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We introduce a new computational phonetic modeling framework for sign language (SL) recognition. This is
based on dynamic–static statistical subunits and provides sequentiality in an unsupervised manner, without
prior linguistic information. Subunit “sequentiality” refers to the decomposition of signs into two types of
parts, varying and non-varying, that are sequentially stacked across time. Our approach is inspired by the Move-
ment–Hold SL linguistic model that refers to such sequences. First, we segment signs into intra-sign primitives,
and classify each segment as dynamic or static, i.e., movements and non-movements. These segments are then
clustered appropriately to construct a set of dynamic and static subunits. The dynamic/static discrimination
allows us employing different visual features for clustering the dynamic or static segments. Sequences of the
generated subunits are used as sign pronunciations in a data-driven lexicon. Based on this lexicon and the corre-
sponding segmentation, each subunit is statistically represented and trained onmultimodal sign data as a hidden
Markov model. In the proposed approach, dynamic/static sequentiality is incorporated in an unsupervised
manner. Further, handshape information is integrated in a parallel hidden Markov modeling scheme. The
novel sign language modeling scheme is evaluated in recognition experiments on data from three corpora and
two sign languages: Boston University American SL which is employed pre-segmented at the sign-level, Greek
SL Lemmas, and American SL Large Vocabulary Dictionary, including both signer dependent and unseen signers'
testing. Results show consistent improvements when compared with other approaches, demonstrating the
importance of dynamic/static structure in sub-sign phonetic modeling.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Sign languages are natural languages that manifest themselves via
the visual modality in the 3D space. They convey information via visual
patterns and serve for communication in parts of Deaf communities [2].
Visual patterns are formed by manual and non-manual cues. The
automatic processing of such visual patterns for the Automatic Sign
Language Recognition (ASLR) can bridge the communication gap be-
tween the deaf and the hearing. Since the early work of [3], there has
been progress in visual processing, sign language phonetic modeling,
and automatic recognition [1,4,5]. Moreover ASLR may contribute to
other disciplines such as linguistics for the study of Sign Languages
(SLs), via automated processing of corpora, whereas it is broadly related
to human computer interaction.

Herein we focus on sign language articulation produced by manual
cues. The term “manual cues” refers to themovements and handshapes
Vassilis Athitsos.
5773, Greece.
sik@cs.ntua.gr (V. Pitsikalis),
of both hands, one of which is considered as dominant. The dominant
hand articulates the main phonetic parts. The other hand is referred to
as non-dominant (ND). The ND hand contributes to symmetric/anti-
symmetric movements or as a Place-of-Articulation (PoA). By PoA we
refer to the location of the dominant hand in relation to either the
body or the non-dominant hand. When the ND hand contributes in
sign articulation, it is called active. Handshape, the form of the hand,
equally plays a central role.

A coarse correspondence of a “word” in spoken language is a “sign”
in SL. The phonemes constituting a spoken word are concatenated
sequentially across time as the English word “admit” is phonetically
transcribed as [}dm'ɪt]. As discussed next, signsmake use of both simul-
taneous [2] and sequential phonetic structure [6]. Signs tend to be
monosyllabic [7]. Due to the larger articulators, for instance the hands
versus the tongue, this sequential compositionality is transformed into
simultaneity via multiple cues accommodating similar amounts of in-
formation in the spoken or signed propositions respectively [8]. Take
for instance the signs in Fig. 1: articulation parameters such as type of
movement, handshape, as well as facial cues may vary in parallel. Yet
there are studies on the sequential structure of SL [9], as the seminal
work of Liddell and Johnson (L&J) [6]. Varying and non-varying
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(a) HERE (b) END (c) CHICAGO (d) DEPOSIT (e) RICE (f) SAY(g) RECEPTION (h) RECEPTION

Fig. 1. ASL signs from the (a, b) BU400 and (c, d) ASLLVD. (e–h) GSL signs from the GSL-Lem. Signs are formed by movements, non-movements (postures), handshapes and non-manual
cues. A dominant hand constructs the main phonetic parts (b, c, e, f). The non-dominant (ND) hand contributes in symmetric/anti-symmetric movements (a, d, g, h), or as a Place-of-
Articulation (PoA). By PoA we refer to the place the dominant hand is located in relation to either the body or the non-dominant hand: e.g. neutral space (a, c, e, f), eye (e), mouth
(f). Handshape, the form of the hand, equally plays a central role. For further information see [1] and references therein.

(a) Hold (b) Movement (c) Hold

Fig. 2.Movements and Holds decomposition for ASL sign ADMIT (BU400).
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phonetic parts are sequentially stacked across time. We link the terms
“varying/non-varying” to the cases of movements/non-movements
respectively; for a familiar example refer to the corresponding, in a
broad sense, vowel-consonant case in speech. Take for instance the
Greek Sign Language (GSL) sign “SAY” in Fig. 1f. This sign is articulated
employing the dominant hand. It consists of two different positions,
at the mouth, and in the neutral space, before and after the downward
movement. These three movements/non-movements parts are stacked
in sequence, as “position-mouth”, “downward movement”, and
“position-neutral space.” Thus, we conclude that the concept of the
“phoneme” in SL is not to be taken for granted as in speech. There is
still work in this direction both in the linguistic community [2,6,10], as
well as from practical viewpoints such as computational recognition
[11–13,1].

In this context, the phonetic modeling for automatic recognition is
challenging. First, as other authors mention too [14,13], there is a lack
of formal dictionaries with sub-sign phonetic transcriptions, based on
well-defined phone inventories and on a standard notation system.
In automatic speech recognition (ASR), such resources are easily acces-
sible, standard for several spoken languages, and reusable among
research teams. For sign languages, the cases that employ sub-sign
phonetic level dictionaries are as follows: On the one hand, data-
driven approaches define a set of basic units computationally without
the need of manual annotation; indicative examples include [11,14,
13]. On the other hand, formally defined dictionaries are based on
linguistic models such as the Movement–Hold [6], and sign notation
systems such as the Stokoe system [2], the Hamburg notation system
(HamNoSys) [15], or SignWriting [16]. These dictionaries are constructed
by manual phonetic annotation which is time-consuming as in [12],
by linguistic dictionary compilation [17], or recently via automatic pro-
cessing as in [18,19]. In between, one finds approaches [20–23] that in-
corporate linguistic–phonetic concepts, ranging from Stokoe-driven
decomposition to syllable phonetics. However, they do not lead to broad-
ly reusable sub-sign transcriptions according to some known notation
system or linguistic model [2,15,16,6]. Finally, there is a lack of phoneti-
cally transcribed data since annotation at the phonetic level is highly
time consuming. Meanwhile, new SL corpora are being built [24–26],
increasing the need for automatic processing. All the above render
research in phonetic modeling for ASLR challenging.

This paper introduces a novel SL phonetic modeling approach
for unsupervised dynamic–static sequentiality with statistical subunits
(2-S-U). By “dynamic–static subunit sequentiality” we refer to the se-
quential stacking of dynamic and static subunits across time. This ap-
proach provides by construction both sequential and simultaneous
phonetic structure. This is accomplished without any linguistic prior. A
valuable result of the above is the construction of an unsupervised
data-driven subunit-level lexicon that shares the aforementioned prop-
erties. The 2-S-U approach includes first the unsupervised model-based
sign segmentation and classification into dynamic and static segments,
i.e., movements and non-movements, and then the construction of
data-driven statistical dynamic and static subunits (SUs). The latter is
implemented in a state synchronous multistream Hidden Markov
Model (HMM) framework that encapsulates movement's dynamics.
Moreover, it integrates movement and position cues as multiple stream
observations. This scheme lets us employ different features and models
for the dynamic and the static cases. The HMM-based SUs are the intra-
sign primitives that are reused to reconstruct the signs in the lexicon.
Although we do not incorporate any linguistic information, our ap-
proach is inspired by L&J's work on Movement–Hold [6]. As L&J sug-
gested that signs are formed by movements and non-movements
(postures), we explicitly model movements and non-movements. In
this waywe actually generate a sequential structure of sub-sign models.
This sequential structure is considered partially “phonetically meaning-
ful”; this holds in the above explained terms of movements and non-
movements. An example of this decomposition into Movements (M)
and Holds (H) for sign ADMIT – H M H – is illustrated in Fig. 2. We
represent movements and non-movements by different feature cues
in each case; these correspond to the above movements and holds.
We call these cues “movement–position cues” (M–P), and they are
used for the explicit training of the corresponding Dynamic and Static
models. Finally, handshape is also incorporated as a parallel information
cue.

The overall framework is evaluated on data from three corpora and
two SLs: Boston University SL corpus (BU400) [27], GSL Lemmas corpus
(GSL-Lem) [26] and American Sign Language (ASL) Large Vocabulary
Dictionary (ASLLVD) [24]. The experiments address multiple aspects
such as exploitation of the M–P cues, integration of handshape informa-
tion, employment of a single training example per sign, testing on
unseen signers, and compensating for unseen pronunciations by
employing a few development data. Finally, we present comparisons
with three SU-level approaches [14,11,23], one sign-level approach
[28] from the state of the art, and one similar approach to 2-S-U, without
D/S discrimination (see Section 10). 2-S-U leads to improvements that
show the importance of D/S sequentiality in sub-sign phoneticmodeling.
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2. Related literature and differences

2.1. Overview

Automatic sign language recognition is a multilevel problem posing
significant challenges on feature extraction and information stream
modeling –for a review refer to [5,1,4]. Most recent works are based
on visual processing, instead of color gloves [11], data gloves [31,14,
38], motion capture [12,36,13], and others [33]. We extract features
after visual processing based on our earlier work [39]. In the following
paragraphs we summarize several important aspects of ASLR, as related
to our work. At the same time in Table 1 we present a list of indicative
works as grouped w.r.t. some of these aspects. The issues discussed
next include: 1) Learning and modeling techniques. 2) Other related
tasks, such as sign spotting. 3) ASLR approaches inspired by Stokoe's
phonetic decomposition. 4) Employment of model-based subunits
and of a subunit-level lexicon. 5) Sequentiality and related works.
6) Unsupervised segmentation tasks. 7) Experiments with respect
to the training data and the signers. and 8) Our earlier related work.

