknown. This is the case for example when a sequence of observations is
known, and the issue is then to determine the most probable sequence of
states s = (s1, s2, . . . , sT ) which could emit this sequence of known observa-
tions (o1, o2, . . . , oT ). Mathematically, the problem is thus to find the optimal
sequence of states s∗ such that:

s∗ = arg max
s1:T

(log P (o1:T |s1:T ) + log P (s1:T ))

The Viterbi algorithm [34] is used to solve this problem and provides a global
optimum.

It should be noticed that the structure of the hidden Markov model should
be defined a priori. The parameters can either be predefined or estimated by
the Baum-Welch algorithm from example data.

The Principles of Bayesian Networks

As mentioned earlier, the Bayesian networks allow a set of random variables
and their dependencies to be represented by an oriented acyclic graph. Each
node corresponds to an observed or hidden variable and the edges represent
the dependencies. An edge between a node A and a node B indicates that
the variable represented by B depends upon the variable represented by A.
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Of course, the absence of any edge between two nodes means these nodes are
independent, or conditionally independent if they share a common parent.

The parameters of such a network are the conditional distributions of each
node. These distributions provide the probabilities of each variable condition-
ally on its parent variables. The global joint probability of all variables can
be computed:

Pθ(x) =
∏

i

Pθi
(xi|Ai)

where Ai is the set of parents of node i in the graph. The parameters θi

correspond to the parameters of the conditional distribution at node i. The
factorized form of this joint probability is the starting point of the algorithms
that allow to learn the structure [19] and the parameters of such networks [55,
50].

Such Bayesian networks are called dynamic Bayesian networks when they
represent a random process. Such a denomination is quite improper in fact,
but it is largely accepted by the community. Dynamic networks are in fact
static, but they present a pattern repeated over time. On the other hand,
the parameters are time independent. As a consequence, the same training
algorithms can be used, but learning the structure of such a network becomes
intractable in most situations.

Hidden Markov Models for Multimedia Processing

When several streams of observations are to be taken into account, Hidden
Markov Models (HMMs) can be adapted. If the streams are synchronized and
share the same rate, a first solution is to fuse the descriptors at each instant
in order to create larger multimodal descriptors. Such a method is restricted
to the fusion of descriptors of the same nature. Mixing words with numeric
descriptors makes it difficult to define a metric between descriptors. Further-
more, the constraint on the rate often implies to align one of the streams
on the other one (e.g., to reduce the audio information to one descriptor per
visual shot) (see Fig. 1.2).

There are many Markov model variants for processing multimodal data;
a unified presentation of the most popular architectures can be found in
[79]. Multistream HMMs were introduced to process several streams, using
one HMM per stream and by adding synchronization points [15, 44, 30] (see
Fig 1.3). Between two such synchronizations, the two streams are assumed to
be independent and are modeled by their own HMM. In this case the observa-
tions of the various streams are supposed to be independent (conditionally to
the hidden process). At each synchronization point, the scores corresponding
to each stream have to be combined.

Two extreme cases of multistream HMMs are the synchronous and the
asynchronous models. In the former, the two Markov models have a shared
state sequence, and can be considered as synchronized at every instant. In the
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Fig. 1.2. Descriptor fusion with hidden Markov models. Grey arrows correspond to
conditional probabilities and provide an exemple of alignment between states and
observations. (Credits: G. Gravier)

Fig. 1.3. Multistream hidden Markov model. The states represented by a double
circle correspond to synchronization points. (Credits: G. Gravier)
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latter, there is no synchronization (except at the beginning and at the end
of the process) and the model is equivalent to a synchronous model in the
product state space. As a consequence, such a model is often called a product
model. More specifically, let us consider a pair of bimodal sequences y(1) and
y(2), each consisting of T (discrete or continuous) observation samples y(i) =

(y
(i)
1 , y

(i)
2 , . . . , y

(i)
T ). Then, in the synchronous multistream HMM model the

data are explained by a common hidden state sequence x = (x1, x2, . . . , xT ),
with xt taking values in the single label set L, yielding the overall probability

p(y(1),y(2)|x) = p(x0)

T
∏

t=1

p(xt|xt−1)p(y
(1)
t |xt)p(y

(2)
t |xt). (1.20)

In the case of the asynchronous multistream HMM model, however, each

modality has its own dedicated hidden state sequence x(i) = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
T ),

with x
(i)
t taking values in the possibly separate label sets L(i), yielding

p(y(1),y(2)|x(1),x(2)) = p(x
(1)
0 , x

(2)
0 )·

T
∏

t=1

p(x
(1)
t , x

(2)
t |x

(1)
t−1, x

(2)
t−1)p(y

(1)
t , y

(2)
t |x

(1)
t , x

(2)
t ). (1.21)

The resulting product HMM allows for state asynchrony, since at each time
instance one can be at any combination of unimodal states.

The Bayesian network framework allows to represent easily other vari-
ants by introducing new possibilities of dependency between the states of the
model. For example, Fig. 1.4 represents a coupled multistream model with a
coupling between the chains associated to each stream. The associated obser-
vation sequence probability is

p(y(1),y(2)|x(1),x(2)) = p(x
(1)
0 )p(x

(2)
0 )·

T
∏

t=1

p(x
(1)
t |x

(1)
t−1, x

(2)
t−1)p(x

(2)
t |x

(1)
t−1, x

(2)
t−1)p(y

(1)
t |x

(1)
t )p(y

(2)
t |x

(2)
t ). (1.22)

Figure 1.5 represents yet another popular alternative, the factorial model. In
this model, at a given instant, all hidden states depend upon all observations,
yielding

p(y(1),y(2)|x(1),x(2)) = p(x
(1)
0 )p(x

(2)
0 )·

T
∏

t=1

p(x
(1)
t |x

(1)
t−1)p(x

(2)
t |x

(2)
t−1)p(y

(1)
t |x

(1)
t , x

(2)
t )p(y

(2)
t |x

(1)
t , x

(2)
t ). (1.23)

The relative merits of both multistream HMM variants, as well as the coupled
and factorial HMM models, are examined by [79] in the context of audiovisual
speech recognition.
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Fig. 1.4. Graphic representation of the coupled Markov model for two streams.
States in grey correspond to observed states (the corresponding observations are
not represented). (Credits: G. Gravier).
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Fig. 1.5. Graphic representation of the factorial Markov model (Credits: G.
Gravier).

Segment Models

In all the models presented so far, both Markov models and Bayesian networks
associate a hidden variable to each observation. As a consequence, modeling a
process that should stay for some time in a given state implies an exponential
distribution for this duration. This is not always realistic.

Segment models [27, 81] are a variant of Markov models in which every
state can be associated to several observations. Their number is modeled by
an explicit duration model, which can be parametric or not. The use of such
a model is for example, explained in the book’s Chapter ??.
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1.6 Integrated Multimedia Content Analysis (Beyond
Descriptors)

Although descriptor computation has attracted most of the attention of the
video processing community, other aspects have also to be taken into account
in order to derive complete systems. Several of these aspects are presented
in this section, including metadata and the normalization problem, indexing
techniques, and performance evaluation.

1.6.1 Metadata and Norms

The increasing number of digital photo and video collections raised the prob-
lem of describing them in a uniform way to allow an easier querying of these
collections. One difficulty comes from the number of different communities
that are concerned and have different habits and standards to describe their
documents: documentalists used to manage libraries, the video community
that developed the MPEG standards and wanted to enlarge their scope to
include metadata through the MPEG-7 standard, the Web community which
was confronted to the increasing number of images and videos and is work-
ing on the semantic web standards like RDF and OWL, some users like the
American government defined their own system (the Dublin Core [23]). All
these communities have their own standardization bodies like ITU for the
telecommunication domain, ISO, IEC, the W3C, and this leads to a certain
cacophony.

Another problem comes from the nature of the digital documents to be
annotated. While books are material objects that do not change once pub-
lished, even if a “book” may have several versions with differences between
them, digital documents usually do not exist in a directly readable form but
in compressed formats. They can be read through several software packages
that provide different results which depend upon many factors like the screen
used and the network bandwidth. Furthermore many versions of an original
document can exist with various formats and resolutions. As a consequence,
the concept of document has become quite fuzzy.