2.2. Modeling

ASLR involves multiple dynamically varying streams. It requires
handling cues of variable duration and as discussed above, it involves
an unknown phone inventory. Approaches addressing these aspects
can be of parametric type, e.g. based on hidden Markov models
(HMMs), conditional random fields (CRFs), or not, e.g. based on dynam-
ic timewarping (DTW).HiddenMarkovmodel constitutes a popular ap-
proach because of its ability to account for dynamics [40]. Early attempts
employedHMMs to build sign-levelmodels [3,34]whereas various later
works accounted for subunits, either explicitly [41,11,14] or implicitly
[35]. Another important contribution concerns the parallel HMMs
(PaHMMs) [12] that accommodate multiple cues simultaneously. In
addition, other hybrid approaches appeared too, combining HMMs
and recurrent networks [31,30], or the known tandem combination
from the ASR community of multi-layer perceptrons with GMMs [35].
Markov chains are employed by authors in [20], and DTW can be
Table 1
Indicative list of related works.a

Works Sensor/FE SU-Segm

[28] Sign-level Vis. ✗

[29] Vis. ✗

[30] Vis. ✗

[3] Vis. ✗

[31] d-Gloves ✗

[32] Vis. ✗

[33] SU-implicit d-Gloves DIST-SBHMMs
[34] MoCap ✗

[35] Vis. ✗

[36] MoCap ✗

[22] Vis. Motion disk.
[37] Vis. ✗

[23] Vis. Rule-based
[20] Vis. Rule-based
[11] SU-explicit Vis. + c-gloves K-means
[14] d-Gloves LR-HMM
[38] d-Gloves LR-HMM
[12]b MoCap ✗

[13] MoCap rule-based
2-S-U Vis. 2S-ERG HMM

a FE refers to feature extraction, Segm. to segmentation andM–HSeq. toMovement–Hold seq
capture devices and c-gloves to color gloves. LR-HMM refers to left-right HMM, motion disk. to
criminative state-space tying, MKM-DTW tomodified k-means employing DTWandHier. to hie
ral network, SRN to simple recurrent network, DBN to dynamic Bayesian network, MH-HMM to
MC to markov chains, MS-HMM to multistream HMM, and CD-HMM to context-dependent HM
responding publication.

b Employs manual SU-level annotation.
found in exemplar-based cases [28]. Others stress discriminative as-
pects as in statistical DTW with discriminative features [42], HMMs
with discriminative segmental features [33], multi-class Fischer kernels
[32], and sequential pattern boostingwithweak classifiers [23]. In 2-S-U
we employ HMMs for explicit subunit models.

2.3. Other related tasks

Apart from sign recognition, other tasks have dragged attention and
are worth mentioning, such as the detection of sign coarticulation
points with CRFs [43], sign spotting [44] to distinguish non-sign pat-
terns with threshold CRFs, and the modeling of epenthesis movements
[34,38]. Authors in [45] explore sign extraction in subtitled videos,
employing multiple instance learning in weak supervision, whereas in
[46] they find the common patterns of signs, via iterative conditional
modes on multiple sequences.

2.4. Stokoe's work and ASLR

A seminal work that has inspired many researchers is the one of
Stokoe [2] who among other contributions proposes a parallel decom-
position of signs into multiple components: tab (sign location), dez
(handshape), and sig (motion). Several works have invested in the
modeling of related components. Kadir et al. [20] employ a description
based upon Stokoe's components for sign classification. Authors in
[37] model the three basic components of signs by specific algorithms
that recover in detail their 3D structure and recognize separately each
component; finally, they combine the components in a tree-like struc-
ture. Derpanis et al. [47] recognize isolatedmovement phonemes by de-
riving mappings between the phonemic movements and the kinematic
description of visual motions. The authors in [36] study sign inflections
bymodeling the systematic variations as parallel cueswith independent
feature sets employing a dynamic Bayesian network. Others combine
these cues by forming subunits with regard to the basic components
of signs. Cooper et al. learn weak classifiers, and combine them in
sign-level classifiers via Markov chains or sequential pattern boosting
[23]. The former scheme is employed to encode temporal changes and
Modeling M–H seq. Unseen signer

Exemplar based (DTW) ✗ ✓

HMMs ✗ ✓

HMMs/RNN ✗ n.a.
HMMs ✗ n.a.
SRN/HMMs ✗ ✓

Multi-Class Fisher Score ✗ ✓

HMMs ✗ n.a.
CD-HMM + Epenthesis ✗ n.a.
MLP/HMM ✗ ✗

DBN/MH-HMM ✗ ✗

WC/Adaboost ✗ ✗

Tree-based ✗ ✓

WC/SP,MC ✗ ✓

WC/MC ✗ ✗

HMM ✗ n.a.
MKM-DTW, HMM ✗ n.a.
MKM-DTW, HMM + Epenthesis ✗ n.a.
PaHMM + Epenthesis ✗ n.a.
HMM ✗ ✗

MS-HMM, PaHMM ✓ ✓

uentiality. Vis. refers to visual processing, d-gloves to datagloves,MoCap to variousmotion
motion discontinuities and 2S-ERG HMM to a two-state ergodic HMM. DIST refers to dis-
rarchical clustering. SBHMMs refers to Segmentally BoostedHMMs, RNN to recurrent neu-
multichannel hierarchical HMM,WC toweak classifiers, SP to sequential pattern boosting,
M. Finally, n.a. refers to the case of non-availability of the specific information in the cor-
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the latter to apply discriminative feature selection and to encode tem-
poral information. Han et al. explicitly perform sub-sign segmentation
based onmotion discontinuities intomotion subunits, inspired by sylla-
ble phonetics [22]. Next, they combine weak classifiers with boosting
into sign-level classifiers. As far as the segmentation is concerned this
work shares similaritieswith our velocity based segmentation; however
all subunits are of a single type in contrast to our case. In [48] they report
increased performance by “sharing features across classes.”Data-driven
units (called “fenemes”) are computed in [33] after discriminative seg-
mental feature selection. All the above, – unlike works that employ
global image features, as [35] –model articulatory components inspired
by Stokoe, andfinally combine them in sign-levelmodels. 2-S-U similar-
ly exploits as features, local cues, inspired by Stokoe and L&J. Neverthe-
less, we employ explicit statistical sub-sign units, referred to as subunits
(SUs) instead of whole sign models.

2.5. Advantages of model-based SUs

Explicit sub-sign models have attracted interest because of several
advantages when compared with sign-level models. First, they scale
well with increasing vocabulary size requiring smaller amount of train-
ing data, since subunits are shared across signs. Another point concerns
the SU-level lexicon; the SU-level lexicon allows the incorporation of
new signs without requiring model retraining. Apart from linguistic
based SUs this also holds for data-driven SU approaches given that:
1) the training phonetic data, account for the new sign's phonetic
data, 2) there is at least one iteration for the new sign to construct the
SU pronunciation after SU-level decoding. This pronunciation is then
inserted in the dictionary as a new sign entry. Finally, model-based
SUs allow the adaptation to different conditions or signers, to decrease
the mismatch with test data.

2.6. Explicit model-based SU approaches

Indicative works for statistical SUs are the following: Bauer and
Kraiss introduced a data-driven approach for SU-level segmentation
and modeling [11]. They cluster independent frames via K-means to
construct a data-driven SU-level lexicon and employ HMMs to model
SUs. Fang et al. [14] employ a 3-state left-right HMM for SU-level seg-
mentation and modified k-means with DTW to cluster segments,
exploiting the dynamics that are essential in ASLR. Kong and Ranganath
[13] segment motion trajectories via rule-based segmentation. They
extract features based on principal component analysis (PCA) and clus-
ter them by K-means. However, all the above do not account for any
concept similar to dynamic–static that implies the sequential phonemic
contrast: all subunits are of a single type.

2.7. D/S sequentiality

To linguistically account for both simultaneous and sequential pho-
nemic contrast Liddell and Johnson proposed the Movement–Hold
model [6]. They introduce two classes of segments Movements and
Holds: “Movements” correspond to segments duringwhich some aspect
of the sign's configuration changes, such as a movement or a change in
handshape. In contrast, “Holds” correspond to segments during which
no aspect of the sign's configuration change. As a result, signs are
made up of movements' and holds' sequences. 2-S-U introduces an un-
supervised statistical phonetic modeling framework inspired by the
above work. To our knowledge it is the first time that a computational
unsupervised data-driven model is introduced based on these concepts
for ASLR. The first works in computational sub-sign statistical modeling
were in [41,12]. This presented an ASLR framework, by breaking down
the signs into subunits, employing manual phonetic transcriptions
based on the Movement–Hold model and then statistically modeling
them with parallel HMMs [41,12]. As [11] noted, although the sequen-
tial model of L&J “seems to be more appropriate for the recognition of
SL, as it is partitioned in a sequential way” it requires time consuming
manual transcriptions and is thus in practice not feasible. We alleviate
this problem and via 2-S-U we provide an unsupervised data-driven
perspective for which nomanual phonetic transcriptions are employed.
2-S-U introduces sequential phonemic contrast in an unsupervised
computational manner, via the discrimination between dynamic and
static SUs in contrast to [11,14,13].

2.8. Unsupervised segmentation

Unsupervised segmentation into D/S segments is implemented by
an ergodic HMM; see Sections 3 and 5. On its own this specificmodeling
approach is implemented in other domains as well, such as unsuper-
vised speaker segmentation [49], segmentation of emotionswith regard
to facial expressions [50], and gesture spotting [51]. Nevertheless, the
way it serves our purposes to gain sequentiality in an unsupervised
way, in the overall HMM framework is different. The above is partially
related to methods explicitly employing hierarchical techniques, as
hierarchical-HMMs [52] for unsupervised video segmentation or seg-
mentation ofmeeting data [53]. Herein,we donot employ a hierarchical
model, but implicitly build two layers of models via unsupervised seg-
mentation (Section 5) and SU construction with statistical training
(Section 8).

2.9. Experiments, training data and signers

Important aspects for the experimental evaluation of an approach
are the size of the employed training data and whether the test signer
is unseen. Wang et al. present a sign lookup dictionary tool proposing
an exemplar-based approach based on dynamic time warping that
deals with small quantities of training data [28]: they report results for
10-best sign recognition accuracy 78% in a tough recognition task,
with 1113 signs, two train instances per sign and testing on an unseen
signer. Kadir et al. [20] employ a single training example per sign, and
report 76.2% accuracy in 164 signs, on signer dependent experiments.
Since [31] several authors apply signer independent testing [32,29].
Cooper et al. [23] present results of 76% and 49.4%, for 20 and 40 signs
respectively. Further, Fang et al. [31] show results up to 92% for 208
signs employing data gloves. Overall, unseen signer testing deteriorates
performance significantly, when compared with the signer dependent
case, as for instance: 55 percentage points (pp) for 232 signs in [29],
and 16 pp or 10.4 pp for 20 or 40 signs respectively [23]. We evaluate
2-S-U in signer dependent testing and in unseen signer experiments
with a single training signer and a single sign instance for training.

2.10. Our related work

A brief presentation of our visual tracking system can be found in
[39]. In [18] we introduced an approach based on linguistic information
via phonetic transcriptions, in contrast to thiswork, which does not em-
ploy any intra-sign phonetic transcriptions; then, [54] extends [18].
Among earlier works the more relevant ones are [55], and mainly [56],
being exploratory and preliminary respectively. The differential to the
more related, second one, is significant and includes: 1) The dynamic–
static framework, that is integrated via a statistical SU HMM based
scheme. 2) Intermediate results highlight the unsupervised lexicon
and differences on signers' pronunciations. 3) Handshape integration
and SUs. 4) Incorporation of non-dominant hand. 5) Experiments in
data from multiple corpora and comparisons.

3. System overview and contributions

An overview of the proposed framework is presented in Fig. 3,
consisting of: 1) Unsupervised D/S Sequentiality, SUs and Lexicon, 2)
Statistical SU Training, and 3) Recognition.



Fig. 3.Overall 2-S-U HMM-based framework and components for automatic sign language recognition. Rectangles represent procedures; parallelograms represent input and output data.
1) Unsupervised D/S sequentiality and subunit construction: exploits the velocity cue, segments the signs into sub-sign segments and clusters separately the dynamic and static ones.
2) Statistical HMM SUs: incorporates the D/S statistics, integrates the D/S SUs into multistream HMMs for SU training. 3) Recognition: decoding and late integration of handshape
and M–P cues. In all cases, “data” corresponds to already extracted features by the visual front–end, i.e., velocity (Vel), movement–position (M–P), and handshape (HS) feature vectors.
V-HMM corresponds to the trained D/S Gaussian models employing velocity. “+Vel” is the encapsulation of the D/S pdfs in the multi-stream HMM.
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3.1. Unsupervised D/S sequentiality, SUs and lexicon

The first part of our contribution includes the SU-level lexicon and
the incorporation of D/S phonetic sequentiality. This is realized via
segmentation into dynamic and static intra-sign segments for the
movement–position (M–P) cue. For this segmentation, we employ a
two-state ergodic HMM (2S-Ergodic) to model the movement dynam-
ics via the velocity (Vel) feature (Section 5). In SU construction, for
each segment type we employ the appropriate cues, and clustering
(Section 6): This is hierarchical clustering for the dynamic segments
with a dynamic time warping (DTW) metric and K-means for the static
ones. K-means is similarly applied on handshape (HS). Finally, we
recombine the segmentation and cluster information to construct
two SU-level lexica: for M–P and HS (Section 7). Outputs such as the
dynamics' distributions, the sequential D/S labels and the segments'
clusters hold a major role next.

3.2. Statistical SU training

Another part of our contribution, concerns D/S statistical SUs train-
ing (Section 8.2): we employ a state synchronous multi-stream HMM
scheme (MS-HMM) to integrate the M–P cues, and to incorporate the
D/S sequential structure. In this scheme we encapsulate (“+Vel”) the
trained velocity probability distributions (V-HMM). Furthermore, we
employ stream weights to use only the features that contribute in the
dynamic or static case (Section 8.1). Handshape SUs are modeled by a
Gaussian model.

3.3. Recognition

Herein we employ the trained SU models and the SU-level lexica
separately forM–P andHS. Recognition finds both the D/S sign segmen-
tation, and the most probable SU per segment, among the dynamic or
static SUs. This results to the most probable D/S SU sequence
(Section 8.2). The sign recognition output (Rec. Output) is obtained
via a late fusion scheme, after the integration with the HS via Parallel
HMMs (PaHMMs) [12], combining the introduced D/S sequentiality
with multi-cue parallelism.

4. Visual processing of sign language videos

Next, we summarize the main parts of our visual processing front–
end and the produced features. These features are the input for the
system presented in Section 3.

For image segmentation and tracking we employ our previous work
[39], the main components of which include: Estimation of the hands
and head locations based on color cue, by a skin color model; we handle
occlusions via ellipses in each body-part, and then employ a forward–
backward linear prediction for the estimation of ellipse's parameters.
For signer dependent parameters, such as body size and scale, we
apply a simple calibration for the body of the signer w.r.t. a reference
signer. This is based on foreground detection, registration of the user's
binarymask, andfinally estimation of the rotation and scale parameters.

After image segmentation and tracking, we extract features that
represent position (as PoA) and movement. Specifically, we extract
the (x,y) centroid coordinates using as reference point the centroid of
the signer's head. This, although a convention, is due to the head's im-
portance as a PoA. Moreover, we construct features that are products
from the (x,y) coordinates of the hands' centroids. These are the velocity

V tð Þ ¼ ẋ;ẏ
� �

, and the instantaneous direction D tð Þ ¼ ẋ;ẏ
� �

= ẋ
2þẏ

2
� �1=2

.

For handshape feature extraction we employ the concept of spatial
pyramids [57]. For the hand segmentation we employ the aforemen-
tioned tracking system. Next, we extract dense Scale Invariant Feature
Transform features [58], and apply K-means clustering of a random set
of patches from the training set to form a visual vocabulary. The size
of this vocabulary in the experiments is set to 10. Afterwards, we com-
pute the histograms of the visual vocabulary in 3-level pyramids similar
to [57]. After concatenating the histograms of each pyramid level we
embed this feature vector in a feature space in which the inner product
between two vectors is equal to the histogram intersection distance be-
fore the embedding [59]. Finally, we employ PCA for dimensionality re-
duction keeping the first 100 eigenvectors out of 630. All the above
parameters are set experimentally.

5. Unsupervised segmentation and D/S labeling

The first component concerns sign segmentation into intuitive se-
quential sub-sign segments and classification into Dynamic (D) and
Static (S), i.e.,movements and non-movements respectively. The output
of this section implies the D/S sequential structure.

5.1. Dynamic and static modeling

The classification into dynamic and static segments is based on the
movement dynamics. For this we exploit the velocity cue. We assume
that dynamic and static segments share on average relatively high and
low velocity respectively. Since the segments are of two types (D/S)
we employ two single Gaussianmodels for the segmentation procedure.
Then we employ a 2-state ergodic HMM scheme to combine these
single Gaussian models. In this HMM, the first state corresponds to the
Static and the second to the Dynamic Gaussian model. We train the
ergodic HMM by the Baum–Welch algorithm, employing all sign
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realizations in the training dataset. Thus we end up with two trained
Gaussian models one for the static and one for dynamic segments. In
Fig. 4a we illustrate the velocity distribution superimposed with the
probability density functions (pdfs) corresponding to the trained D/S
Gaussian models. In this way, we implicitly estimate the threshold to
separate movements from non-movements.

After training the ergodic HMM we find via Viterbi decoding the
most probable state sequence, i.e., the segmentation into D/S segments
for each sign instance in the training dataset. Fig. 4b shows a segmenta-
tion example for an instance of the sign ADMIT. The D/S structure of the
sign ADMIT is “S D S.” This result should be seen in comparison with
Fig. 2 where the manual decomposition based on the Movement–Hold
Model is “H M H.”

5.2. Summary and outputs

This segmentationmodel-based approach offers various advantages.
First, we obtain both the segmentation and the D/S labels since we
encapsulate implicitly the dynamic and static notions in the states of
the same model. Second, we do not need to optimize any parameter
or to manually set any threshold. Then, the whole D/S segmentation
approach, including re-training of Dynamic/Staticmodels and decoding,
is applicable to other datasets too. Finally, the model-based nature fits
with the probabilistic framework. The outputs are next exploited as
follows: The D/S segmentation is applied to different cues, such as the
direction, resulting on the actual segmented signals per cue employed
in clustering (Section 6). Then, the lexicon construction employs the
D/S sequence and the mapping of segments to their assigned clusters
(Section 7). The D/S pdfs are exploited to encapsulate discriminative
dynamics information in the statistical SU HMMs (Section 8.1). Finally,
the D/S segmentation is employed during the SU models training
(Section 8.2).

6. Dynamic and static subunits

We present the clustering procedure for D/S SUs. We take as input
the aforementioned segmentation and employ the appropriate features
according to the D/S classification. At the end, the SUs consist of
clustered segments; in Section 8 we model the statistically within the
HMM framework.

6.1. Construction of dynamic subunits

For the dynamic SUs we take advantage of dynamic information, in
sequences of frames, which is considered important for the modeling
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Fig. 4. (a) Velocity distribution (histogram) superimposed with the pdfs (red and black curv
Gaussian distribution, and red to the dynamic one. The unit for the x axis is pixels per frame, and
profile for sign ADMIT with the D/S labels per segment.
of movements. For the modeling of the movements we next present
the employed feature representations. Then, we describe the clustering
of the segments based on the underlying features.