As far as digital videos are concerned, metadata can be separated into sev-
eral categories. Some metadata describe the container of the document (e.g.,
name file, URL, compression format), some describe the physical aspects of the
document when viewed (e.g., resolution, grey levels or color), others describe
the content at various level: at low level with color histograms, at medium
level with regions and spatial relations, at high level with faces / speakers and
events. Another class of metadata is devoted to describing external elements:
author, actors, how created, when broadcasted. Finally, some metadata de-
scribe the content from a human point of view, i.e., the story or the event.
Such an annotation is not automatic because it requires some understanding
of the document which is still impossible to achieve automatically with the
current techniques.
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The metadata normalization effort has led to different kinds of norms.
First, some very general ones like the Dublin Core [23] which can be used
for any digital document in fact. Although there are many variants, they all
share a common basis and simplicity. Second, some attempts have been made
to build a complete norm and led to MPEG-7 [65]. Such a norm suffers from
several drawbacks: too general on the one hand, but not extensible on the
other hand, not modular, based on a language that is not completely object-
oriented and thus does not support inheritance although these properties were
parts of the requirements [74]. MPEG-7 is a source of inspiration for many
usages, but will probably not be used as such in practice.

Another norm very similar to MPEG-7 is nevertheless successful. TV-
Anytime was developed at the same time but for a more focussed objective
(the description of programs in TV streams) and, although based on the same
concepts, was adopted and is used by many companies.

It is now accepted that conceiving a universal metadata norm is impossible
and most standards plan to integrate and synchronize metadata with docu-
ments, but without specifying how these metadata should be written. This is,
for example, the case of the MPEG-21 norm [73] or MXF [121].

1.6.2 Indexing Algorithms

Because in most libraries documents are described by words (authors, titles)
and these words are sorted by alphabetic order, most persons fail to see the
difference between a descriptor and an index which is a way to organize the
metadata in order to retrieve easily the documents. As a matter of fact, the
descriptors are used as indexes, and the alphabetic order is not seen as an
external way to arrange them.

With images or sounds, the situation is different. Many descriptors are
high dimensional numeric vectors subject to noise. Many of them cannot be
compared directly, but through a distance or dissimilarity function and small
differences may be considered as not significant. On the other hand, sorting
such vectors in lexicographic order does not help to find the most similar vec-
tors, whatever distance and search algorithm (ε-range or k-nearest neighbors
searches) are used. Traditional database indexes of the B-tree family also fail
to handle correctly such vectors for which all dimensions should be taken into
account [2] at the same time.

A basic algorithm to solve this problem is the sequential and exhaustive
search where all vectors are compared to the query vector. Such a simple
algorithm has the major advantage to be absolutely linear in complexity.
Many attempts have been made to improve this algorithm. A simple idea is
to group the vectors in cells, and to be able to select the cells that should be
read based on geometric properties.

Based on this idea, two main categories of algorithms have been proposed.
Based on the seminal R-tree [40], some techniques called R+-tree [103], R*-
tree [7], X-tree [10], SS-tree [120] and SR-tree [7] try to build the cells with
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respect to the data distribution. All these cells are organized in a tree struc-
ture. On the other hand, other algorithms based on the KD-tree [9], like
the K-D-B-Tree [91], the LSD-Tree or the LSDh-Tree [43], build the cells by
cutting the vector space in hyperrectangular regions. These regions are also
organized in a tree. All these techniques appear to have a time complexity
that grows exponentially with the size of the vector space, and none can be
used in practice as soon as the space has more than 10 or 15 dimensions. This
is one of the effects of the dimensionality curse.

New techniques are appearing that solve this problem. First, they imple-
ment an approximate search: Although finding close vectors to a query vector
is not so long and difficult, proving that they are the nearest is time con-
suming. It was thus proposed to avoid this second stage. The tree structures
have been abandoned in favor of linear structures (projection on random lines
or on space filling curve, hash tables). Finally, distance computations can
be replaced by rank aggregation techniques, following ideas developed in the
OMEDRANK algorithm [32]. Grouping all these ideas into a single algorithm
led to the PvS algorithm [63] which has a complexity close to constant in time
and can be used in practice with billions of descriptors.

1.6.3 Performance Evaluation

Performance evaluation is a twofold concept. Firstly, it consists in assessing
the quantitative and objective properties of a system, in a way that allows
comparison with competing systems. Secondly, its goal is to verify to which
extent a system fulfills the users’ needs. These two kinds of evaluation give
rise to very different techniques and methods.

Quantitative evaluation is now organized along a well established and rec-
ognized protocol through competitive campaigns. A set of experts firstly es-
tablish a test corpus and a learning corpus. For the first one, the experts
establish a reference, i.e., they manually provide what is considered as a per-
fect result to which the systems will be compared. The second one is provided
to the participants in order to develop, tune and test their systems. Secondly,
a metric is chosen in order to compare the reference to the results that will
be provided by each system. Finally, each participant runs their system on
the test corpus and the results are compared to the reference using the cho-
sen metrics. A workshop is often organized where all results are published
and discussed. Many such campaigns are annual such that participants can
improve their system and that new tasks can be addressed.