The employed feature representation is either the instantaneous di-
rection feature, or the actual positions across time normalized w.r.t.
scale and initial position. The direction feature vector has been defined
in Section 4. Next, we describe the normalizations applied in the posi-
tion feature vector. The modeling of the movement trajectories by
employing the position feature without any normalization increases
the model's variance. This increase is because of the translation of the
movements to various places in the signing space. Segment normaliza-
tion by its corresponding initial position leads to a translation-invariant
modeling. In Fig. 5a and b, we illustrate themovement trajectories with
and without normalization. Scale, which corresponds to the amplitude
of movements, also affects their modeling. Scale normalization yields
scale-invariance. At the same time, we do keep the scale parameter for
further use. An example of this normalization is presented in Fig. 5a
and c. Finally, Fig. 5d shows the same trajectories after both scale
and initial position normalization (SPn). It is more effective to incorpo-
rate these normalized segments for clustering instead of the non-
normalized ones.
6.2. Clustering dynamic segments

We start with the segments produced in Section 5. Next, we cluster
sequences of features, by employing DTW to compute a similarity
matrix among the segments. Take for instance two arbitrary seg-
ments X ¼ X1;X2;…;XTxð Þ and Y ¼ Y1; Y2;…;YTy

� �
where Tx, Ty are

the number of frames of each one. We define the warping path
W = ((x1,y1),…,(xN,yN)) where 1 ≤ xi ≤ Tx,1 ≤ yi ≤ Ty,N is the length
of the warping path and the notation of the pair (xi,yi) signifies that
frame xi of X corresponds to frame yi of Y. The measure d Xxi ;Yyi

� �
is

the Euclidean distance. DTW aims to search the minimal accumulating

distance and the associated warping path: D X; Yð Þ ¼ minW

∑N
n¼1 d Xxi ;Yyi

� �
. Finally, the distance similarity matrix among all

segments is exploited via hierarchical agglomerative clustering
employing as end criterion the number of clusters. Technical details
are omitted due to space limitations [60]. As follows, we construct clus-
ters of segments accounting for the dynamics. Each cluster defines a dy-
namic SU, that is to be modeled later on via an HMM. The number of
employed clusters is set experimentally based on recognition perfor-
mance on a development set, discussed in the experiments
(Sections 10–12).
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Fig. 5. Trajectories of dynamic movements mapped onto the 2D signing space: (a) Without any normalization. (b) After initial position normalization. (c) After scale normalization.
(d) After initial position and scale normalization.
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6.3. Dynamic subunits for different or multiple cues

Next, we explore the features that are employed for the dynamic
segments. The output of the clustering partitions each feature space
separately. Each cluster in this partition is a distinct subunit; this is
identified by the feature employed and the assigned cluster id.

After normalization steps, each segment corresponds to a normal-
ized trajectory.We show in Fig. 6a indicative SUs: these clusters are con-
structed after hierarchical clustering, and are then mapped onto the 2D
signing space. This mapping retains the SU identity, encoded by a dis-
tinct color. For instance SU “SPn1” corresponds to curved movements
with direction down-left. Characterizations as “down-left” concern our
interpretation, and does not correspond to any transcription. An exam-
ple in which “SPn1” SU appears is sign “END” in Fig. 1b. In Fig. 6b we
show indicative cases of SUs employing as feature the non-normalized
positions. It is evident by comparing with the previous Fig. 6a, that the
SUs are less intuitive since themodels are consumed on the explanation
of different initial positions or scales. In addition, the clusters produced
by the normalized trajectories implicitly incorporate direction informa-
tion; this is since the direction is dependent on the geometry of the
trajectory.

SUs constructed with the direction feature, show similar results as
the ones for the normalized movement trajectories. Each SU consists
of movements with similar direction on average. Fig. 6c shows indica-
tive examples of movements over different clusters having on average
different directions. For instance subunit “D10” models curved move-
ments with direction down-right. An example in which the SU “D10”
appears is sign “HERE” in Fig. 1a. Concerning the scale of each trajectory
we show in Fig. 6d two indicative scale SUs. These model trajectories
according to their scale. Note that the subunits with labels “S9” and
“S3” appear in the ASL signs “END” (Fig. 1b) and “HERE” (Fig. 1a)
respectively.
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Fig. 6. The trajectories for different SUsmapped on the 2D signing space after normalizationw.r.
clusters. (a) Trajectories of SUs that incorporate both scale and initial position normalization (SP
any normalization. (c) Trajectories of SUs that incorporate Direction (D). (d) Trajectories for tw
6.4. Multiple movement cues

Herein, we employ multiple cues by concatenating the multiple
features. By incorporating both direction and scale we create multiple-
cue SUs that model movements based jointly on direction and scale.
Such SUs appear in Fig. 7a, via the corresponding trajectories in the
signing space. Each SU refers to both direction and scale. Finally, we
also show examples of joint direction-scale SUs for two ASL signs,
“DEAF”, “DECIDE”, by superimposing their initial and final frames with
an arrow depicting the trajectory. Themovement in Fig. 7b corresponds
to the direction-scale SU D2S2: This is a straight movement with direc-
tion D2 (up-left) and scale S2 (small). The movement in Fig. 7c corre-
sponds to the direction-scale SU D1S4: This is a straight movement
with direction D1 (down-right) and scale S4 (medium). The above
labels in parentheses come from our interpretation; they have been
added for a qualitative description of the involved cues, to assist their
presentation.

In the experiments (Section 10) we have explored all the above
features, these include both single-cue feature vectors (i.e., movement
trajectories, direction, and scale) and combinations of them (multi-cue
feature vectors). However, after experimentation as discussed in
Section 10 of the experiments, we concluded on employing for the
dynamic SUs the single-cue direction.

6.5. Static subunits

Static segments correspond to the low velocity profile of the ergodic
HMM(Section 5). For the static SU constructionwe cluster only the stat-
ic segments. Specifically, we apply K-means on the position feature vec-
tor. In this waywe get a partitioning relative to the signer's head. Fig. 7d
shows in different color the constructed SUs togetherwith the centroids
for each cluster asmapped on the 2D space. These are dependent on the
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n). (b) Trajectories of SUs obtained using as feature themovement trajectories (P)without
o different SUs that correspond to different Scales (S).
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Fig. 7. (a) Trajectories formulti-cue SUsmapped on the 2D signing spacewith different color/marker. SUs account for both direction and scale. (b,c) Examples ofmulti-cue SUs for direction
and scale that correspond to the movement for the ASL signs “DEAF”, “DECIDE” (BU400). (d) Partitioning of the 2D signing space by K-means for the static subunit construction,
superimposed on a frame for signer Lana (ASLLVD).
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employed space of the signer, as they appear in the dataset. Finally, the
number of clusters is set experimentally based on recognition perfor-
mance on a development set, as discussed in the experiments.

6.6. Handshape subunits

For the handshape SUs we do not employ the D/S component.
Handshape SUs are constructed in a data-driven way similar to [11].
All frames are considered in a feature pool in which we apply K-
means; for this we employ the Euclidean distance. Each cluster corre-
sponds to a different SU. In Fig. 8 we show samples from different
handshape SUs as they appear in GSL-Lem data. For each SU, we show
the corresponding original data samples. As expected, this correspon-
dence involves similar handshapes.

7. Lexicon and segmentation results

Given the lack of phonetic transcriptions, we construct data-driven
phonetic lexica for the M–P and handshape cues. These are based on
outputs of the D/S segmentation component (Section 5), and the clus-
tering of the D/S segments which leads to the D/S SU construction
(Section 6). The M–P lexicon inherits the D/S sequential structure.
This is in contrast to the handshape lexicon, for which the D/S segmen-
tation is not employed. Afterwards, the lexica are used in training and in
sign accuracy evaluation (Section 8.2).

7.1. Lexicon for the movement–position cue

After decomposing and clustering the D/S segments we recompose
the labels, hereafter referred as symbols, producing the lexicon. In this
way the lexicon consists of an entry for each sign instance as it appears
in the dataset. Each SU label is a symbol identified by a concatenation of
HS44

HS41

Fig. 8. Samples from different hand
the assigned Dynamic (D) or Static (P) SU label, and the cluster id
assigned after clustering. For the D/S SUs we employ the direction and
the position features respectively. The non-dominant (ND) hand is
taken into account during postures when both hands are non-moving
(static), and during transitionswhen both hands aremoving (dynamic).
In all other cases only the dominant hand is processed. The differentia-
tion between static and dynamic parts is done by the trained D/S
Gaussian models; these employ the velocity feature as in Section 5.
Thus if the ND hand is active the SU identifier accounts for both hands:
for instance SU “D6–D8” (Fig. 9) corresponds to a dynamic SU (D) and
id 6 for the dominant hand, and a dynamic SU with id 8 for the ND.

7.1.1. Other approaches and results
By employing different approaches, we construct the lexica and seg-

mentations that we next compare. These correspond to Fang et al., 2004
approach [14] (SU-Segm), Bauer and Kraiss, 2001 approach [11] (SU-
Frame), and SU-noDSC. In brief, none of them discriminates between
D/S SUs; especially SU-noDSC closely resembles 2-S-U, by sharing com-
mon segmentation results. For details on these approaches see also
Section 10. The notation for each SU consists of a constant string “SU”
with the cluster identifier (id) assigned after clustering. In Fig. 9 we
illustrate in the horizontal, time axis, each image frame with both the
SU symbols and segmentations for all approaches, for the ASL sign “AC-
CIDENT.” Fig. 12 (bottom) shows an additional example for the decom-
position of sign “ANY”, with the corresponding HMM SUs (Section 8).