For example, the National Institute for Standards and Technology in the
US organizes lots of such campaigns on various topics like information re-
trieval (TREC campaigns), machine translation, speech recognition, language
recognition, speaker recognition, and video analysis.

This existing protocol nevertheless does not suppress the difficulties. A
large community has to agree on one common task to be solved when lots of
systems can solve slightly different problems. A metric should be agreed on.
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Gathering the data and establishing the reference can be extremely difficult
and expensive, because most multimedia data are copyrighted and because the
manual annotation process for the reference is an extremely long and boring
process (imagine you have to annotate every pixel of a long video!)

User evaluation is a completely different problem. Since it should involve
users in real conditions, it can be achieved only on complete systems with in-
terfaces and thus requires more development most of the time. Furthermore,
the actions and reactions should be recorded and analyzed without perturb-
ing its use of the system. Finally, questionnaires and spoken debriefings can
complete the analysis.

Here also, the difficulties are numerous. Most computer scientists are not
trained to manage such evaluations. Establishing any result often takes a lot
of time and needs to involve many users to reduce any bias due the order of the
data presented to each of the users and to the order of the tasks proposed to
the user. Eventually, quantitative results can be obtained on only few simple
questions, although the oral debriefing can bring more qualitative pieces of
information.

1.7 Application Areas

Next we describe some indicative application areas in which multimodal inte-
gration techniques have proven particularly beneficial.

1.7.1 Audio-Visual Automatic Speech Recognition

Commercial Automatic Speech Recognition (ASR) systems are monomodal,
i.e., only use features extracted from the audio signal to perform recognition.
Although audio-only speech recognition is a mature technology [90], current
monomodal ASR systems can work reliably only under rather constrained
conditions, where restrictive assumptions regarding the amount of noise, the
size of vocabulary, and the speaker’s accents can be made. These shortcomings
have seriously undermined the role of ASR as a pervasive Human-Computer
Interaction (HCI) technology [82] and have delayed the adoption of speech
recognition systems in new and demanding domains.

The important complementary role that visual information plays in hu-
man speech perception, as elucidated by the McGurk effect discussed in Sec-
tion 1.2.3, has provided strong motivation for the speech recognition commu-
nity to do research in exploiting visual information for speech recognition,
thus enhancing ASR systems with speechreading capabilities [111, 88]. The
key role of the visual modality is apparent in situations where the audio signal
is either unavailable or severely degraded, as is the case of very noisy environ-
ments, where seeing the speaker’s face is indispensable in recognizing what
has been spoken. Research in this relatively new area has shown that multi-
modal ASR systems can perform better than their audio-only or visual-only
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counterparts. The first such results where reported back in the early 80’s by
Petajan [84]. The potential of significant performance improvement of audio-
visual ASR systems, combined with the fact that image capturing devices are
getting cheaper, has increased the commercial interest in them.

The design of robust audiovisual ASR systems, which perform better than
their audio-only analogues in all scenarios, poses new research challenges, most
importantly:

• Selection and robust extraction of visual speech features. From the ex-
tremely high data rate of the raw video stream, one has to choose a
small number of salient features which have good discriminatory power
for speech recognition and can be extracted automatically, robustly and
with low computational cost.

• Optimal fusion of the audio and visual features. Inference should be based
on the heterogeneous pool of audio and visual features in a way that en-
sures that the combined audiovisual system outperforms its audio-only
counterpart in practically all scenarios. This is definitely non-trivial, given
that the audio and visual streams are only loosely synchronized, and the
relative quality of audio and visual features can vary dramatically during
a typical session.

These issues are discussed in detail in [88] and also in the book’s Chapter ??.

1.7.2 Sports Video Analysis, Indexing and Retrieval

Sport videos, as well as news reports, have motivated lots of research work
due to their large number of viewers and possible applications [60]. The main
challenge is to structure such videos in order to retrieve their structure or the
main events they contain in order to navigate more easily, to index them or
to derive new services from these videos.

Two categories of sport were especially studied: score oriented sports like
tennis or volley-ball, which are organized depending on the score, and time
oriented sports like soccer or rugby which are mainly organized in time periods
with a variable number of events in each period. For the former case, the main
goal is to recover the structure of the game and to evaluate the interest of each
action [24]. For the latter case, the goal is to detect the interesting events [31].

Another usual problem is to separate the parts of video where the game
is going on from all other instants like commercials, views on the public, and
breaks. Sport video analysis thus combines some processing tools at various
levels. Detecting the playing area is often the first step, but many other indices
can be used according to the concerned sport: detecting players, detecting
lines or areas on the playing area, detecting text, extracting the ball and
tracking it. The sound track can be of great help, especially for event detection:
applauds, pitch variation, keywords are usual cues. All these detectors are to
be assembled in a global system. Stochastic models like HMMs or Bayesian
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networks are a typical choice to fuse all the partial results in a global frame
which allows recovering the structure of the video [53].

1.7.3 TV Structuring

TV structuring considers long and continuous TV streams of several days,
weeks, or even months. In this case, the main goal is to compute an exact
program guide, i.e., to segment the stream in smaller units and to characterize
them by their start and end times and their title. These units are usually
categorized into programs (e.g., weather forecast, news programs, movies)
and non-programs (commercials, trailers, self-promotion of the TV channels,
and sponsoring) TV structuring have mainly applications in the professional
world for people working on TV archives, statistics or monitoring.

Two main methods have been proposed in the literature. A top-down
approach [87] uses the regularity of program grids over years, and learns their
structure from annotated data. The predicted grid is then compared to the
stream to refine the detection of program separation. Such a method requires
huge annotated data and was developed for TV archivers.

On the other hand, a bottom-up approach [78] tries to infer the stream
structure directly from the stream itself. Most programs share no common
information or structure that could be used to detect them. The segmentation
thus starts by detecting the non-programs that have the common property to
be heavily repeated in the stream. This can be achieved using a reference
database or by directly comparing the stream with itself. Once the repetition
are discovered and organized, the programs appear as the remaining segments.
Their annotation can be done by comparing the stream with an Electronic
Program Guide or the EIT tables associated with digital TV.

1.7.4 Multimedia Indexing of Broadcast News

Multimedia indexing of TV broadcast news programs is a very active applica-
tion domain for the technologies of multimedia processing. There is significant
interest in the potential of exploiting the vast amount of information carried
over the TV networks on a daily basis. Exploitation in this context can be
interpreted as the ability to efficiently organize, retrieve and reuse certain
parts of the broadcasted information. This still poses various technological
and scientific challenges and certainly effective multimodal integration of the
involved audio, speech, text and video streams is one of the most important
[16, 107, 80].

To classify broadcast news videos into various categories, in [16] they fuse
low-level visual features such as color-histogram with audio class labels and
high-level visual properties such as the number of faces appearing in the image.
Classification is achieved via decision trees and the incorporation of multiple
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modalities is shown to play a key role in the achieved performance improve-
ment. A similar conclusion is drawn from the evaluation results for the multi-
media indexing system presented in [80]. Initial story boundaries are localized
using audio, visual and speech information and these are then fused in a
weighted voting scheme to provide the final news story segmentation. A more
elaborate fusion scheme, which unfolds at the semantic level, is proposed in
[107]. Essentially, the concepts conveyed by the involved modalities, video and
speech, are constrained to have certain relations between them. The ‘Semantic
Pathfinder’, as the corresponding system is termed, exhibits quite promising
properties in broadcast news indexing experiments.

1.7.5 Biometrics, Person Recognition

Automatic person recognition or identification processes have nowadays be-
come indispensable in various transactions which involve human-machine in-
teraction. Commonly, as for example at bank ATMs (Automated Teller Ma-
chines) or in transactions performed online, identification processes require
issuing a certain token such as a card or just its number and then a password
or a PIN (Personal Identification Number). To achieve increased security and
naturalness, the utilization of physiological and behavioral characteristics such
as the person’s fingerprints, iris, voice, face or signature for identification, i.e.,
biometric recognition, is considered to be a much more promising alternative.
However, fingerprint, iris and signature recognition, though quite reliable, in-
volves high-cost sensors in many cases and is regarded as obtrusive. On the
other hand, audio-only (voice) recognizers are cheap and quite user-friendly
but vulnerable to microphone and acoustic environment changes. Similarly,
visual-only (face) recognizers can be quite sensitive to lighting conditions
and appearance changes. Integrated exploitation of two or more biometric
modalities, appears to give the solution that satisfies requirements in each
case [93, 1, 92, 106, 49, 77]. Audiovisual person recognizers for example signif-
icantly outperform the single-audio or visual recognizers in terms of reliability
while at the same time feature low cost and non-obtrusiveness [1].