7.1.2. 2-S-U results
As shown in Figs. 9 and 12, 2-S-Udecomposes each sign into aD/S SU

sequence, following an estimate of the actual articulated movements
and postures. Movements are explicitly modeled by Dynamic SUs (D)
and postures by Static SUs (S). For instance, sign “ACCIDENT” consists
of a posture modeled by S1–S8, a simultaneous movement of both
HS17

HS47

shape SU clusters (GSL-Lem).
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Fig. 9. Lexicon and segmentation results for ASL sign “ACCIDENT” (ASLLVD). SU sequence of symbols and segmentation after dynamic–static decomposition for 2-S-U. Comparison of
segmentation and SU results for multiple approaches.
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hands represented by D6 and D8 respectively and finally a posture (S4–
S10). Similarly, sign “ANY” is decomposed into a posture (S5), followed
by two consecutive movements of the dominant hand D6 (up-right)
and D8 (up-left), and finally a posture (S1). Moreover, SUs are shared
acrossmultiple signs. For instance S1 andD6 appear in both signs. In ad-
dition, same SUs are shared across both hands: D8 (up-left movement)
appears in both signs, “ANY” for the dominant hand, and “ACCIDENT”
for the ND hand.
7.1.3. Comparison of results
Both the SU-noDSC and 2-S-U result in the same segmentation, since

they employ the same velocity-based segmentation algorithm. The sub-
stantial difference is that SU-noDSC does not discriminate between Dy-
namic and Static segments. As a consequence SU-noDSC concatenates
both movement and position cues, and then constructs subunits by
clustering all segments independently of their Dynamic or Static label.
As a result the SU partitioning is done in this multi-cue feature space.
The SU-Segm and SU-Frame approaches lead to different segmentations
and SU decompositions. These segmentations are not characterized by
the D/S concept, and do not contain distinct moving and non-moving
parts. In addition, a single movement or posture may be segmented
into multiple segments.
7.2. Lexicon for the handshape cue

After handshape SU construction (Sec.sec-wp2-su-HS) we recom-
bine the produced symbols in a corresponding lexicon. This consists of
a lexical entry per sign pronunciation. SU notation consists of the iden-
tifier of each handshape SU (HS) and the cluster id after clustering.
Fig. 10 shows the handshape SU segmentation and clustering for two
signs as articulated in the GSL-Lem corpus. Sign “SEE” consists of the
SU HS17 followed by HS44. Refer to Fig. 8 where we show handshape
samples for these two handshape SUs. Although these SUs correspond
to the same handshape they differ in their 3D pose. Finally, GSL sign
“ABROAD” consists of two subunits (HS47 and HS41) that correspond
to different handshapes.
Fig. 10.Handshape SU decomposition for GSL signs “SEE” and “ABROAD” (GSL-Lem). “SEE” cont
varying handshape.
8. HMM dynamic/static sequentiality and statistical SUs

According to the lexicon that is generated as described in Sections 6
and 7, each sign is composed by a sequence of dynamic/static subunits.
Further, the D/S segmentation provides the temporal boundaries of
each subunit. Here, we aim to employ a probabilistic HMM scheme for
training and recognition. This should account for D/S sequential struc-
ture, but also allow for multi-cue parallelism.

8.1. Overview

For training we wish to impose the D/S sequential structure implied
by the existing segmentation. Further we wish to employ the D/S
segments' clusters in the training of the statistical SUs. In recognition
we aim to find both the most probable D/S segmentation, given the
sequence of features (observations), and the statistical SU models that
best match each type of dynamic/static segment. The above goals are
fulfilled by a HMM that encapsulates the D/S velocity discriminative
pdfs, and integrates themovement–position cues asmultistreamobser-
vations. For thiswe employ a state-synchronousmultistreamHMM. The
multi-stream models for the D/S cases include the velocity (Vel), the
position (Pos) and movement (Mov) cues, all for the dominant hand
(D). Similarly, we integrate the non-dominant (ND) hand
(Section 8.3). Next, we present how to employ these cues to serve our
goals.

8.2. Dynamics' encapsulation and D/S sequentiality

First, we describe the encapsulation of the velocity pdfs, then the
employment of the multistream HMM, and the role of stream weights.
Finally, we compare our view with the typical multistream HMM case.

The velocity pdfs correspond to the states of the ergodic HMM
(Section 5) are used for initialization of the velocity streams for the SU
HMMs. Specifically, for all static and dynamic SU models we employ
the velocity pdf that models low-velocity and high-velocity segments
respectively. Further, the stream weight employed to the velocity
stream affects the resulting likelihoods. In this way we implicitly
deal with the different feature magnitudes. This stream weight is set
ains a single handshapewith varying appearance due to the 2D data; “ABROAD” contains a
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experimentally based on the recognition performance in the develop-
ment data set.

8.2.1. Multistream HMM
Before proceeding on the training of the statistical SUs, it is essential

to place constraints on the features of each SU model: the SUs corre-
sponding to movements and the ones corresponding to the non-
movements should depend only on themovement and position cues re-
spectively. Movements can be seen as stacked in sequence and between
them there are “gaps”; these gaps are actually non-movements. Then,
we wish to employ different features and models in each segment.
Thus, the employment of the multistream HMM paradigm in a typical
way does not match our requirements. This is since both types of fea-
tures, movement and position, would be taken into account. Here
comes our view onhow to employ themultiple streams, to serve our re-
quirement. We transform the otherwise non-linear sequential stacking
of models with different cues (see Fig. 11a), into a multistream scheme.
In this scheme we view the movement and position cues as “parallel”
streams across time. See Fig. 11b against the previous one. Nevertheless,
there is still one element missing.

8.2.2. Sequentiality and stream weights
Then here comes the role of stream weights. A streamweight (SW)

is a weighting factor that multiplies the log-probability of each emitting
state, generating the corresponding observation of the specific stream.
Specifically we employ one weight per stream and per SU model. In
other words each SU multi-stream HMM model has its own stream
weights, one for each stream. Here, wewish to employ SW, to implicitly
constrain that dynamic SU models depend only on movement cue, and
that static SUmodels depend only on position cue. This is accomplished
by construction as follows: For static HMM models the SW for the
movement streams are set equal to zero and for the position streams
are set to one. Vice versa, for dynamic models the SW for the position
streams are set to zero and for the movement to one. Thus, we account
for different feature streams for the dynamic and static SUs, as if they are
interlaced across time (Fig. 11c).

8.2.3. Our interpretation on streams and streamweights. The multistream
paradigm is employed to model independent streams or different tem-
poral resolutions; as for instance in audio–visual and multiband ASR
[61]. These compensate for the relative reliability or the importance of
each stream by equalizing the likelihoods of the different information
streams. Herein we take advantage of the multistream scheme, and ex-
ploit an extreme case of streamweight compensation. “Extreme” refers
to the canceling of the corresponding likelihood in the following way.
We consider for the dynamic models, the position features as inappro-
priate, instead of more or less reliable. We thus assign on this stream
and for theduration of this specific dynamicmodel and segment, the ex-
treme weight of zero. This implies also a zero likelihood. The opposite
holds for the static case.

8.3. D/S SU training and recognition

8.3.1. Training
For the training of the subunits we employ the described

multistream scheme: this makes use of a 5-state HMM with Bakis
(a) (b)

Fig. 11. Eachbox, corresponds to either dynamic (continuous line) or static (dotted line)model a
from the S models and features. (c) Actual implementation of D/S sequentiality, via multiple st
topology [40] for the dynamic SUs and a 1-state HMMwith one Gauss-
ian per stream for the static SUs; stream-weights are as discussed above
(Section 8.1). The time boundaries for each D/S segment have been
extracted during segmentation (Section 5). These segments together
with the clustering information are used to map the training examples
and the corresponding SU models. We initialize the multistream HMM
models employing an iterative scheme. The Viterbi algorithm is used
to find the most likely state sequence for each subunit instance. This is
repeated for each training example. Thenwe estimate the HMMparam-
eters. As a by-product of the Viterbi state alignment, we get the log-
likelihood of all training data. The whole estimation process is repeated
until we obtain no further increase in likelihood. After this initialization,
we apply Baum–Welch re-estimation [40]. For each training example
we consult the SU-level lexicon to convert each sign into the D/S SU
sequence, and construct a composite D/S network employing the corre-
spondingmultistreamSUmodels (HMMs). This network is employed to
collect the necessary statistics for the re-estimation. When all the train-
ing examples are processed, the total set of accumulated statistics is
used to re-estimate the parameters of all of the dynamic and static
HMMs. The training of the handshape SUs is done separately, by
employing the handshape lexicon and the corresponding segmentation
boundaries after the handshape frame-level clustering (see Fig. 3). Since
for the handshapewe donot consider theD/S segmentation,we employ
a single-stream Gaussian model.

Fig. 12 illustrates an example highlighting someof the above. On top,
the D/S HMM, outputs the segmentation and the D/S symbol sequence,
not explicitly depicted here. It also feeds the appropriate velocity pdf, D
or S, to each HMM SU, of Gaussian distributions (shown at the second
layer). The encapsulated Dynamic and Static pdfs are presented in dif-
ferent colors. Movement and position cues are incorporated in separate
streams. Note the shaded boxes that correspond to zero streamweights,
constraining the D/S sequential structure. These statistical models are
linked in a network as prescribed by the D/S sequences in the lexicon,
to construct a composite D/S network. Finally, the HMMs output the ob-
servation symbols per stream: these are the visual observations corre-
sponding to the image sequence for the ASL sign “ANY”. This network
consists of one static HMM SU (S5), followed by two dynamic HMM
SUs (D6 and D8), and finally one static HMM SU (S1). We also show
the D/S segmentation output at the bottom of the frames, comparing
with multiple SU-level methods (discussed in Section 7.1).

8.3.2. Recognition
Recognition is conducted employing the trained D/S subunit models

and the recognition network. First, we construct the aforementioned
composite D/S networks for each pronunciation. These networks
employ the trained HMMs as they appear in the SU-level lexicon.
Then we construct the recognition network by combining the
composite D/S networks. In this way, we end upwith a recognition net-
work that consists of nodes, these are the HMM subunits connected by
arcs. Every path in the recognition network that passes through exactly
T emitting HMM states is a potential recognition hypothesis for a test
examplewith T frames. Each suchpath has a log-probability that is com-
puted by summing the log-probability of each individual transition in
the path, and the log-probability of each emitting state generating the
corresponding observation. At each time instance, we find the path
maximizing the above log-probability, i.e., the most probable D/S SU
(c)

nd features. (a) IntendedD/S sequential structure. (b) Splitting into separate streams theD
reams; gray boxes are inappropriate, and correspond to zero stream weight.