1.7.6 Image Retrieval and Photo-Libraries

The management and use of photo libraries has motivated a very large litera-
ture that is impossible to fully reference here. Several technologies have to be
assembled in order to build a complete system. The choice of the components
of the system depends upon the context of use of the system: Is the photo col-
lection to be managed homogeneous or heterogeneous? Is the user a specialist
or not? How the queries will be formulated?

Images cannot be compared or matched to the query directly in most
applications. They have to be described or annotated first and comparison or
matching will be performed on that description or annotation. This can be
done using low level descriptors based on the image signal itself (color, texture
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or shape descriptors) [14] or using only part of this signal (interest point,
region descriptors) [64], using higher level processing tools (face detection,
object recognition) [35], or keywords and text (coming from the image itself,
associated to the image on a same web page or given by a human annotator).
In association with these descriptors, a function must be defined in order to
compare the image description with the query.

Another important question is the management of very large collections.
When the descriptors are numeric, they are often represented as high dimen-
sional vectors. Searching such vectors is a complex problem that is not solved
by the use of database management systems [2].

Another key aspect is the user interface: this interface should allow the user
to formulate its query and to see the results provided by the system. The user
usually queries the system by presenting an image to the system (query by
example) or by using words. Of course, the image descriptors used should be
adapted to the queries; the matching between words and numeric descriptors
remains a difficult challenge. Finally, the way the results are usually presented
is a list of ordered images, although many works have also tried to develop
other presentations.

1.7.7 Automated Meeting Analysis

Automated meeting analysis has lately come into the focus of interest in
many diverse research fields, such as speech and speaker recognition, natural
language processing and computer vision. The goal is to achieve systematic
meeting indexing and structuring that would facilitate meeting information
retrieval and browsing and would significantly favor remote meetings. In this
direction, though speech is the predominant information carrying modality
in this context, it has become clear that a meeting is essentially a sequence
of multimodal human-human interaction processes and should be treated as
such. Exploitation of video can help speaker and role identification in the
meeting while the text of notes kept during the meeting may allow easier
topic recognition and meeting segmentation. Proper consolidation of these
modalities, i.e., video and text, in the analysis framework can lead to signifi-
cant gains [70, 26, 13].

1.8 Conclusions and Future Directions

In this chapter we have surveyed some key ideas and results from research on
cross-modal integration in multimedia analysis. We sampled problems from
three major areas of research in multimedia: multimodal feature extraction,
stochastic models for integrating dynamic multimodal data, and applications
that benefit from cross-modal integration. In addition, we emphasized fusion
of modalities or cues in various ways: explaining its weak- and strong-coupling
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versions with a Bayesian formulation, classifying it at various levels of inte-
gration in conjunction with the stochastic classification models, and seeing it
at work in various applications. As a useful supplement, we also reviewed a
few ideas and results from human perception and its Bayesian formulation.

Some interesting future directions include the following:

Optimal Fusion: What is the best way to fuse multiple cues or modalities
for various tasks and noise environments? Which should be the optimality
criteria?

Fusing numeric and symbolic information: Multimodal approaches are now
common for audio and video, for still images and text (or at least key-
words). Mixing text or transcribed speech with video and audio is still a
challenge, since it brings together numeric information coming from sound
or images with symbolic information.

Investigate how the cross-modal integration algorithms scale and perform on
large multimedia databases.

Cross-modal integration for performance improving in two grand challenges:
(i) Natural access and high-level interaction with multimedia databases,
and (ii) Detecting, recognizing and interpreting objects, events, and hu-
man behavior in multimedia videos by processing combined audio-video-
text data.

Anthropocentric system: The interaction with the system and taking the hu-
man user into account are still open issues. And they are very important,
since in most multimedia applications it is humans who will ultimately
evaluate and use the system. Many aspects of human-computer interfaces
are reviewed in this book’s Chapter ??.

Looking back at this chapter’s journey, we attempted to take a few glimpses
at a huge and fascinating field, that of multimedia understanding through
cross-modal integration. We are still feeling that it is a very complex dynamic
area. The understanding of each of the major sensor modalities, i.e., speech
or vision, has not been “conquered” yet by science and technology, neither
perceptually nor computationally. Imagine now their fusion! Nevertheless we
must be brave and dare to keep researching this remarkable mapping from
the combined audiovisual world to our multimodal percepts and inversely.
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