Fig. 12.D/S sequentiality and statistical subunits, for ASL sign “ANY” (ASLLVD). D/S HMM: (top) feeds the appropriate D/S pdf per HMM SU. Multistream Gaussian pdfs: the encapsulated
Dynamic (VD) and Static (VS) ones (velocity) in different colors; shaded boxes correspond to zero stream weights. Altogether, they prescribe the D/S sequential structure. These pdfs
correspond to each state of the next layer's HMMs: e.g. MD6

1 corresponds to the pdf for the first state of the D6 dynamic HMM. Statistical HMM: linked in a network as prescribed
by the D/S sequence in the lexicon; they construct a composite D/S network. Observations: the HMMs output the observations (features) per stream (Vi,Mi,Pi, i is the frame number),
corresponding to the sequence of images for sign “ANY.” Frames and segmentations (bottom): comparison of methods. See also Section 8.
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sequence. The decoding time for theGSL Lemmas database is on average
0.69 × RT (RT refers to real-time)1.

8.4. Incorporation of the non-dominant (ND) hand

The incorporation of the non-dominant hand fits the described
HMM scheme. Specifically, we add in each multi-stream HMM the
three extra streams: these are the velocity, the position and the move-
ment cues of the non-dominant hand. In this way, as described next,
each multi-stream HMM models both hands.

Recall as discussed in Section 5, the training of the two velocity
pdfs as incorporated in the states of the ergodic HMM. The one pdf
models low-velocity segments (V-L) and the other high-velocity
segments (V-H). The V-L and V-H pdfs are used for initialization of the
velocity streams for the SUHMMs, as follows: 1) For the static SUmodels
we initialize the velocity streams of both hands employing the V-L pdf.
Then we set to zero the stream weights for the movement cues and to
one the stream weights for the position cues. 2) For the dynamic SUs
that model the movements only by the dominant hand, we initialize
the dominant's handvelocity streamemploying theV-Hpdf. In contrast,
the non-dominant's hand velocity stream is initialized employing the
V-L pdf. Then, we set to zero the streamweights of the position cues for
both hands and themovement cue for the non-dominant hand. In addi-
tion,we set equal to one the streamweight of themovement cue for the
dominant hand. 3) For the dynamic SUs that model movements of both
hands, we initialize the velocity streams for both hands, by employing
the V-H pdf. Then we set to zero the stream weights for the position
1 We used an AMD Opteron(tm) Processor 6386 at 2.80 GHz.
cues and to one the stream weights for the movement cues. Finally,
we tie the corresponding streams (movement, position) if the same
SU is performed either by either hand (D or ND). By tying we refer to
the sharing of the statistical parameters of the underlying pdfs; each
time all models are updated.

In Fig. 13 we show an example diagram of this scheme: three
dynamic SUs (D6, D8 and D6–D8) and three static SUs (S5, S1 and
S5–S1) appear in the signs “ANY” and “ACCIDENT” (Figs. 9 and 12).
The D6–D8 SU share distributions with D6 and D8 SUs in the domi-
nant and non-dominant movement streams respectively, shown as
Mov-D and Mov-ND. Similarly, the S5-S1 SU shares the pdf with S5
and S1 SUs in the dominant and non-dominant position streams
(Pos-D and Pos-ND).

9. Lexicon: multiple signers' results & data-driven compensation of
unseen pronunciations

9.1. Articulation variability

The articulation of signs is dependent on the signer, and results in
variability when we consider different signers. This variability is ob-
served for instance as follows: In signs that consist of multiple move-
ment iterations, the number of which may vary; in signs pronounced
in a compound variant; or in signs with different movement pronunci-
ation, to list but a few. See for example the articulation of sign “QUIET”
by two signers in Fig. 14. This shows an example in which Signer-A
articulates it differently compared with Signer-B, by articulating an
additional component. In both cases however, the sign is perceived
the same. One way to address such issues is to compensate for them
at the lexicon, preventing consequent recognition errors. Given the



Fig. 13. Dynamic/Static SUs tying example for D and ND hand.
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data-driven lexicon, we can easily face such cases, within the same
framework, by generating new data-driven pronunciations. For this
we employ a few development data of the unseen signer that is to be
tested.

9.2. Compensating for unseen signer pronunciations

In the training phase we build SU models employing data only from
the signer-A, referred to, as “training” signer. We also construct a lexi-
con, that contains only pronunciations fromSigner-A. The average num-
ber of pronunciations per sign and signer, based on the decoded SU
sequences, are 3.5. Herein our goal is to compensate the unseen pronun-
ciations for the unseen Signer-B, referred as “test” signer. This compen-
sation is conducted by generating new data-driven pronunciations; for
these we employ a development dataset from Signer-B. To sum up,
with the trained SU models (of Signer-A) and for each sign articulation
in the development dataset, we find the most probable SU sequence,
i.e., sign pronunciation, given the sequence of features. These new SU
sequences construct a new lexicon. This lexicon fits best the way that
the new test signer articulates each sign. In this way, we also highlight
the differences between the pronunciations of the signers, since data
are decoded with the same models. Moreover, as discussed next, by
comparing the new lexical entries with the previous ones, these differ
in SU substitutions, insertions and deletions in interpretable ways.

9.3. Examples of pronunciation differences between signers

In Table 2we illustrate the sign pronunciations for three instances of
GSL signs: “QUIET”, “RECEPTION”, and “SOMETIMES.” These correspond
to the lexical entries after employing the training data (Signer-A) versus
the development data (Signer-B); in both cases the employed models
are the ones trained only on Signer-A. By comparing the SU sequences,
i.e., pronunciations, of the signers we observe the following: First, we
show their difference by highlighting the corresponding SU sub-
sequences, after applying typical pairwise sequence alignment [62],
adapted for the case of SUs. These differences can be seen as implicit
mappings on the alignments; Table 2 presents a few examples. Such
mappings are of various types, indicating candidates responsible for
variability. For instance the variation for the sign “QUIET” is represented
by a substitution: {D21 S1 D16 S4 D21} → {D29} (Table 2, Fig. 14). In
S5 D14 S1 D21 S1 D16 S4

Fig. 14. Sign “QUIET” by two signers (GSL-Lem) with the SU-level decomposition. Note the pr
Kostas (left), with “D29” of signer Olga (right). The former articulates a supplementary movem
addition, the articulation variation for sign “SOMETIMES” in Table 2 is
manifested via a difference in the number of iterative movements,
which may vary. Finally, in sign “RECEPTION” the articulation of the
movement is different for the two signers; compare also Fig. 1g with h.

10. Recognition experiments on BU400

Next, we employ the BU400 continuous ASL corpus [27].We process
the following six videos: Accident, Biker-Buddy, Boston-La, Football,
Lapd-story, and Siblings; these contain stories narrated from a single
signer, and thus the experiments of this section are signer dependent.
In addition, as we do not account for inter-sign transition we use sign-
level transcriptions to pre-segment the stories into separate signs. The
vocabulary size is 94 signs, and the running glosses are 1202. We
employ 60% of the data for training, 30% for testing, and 10% for develop-
ment; all experiments employ 3-fold random selection for the train and
test set, andwe showfinally average results. Formore details on the train
and test data partitioning refer to [63]. In addition, in the following ex-
periments we take into account both the movement–position cues for
both hands and the handshape cue for the dominant hand.

10.1. Other approaches

Wecompare 2-S-Uwith the following approaches: 1) The SU-noDSC
is similar to 2-S-U, employing the same segmentation via a 2-state ergo-
dic HMM. Nevertheless, it does not discriminate between dynamic and
static segments. Consequently the same features are employed in each
segment; then we cluster all segments employing DTW as a similarity
measure. 2) The SU-Segm [14] employs a 3-state left-right HMM
model for segmentation. It still accounts for whole segments as SU-
noDSC and 2-S-U. In addition, for the SUs and lexicon construction we
employ DTW as a similarity metric among segments to cluster them.
3) The SU-Frame [11] for SU and lexicon construction is based on
frame-level clustering and segmentation without considering seg-
ments, but by applying K-means on frames. In both (2) and (3), each
SU is statistically trained via HMMs whereas, there is no discrimination
between D/S segments. In all competitive approaches we employed the
same movement–position (M–P) cues for the dominant and non-
dominant hand, and implement the modeling as in each publication.
For the HS cue we use the same modeling in all SU-level approaches.
D21 S5 S5 D14 S1 D29 S5

onunciation difference corresponding to the SU sequence “D21 S1 D16 S4 D21” of signer
ent component. See also Table 2.



Table 2
Correspondence of subunits after data-driven compensation of pronunciations between Signers-A and -B. GSL signs are “QUIET”, “RECEPTION”, and “SOMETIMES.” After each pair of SU
sequences, we show the mappings (see Map.) between the sign sub-sequences responsible for the pronunciation differences. Rightmost column contains a description (Descr.) of
these differences.

545S. Theodorakis et al. / Image and Vision Computing 32 (2014) 533–549
The integration of M–P and HS cues for both SU-Segm and SU-Frame is
done by early feature concatenation as described in [14,11]. However
this leads to lower performance compared with late integration. Thus,
for fair comparison we integrate them via PaHMM.

10.2. Feature notation

The features and their notation of the movement–position cues for
the dominant and non-dominant hands are as follows: Direction is
denoted as “D”, Movement Trajectory after scale and initial-position
normalization as “SPn”, Scale as “S”, and non-normalized Position as
“P”. Incorporation of multiple features (Fig. 15), is encoded by “−”

(e.g., A–B). For the 2-S-U approach, A–B indicate that A cue corresponds
to the dynamic segments and B to the static ones. In contrast, for all
other approaches A–B cues are concatenated, and do not employ the
D/S discrimination. Finally, handshape (HS) cue in all approaches is
incorporated via PaHMMs and is indicated by “+HS.”

10.3. Subunits' number

In the following experimentswe set the number of SUs based on rec-
ognition performance on the development set that has no overlap with
the test data. For 2-S-U we use 20, 30, and 110 SUs for the position,
movement, and handshape cues respectively. For the SU-noDSC, SU-
Segm and SU-Frame we employ 150, 100, 100 SUs for the movement–
position cue respectively, and 110 SUs for the handshape cue. As we
P+HS D−P+HS SPn−P+HS D−S−P+HS SPn−S−P+HS
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Fig. 15. Recognition experiments in BU400: a) Comparison with other app
observe, for the movement–position cue the number of the SUs
employed for the 2-S-U is smaller compared to the other approaches.
This is due to the discrimination between dynamic and static SUs,
which allows us to employ a smaller number of SUs to model the
deconvolved feature space.

10.4. Comparisons with other approaches

Average results appear in the first row (with label Feat.) of Table 3.
In addition, Fig. 15a shows more detailed results. The 2-S-U approach
outperforms SU-noDSC while employing as features SPn-P + HS or D–
P + HS. This indicates that the D/S discrimination is crucial. This
concerns the employment of different, but appropriate features in the
sequential segments, instead of naively combining the features. We
employed the SPn or the D feature vector for the dynamic segments,
and the P feature vector for the static segments. Finally, by averaging
over the experiments that employ different features (see Table 3) the
2-S-U approach results on 2% increase compared with SU-Frame, 5.6%
with SU-noDSC, and 8.2% with SU-Segm.

10.5. Features and combinations

Herein, we evaluate the efficacy of multiple features and their
combinations. First, the importance of normalization w.r.t. to the initial
position and to the movement's scale (Section 6.1) is also reflected in
the recognition results. Fig. 15a shows that by employing the SPn-P +
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roaches and feature combinations b) Variation of the number of signs.



Table 3
Overview of recognition experiments on BU400.a

Exp. Method Segm D/S Incorp. #G Avg. sign acc. %

Feat. 2-S-U 2S-ERG ✓ 94 82.04
SU-noDSC 2S-ERG ✗ 76.4
SU-Segm 3S-LR ✗ 73.8
SU-Frame ✗ ✗ 80.06

#G 2-S-U 2S-ERG ✓ {25,50,70,94} 81.1
SU-noDSC 2S-ERG ✗ 73.8
SU-Segm 3S-LR ✗ 70.8
SU-Frame ✗ ✗ 78.4

a Segm. refers to the HMMused in the segmentation. “2S-ERG” refers to 2-state ergodic
HMMand “3S-LF” refers to 3-state left-rightHMM. “Exp.” corresponds to experiments that
account for variation of the feature (Feat.), or of the number of glosses (#G).
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HS or D–P + HS feature cue in 2-S-U we achieve higher performance
than using the P + HS feature. In contrast, SU-Frame achieves the best
recognition performance with the P feature vector. This cross-validates
our intuition since the proposed approach is not designed to incorporate
the non-normalized position. Another observation is that by employing
the SPn-P+HSorD–P+HS features in 2-S-U the performance is similar
(Fig. 15a). This is expected as SPn contains information of each
movement's direction (Fig. 6a). Finally, by incorporating multiple cues
in the dynamic modeling as shown in the 2-S-U case the accuracy is of
the same order; see the cases of D-S-P + HS and SPn-S-P + HS com-
pared to SPn-P + HS and D–P + HS respectively in Fig. 15a. Thus, in
all the following experiments in Sections 11 and 12, the features
employed for the M–P cues are the direction and position respectively,
i.e., D–P.

10.6. Variation of the vocabulary size

An overview with average results is shown in the second row (label
#G) of Table 3. Next, we compare 2-S-U with the above methods,
while varying the vocabulary size. These experiments show results for
the D–P + HS feature (Fig. 15b). By increasing the number of signs
from 25 to 50 the recognition performance increases in all approaches.
This is because more data are employed during the SU construction.
Thus, the resulting SUs describe better the articulation variability of
the signs. By averaging over recognition experiments for different num-
ber of signs (group of rows with label #G., Table 3) the 2-S-U results on
an average absolute increase of 2.7% compared with SU-Frame, 7.3%
with SU-noDSC, and 10.3% with SU-Segm.

11. Recognition experiments on GSL lemmas

Herein we present experiments taking into account both the move-
ment–position cues for both hands and the handshape cue for the dom-
inant hand. The evaluations contain the following scenarios: 1) Signer
dependent experiments, that is, training and testing on the same signer.
2) Test on an unseen signer, that is, training on Signer A, and testing on
data from a different Signer B; Signer's B data have not been employed
in any way. 3) Experiments that fall in between (1) and (2). Similar to
(2), we make use of models that are still unseen in terms of the trained
data to the test signer. However, we allow a few development data to
be employed to compensate for the unseen pronunciations of the test
signer (see Section. 9).

11.1. Data, Subunits' number and feature notation

The database employed in the following experiments is the GSL
Lemmas Corpus (GSL-Lem) [64]. This consists of 1046 different signs
with 5 repetitions each, conducted by two native signers (referred to
as "Kostas" and "Olga").

In these experimentswe set thenumber of SUs based onmaximizing
recognition performance on a randomly selected development set; this
contains the 20% of the data and has no overlap with the test data. For
the 2-S-U we use 10 SUs for the position cue, 30 SUs for the movement
cue and 500 SUs for the handshape cue. For the handshape SUs, each
one models a different hand configuration together with the 3D hand
orientation, since we process 2D data. For the SU-noDSC, SU-Segm,
and SU-Frame we employ 150, 300, 150 SUs respectively for the
movement-position cues and 500 SUs for the handshape cue.

The information cues include Movement (M), Position (P) and
Handshape (HS). The M, P combination is noted with a “−”

(Section 10): “M–P” indicates employment of both. HS incorporation
is indicated by a “+.” Thus, “M–P + HS” indicates that all cues are
employed. In detail, the features employed are the non-normalized
position for the position cue, the direction for movement cue, and the
features of Section 4 for HS.

11.2. Other approaches

We compare 2-S-U with three SU-level approaches: SU-Segm [14],
SU-Frame [11], and SU-noDSC (see Section 10.2). For the M–P case we
implement the modeling as in each publication. For the HS we employ
the samemodeling in all SU-level approaches, as in 2-S-U.We also com-
pare with the sign-level approach ofWang et al. 2010 (Sign-DTW) [28]:
this is an exemplar-basedmethod that constructs for each signmultiple
templates. Recognition is based on similarity via DTW. All the above
approaches employ the same visual features. Finally, we compare with
approaches presented by Cooper et al. in [23]: these are based on
Markov Chains (MC) and Sequential Patterns (SPs). For these, we report
the exact recognition results presented. The authors therein employed
the same vocabulary, dataset, and visual tracking output (see Section 4),
and are thus directly comparable for this signer dependent experiment.

11.3. Signer dependent scenario

Herein we present signer dependent experiments on a single signer
(Kostas). The vocabulary consists of 984 signs. This reduction on the
number of signs is due to tracking errors in 62 of the signs, which
were removed. The data are split randomly into four training examples
and one test example per sign; these are kept the same for all experi-
ments. For more details on the train/test partitioning refer to [63].

Table 4 presents the recognition results employing all information
cues. The 2-S-U, SU-Segm, and SU-Frame approaches result to similar
recognition performance. Furthermore, the proposed approach 2-S-U
outperforms the MC and SPs [23] methods leading to 25.5% and
22.8% absolute improvements respectively. Moreover, the Sign-DTW
performs 2% better than 2-S-U. Note that this is a signer dependent
task. The employment of multiple signers increases articulation varia-
tion, and evaluates the generalization on unseen signers. For this, next
follows a task where the test signer is unseen.

11.4. Unseen signer scenario

Herein we present results by testing on an unseen signer, that is, no
data from the test signer are employed in the training. We train the SU
models with all repetitions per sign from a single signer, and then test
on the unseen signer. The vocabulary consists of 300 signs out of the
984 signs. This reduction on the number of signs is because of the
unavailability of the hand tracking for the second signer (Olga). In
Table 5 we show the sign recognition accuracy for the different cues
and methods.

11.4.1. Movement–position cues
Table 5 shows that 2-S-U outperforms the SU-noDSC approach lead-

ing to an absolute improvement of 18% on average for both signers. This
focused comparison, indicates that the exploitation of the D/S concept
together with itsmultistream integration, increases sign discrimination.
In addition, by comparing with the SU-Segm and SU-Frame approaches



Table 5
Unseen signer experiments. Sign recognition accuracy % on 300 signs from GSL-Lem.

Signer Cue 2-S-U SU-noDSC SU-Segm SU-Frame Sign-DTW

Olga M–P 30.1 11.3 14.23 11.4 25.8
HS 38.8 38.8 38.8 38.8 42.2
M–P + HS 61.2 46.6 54.4 40.53 57.9

Kostas M–P 29 11.8 9.1 11.9 24.4
HS 28.8 28.8 28.8 28.8 32.7
M–P + HS 50.1 33.2 32.6 35.53 46.3

Table 4
Signer dependent sign recognition accuracy % for multiple approaches on 984 signs from
GSL-Lem.

2-S-U SU-Frame MC SPs SU-Segm Sign-DTW

96.98 96.2 71.4 74.1 96.2 99
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the 2-S-U leads to absolute improvements of 17.8% and 17.9 respective-
ly on average for both signers. Finally, when comparing with the sign-
level approach (Sign-DTW), 2-S-U increases recognition performance
by 4.5% on average for both signers.

11.4.2. Other cues
Table 5 shows that 2-S-U, SU-noDSC, SU-Segm, and SU-Frame ap-

proaches lead to the same result in the HS case. This is because of the
employment of exactly the same type of modeling, since for the
handshape cue we do not discriminate between D/S cases. Finally, for
the case of theM–P+HS cues, 2-S-U outperforms the other approaches
in the experiments of both signers. Specifically, the recognition perfor-
mance increases on average for both signers as follows: 15.8% over
SU-noDSC, 12.1% over SU-Segm, 17.6% over SU-Frame, and 3.5% over
Sign-DTW.

11.4.3. Confusability and errors
We discuss indicative cases of confusability of some GSL signs from

the above experiment. First, we focus on signs recognized correctly by
2-S-U, but incorrectly by other SU-based approaches (see also graph
in Fig. 16). Methods lacking the D/S concept lead to errors as follows:
1) Signs that differ in an extra posture after a movement for instance
the signs “RICE”, “SAY”, and “SEE” (see Figs. 1e, 10, 1f): all contain a pos-
ture in the neutral space, and are incorrectly recognized as “SWEET”
that does not contain this posture. This is since there is no subunit
representing explicitly the specific postures as in 2-S-U. 2) Signs that
differ in an extramovement. Sign “SOUND” contains a small movement,
for which there is no explicit SU for SU-noDSC, SU-Segm, and SU-Frame,
and it is recognized incorrectly to the signs “TASTY”, “SHINE”, and
“WHY”, respectively. 3) D/S SUs affect also two-handed signs; in the
D/S absence they can be confused to a single-handed sign that produced
higher likelihood: e.g. SU-noDSC confused “AUDIENCE” with “SHINE”,
sharing the same handshape. Second, we also examine 2-S-U's errors.
1) Small movements, i.e., wrist rotations and finger-play are not
RICE
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Fig. 16. Sign confusability graph. Nodes: rectangulars correspond to tested signs (transcriptions)
“TASTY” because of an error by onemethod among: SU-noDSC (n), SU-Frame (F), SU-Segm (S);
GSL sign samples can be viewed in [26].
detected. Thus signs that differ only in these are not discriminated.
Take for instance the compound sign “SPORTS”. In this, the first compo-
nent contains awrist rotation that is not represented in the SUs resulting
on a confusion to sign “THINGS.”However, the latter corresponds to the
second component of the compound “SPORTS.” Sign “SIXTY” appears
the same, but contains fingers' movement in contrast to “SIX.” 2) Same
movement and similar appearing handshapes as in “STORE” vs.
“WHOLE.” 3) 3D information is not available, and movements are
mapped in 2D: Sign “SALT”, consisting of a 3D circularmovement is con-
fused to “WALKER.” 4) Signs “WHAT” and “WHY” are homonyms. Fig. 16
shows other cases too.

11.5. Compensating for unseen pronunciations

As observed in the unseen signer scenario the performance
decreases significantly compared with the signer dependent case. This
holds for all approaches. The unseen signer scenario complements the
overall evaluation by quantifying the generalization of each approach.
To achieve high recognition performance the lexicon has to account
for the pronunciation variation of the unseen signer, so we act as
follows. Herein we evaluate the 2-S-U by compensating for unseen pro-
nunciations of the test signer as described in Section 9. We train the SU
models employing all repetitions for each sign from a single signer
(Signer-A). Then we employ a development dataset from the unseen
test signer (Signer-B) to generate new pronunciations. Finally, we eval-
uate on the rest of the still unseen test signer's data.

Table 6 shows the results in sign accuracy: in these we employ 300
signs while varying the percentage of the development set of the new
signer. By employing 20% of the new signer's data, that is only one
repetition per sign, the recognition performance increases 30% at least
for both signers, leading to 91.1% and 86.4% for Olga and Kostas respec-
tively. As the percentage of the development dataset increases, the
performance increases too, since more pronunciations are generated,
and the lexicon is implicitly adapted to the articulation variation of the
test signer. This indicates that the generation of new pronunciations
from the test signer can be proved beneficial when dealing with a new
signer: even with a single example per sign, performance is increased
significantly.

12. Recognition experiments on ASLLVD

Herein we present recognition experiments on a subset of the ASL
Large Vocabulary Dictionary corpus [24]. The vocabulary consists of 97
signs with one repetition each, from two native signers (Dana, Lana).
For the training of the SU models we employ a single repetition per
sign from one signer. For the testing we employ the data from the
other signer that is kept unseen during the training of the models.

The number of the SUs employed in each cue was set to maximize
recognition performance in a randomly selected development set. This
set constitutes 20% of the data, and does not overlap with the test set.
We employ a 5-fold cross-validation selection for the development
and test sets, and present average results. The median number of SUs
employed for each cue is as follows: 10 SUs for the position cue: each
one models a different Place-of-Articulation; 10 SUs for the movement
WHAT
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; ellipses to recognized signs. Archs: link a sign, e.g. “SEE”, to the sign that is confused to, e.g.
these signs were recognized correctly by 2-S-U. Archs with a 2SU label show 2-S-U errors.



Table 6
Compensating for unseen pronunciations via a development set of 0–4 instances (Inst.)
per sign, of the unseen signer. Sign recognition accuracy % on 300 signs from GSL-Lem.

Test signer Olga Kostas

inst. 0 1 2 3 4 0 1 2 3 4

Cue
M–P 30.1 69.2 75.3 75.8 76.2 29 64.3 72 76.2 80.5
HS 38.8 85 91.4 94 93.6 28.8 76 86 90.6 91
M–P + HS 61.2 91.1 95.5 96.1 96.6 50.1 86.4 92.6 94.33 95.66
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cue: each onemodels a differentmovement; 200 SUs for the handshape
cue. The features employed are the non-normalized position for the
position cue, the direction for the movement cue, and the features of
Sec.sec:feat for the handshape cue.

The recognition results appear in Table 7. By employing the move-
ment–position (M–P) and handshape (HS) cues separately 2-S-U
leads to an average absolute increase over both signers, of 9.3% and
4.8% respectively. After employing all cues (M–P + HS) the average
absolute increase over both signers is 7.5%.

13. Conclusions and discussion

We introduce a novel computational SL phonetic modeling frame-
work (2-S-U) of dynamic–static segmentation, classification andmodel-
ing for subunit construction in ASLR. Our main contribution lies on the
introduction of data-driven unsupervised D/S sequentiality without
any linguistic prior information. At the same time we preserve the par-
allelism of multiple cues. This is implemented via 1) the segmentation
and classification into dynamic and static segments, 2) the employment
of the appropriate model and different features in each SU type, and
3) the integration of D/S statistical SUs in a HMM framework. An impor-
tant output is the intuitive data-driven lexicon: this lexicon inherits the
D/S sequential structure inspired by the L&J's work. In this way the con-
structed lexicon is not only data-driven, but it has the phonetic property
that each sign consists of sequentially stacked movement (Dynamic)
and non-movement (Static) parts.

The 2-S-U approach is evaluated in ASLR experiments, on data from
three different corpora and two SLs: Boston University SL corpus
(BU400) with a vocabulary of 94 signs, GSL lemmas with 984 signs for
the signer dependent experiments and 300 signs for unseen signer test-
ing, and ASL Large Vocabulary Dictionary with 97 signs. In the experi-
ments we incorporate the dominant and non-dominant hands as well
as handshape. The experiments provide evaluations by employing a
single training example per sign, and testing on an unseen signer.
Note also that although we deal with isolated signs, we model and rec-
ognize sub-sign phonetic units. The final recognition output is evaluated
at the sign-level, via the SU-level lexica. Extensive comparisons are
conducted with three different SU-level approaches [14,11,23], and
one sign-level approach [28]. The average over the multiple signers
relative improvementsw.r.t. other approaches for theGSL-Lemwith un-
seen signer testing are as follows (300 signs): 23% for [14], 31.4% for [11]
and 28.8% for SU-noDSC; the latter adds a supplementary focused com-
parison, and is as 2-S-U, but lacks the D/S component. The average rela-
tive improvements from [28] over multiple signers with unseen signer
tests and for both GSL-Lem (300 signs) and ASLLVD (97 signs) is 9.3%.
Table 7
Unseen signer experiments. Sign recognition accuracy % with a single training example
per sign on 97 signs from ALSLVD.

Test signer M–P HS M–P + HS

2-S-U Dana 40.31 44.21 63.15
2-S-U Lana 38.2 40.1 61.3
Sign-DTW Dana 26.3 41 55.78
Sign-DTW Lana 33.6 35.7 53.6
Finally, the relative improvements over Markov chains and sequential
patterns of [23] for 984 signs are 26.4% and 23.6% respectively.

These results together with the intermediate qualitative discussion,
validate the significance of D/S sequentiality, which increases sign rec-
ognition performance. 2-S-U's D/S sequentiality is supported by both
linguistic evidence and computational phoneticmodeling after the sem-
inal works of [6] and [41,12] respectively. Moreover, the D/S results are
intuitive [6,65]: movements are thought to correspond to the most
sonorous parts of the signs, as the nuclei of syllables, like the vowels
in speech. On the other hand, the places of articulation (positions) are
of consonantal type. Thus, the incorporation in an unsupervised way
of this D/S sequential structure with appropriate features in each case,
and in accordance with the above concepts, as the vowel–consonant
one, in ASLR is considered rather important.

Themain aspects of 2-S-U can be extended. Its data-driven nature is
useful in the absence of phonetic level annotations. However, future re-
search should also incorporate linguistic–phonetic information where
available; ongoing work in this direction shows promising results [18].
Other aspects, include inter-sign transitions: these are related to contin-
uous recognition for which the statistical SUs have a great potential.
Other directions concern first the application to SL cases by exploring
fusion schemes in relation to the phonological structure of the involved
cues, following the research on linguistic models; second, the applica-
tion to more general cases concerning gesture, face, or articulators dur-
ing speech production. Finally, generalization of the approach is also of
interest, by means of feature selection [66]. This would allow the
employment of the appropriate cues for different cases automatically,
in a different scenario from the one presented. Concluding, the overall
2-S-U framework, shows the importance of accounting for unsupervised
D/S sequentiality in sub-sign phonetic modeling, and is expected
to affectfields suchas automatic corpora processing and the studyof SLs.
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