
Chapter 15
On Shape Recognition and Language

Petros Maragos, Vassilis Pitsikalis, Athanasios Katsamanis, George Pavlakos,
and Stavros Theodorakis

Abstract Shapes convey meaning. Language is efficient in expressing and struc-
turing meaning. The main thesis of this chapter is that by integrating shape
with linguistic information shape recognition can be improved in performance.
It broadens the concept of shape to visual shapes that include both geometric
and optical information and explores ways that additional linguistic information
may help with shape recognition. Towards this goal, it briefly describes some
shape categories which have the potential of better recognition via language, with
emphasis on gestures and moving shapes of sign language, as well as on cross-
modal relations between vision and language in videos. It also draws inspiration
from psychological studies that explore connections between gestures and human
languages. Afterwards, it focuses on the broad class of multimodal gestures that
combine spatio-temporal visual shapes with audio information. In this area, an
approach is reviewed that significantly improves multimodal gesture recognition
by fusing 3D shape information from motion-position of gesturing hands/arms
and spatio-temporal handshapes in color and depth visual channels with audio
information in the form of acoustically recognized sequences of gesture words.

15.1 Introduction

This chapter explores the fusion of shape and linguistic information for improving
shape recognition. While its main objective is to address the computer vision
problem of shape recognition for shape categories where linguistic information
is available by using statistical pattern classification methodologies, it also draws
inspiration from psychological studies that explore connections between shapes
and human languages. Towards this goal, we broaden the meaning of “shape” to
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include not only geometric but additional optical attributes; this augmented shape
information is referred to as “visual shape”. Thus, as explained in Sect. 15.2.1,
shape is meant here in a broader sense of visual information that may encompass
brightness, color, depth and time dynamics, even if the main channel is the 2D
geometrical shape (or the projection-silhouette of a 3D shape) as time evolves.
It focuses on gesture shapes, inspired by the long-term studies of the importance
of gestures for the origins of human language and their synergy with speech
[3, 25, 31, 47].

We begin with Sect. 15.2 that clarifies how we mean the information conveyed by
a shape and in which ways it can be supplemented by linguistic information. We also
use statistical inference to intuitively explain how shape recognition may benefit
from additional linguistic information. Next, Sect. 15.3 provides a brief survey
of shape categories which have the potential of better recognition by combining
visual with linguistic information, with emphasis on gestures and moving shapes
of sign language, as well as on cross-modal relations between vision and language
in videos. This is followed by a motivating Sect. 15.4 on the importance of gestures
for human communication. Afterwards, we focus in Sect. 15.5 on the main paradigm
of the chapter, which is the broad class of multimodal gestures combining spatio-
temporal shapes and other visual cues with audio information in the form of
sequences of spoken commands accompanying the gestures; in this section we
review an approach [37, 38] that fuses shapes with linguistic information, which
is audio-visually expressed, for significantly improving the automated recognition
of multimodal gestures. While discussing the examples of both Sects. 15.3 and 15.5
we draw analogies with the main ideas of this chapter.

15.2 Visual Shapes and Linguistic Information

15.2.1 Visual Shapes

Shapes are traditionally perceived and understood as objects of geometry, two-
dimensional (2D) or three-dimensional (3D). For a better understanding, perception
attributes may be added to them, e.g. as in Gestalt psychology. For automated shape
recognition, the computer vision community further explores broader appearance
characteristics of shapes by viewing them (whenever possible) as gray intensity
images that have both shape and texture. Thus, if 2D shapes are perceived from
images, they obtain a third dimension of brightness texture. Instead of brightness,
we may also add color to a 2D shape. Temporal dynamics are also important in
recognizing moving shapes. Another way of adding a third dimension to a 2D shape
to be recognized as a projected silhouette of a 3D object is by using depth. For 3D
shapes, including brightness or time evolution will add a fourth dimension.

Thus, in addition to their 2D main projection or silhouette, shapes of world
objects can have some additional geometric attributes such as depth and region
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summary as exemplified by their skeleton axis and its branch points, or even
optical attributes, e.g. intensity, color, as well as motion (in case of moving shapes)
possibly represented by dynamics of the above attributes as time evolves. We shall
call this augmented shape information a visual shape, meaning that it contains
attributes both from geometry (2D or 3D) and optics (photometry and motion). A
rich category of such visual shapes that include all the above attributes and will be
the main paradigm of this chapter are gestures. Both from a human perception and a
computer representation viewpoint, gestures comprise several information streams
which include a main 2D shape information such as the projection of the handshapes
and possibly the moving arms on the image plane, color information, 3D shape, 3D
motion, and by using appropriate sensors or computer vision algorithms they can be
supplemented with depth and skeleton information. This is illustrated in Fig. 15.1
through an example showing a user performing the Italian gesture “basta” (“that’s
enough!”). We sampled the video of a user performing this gesture and selected non-
uniformly five frames to depict the most important states of the “basta” gesture as
time evolves. We supplement the RGB frames with skeleton and depth information,
as well as images of the right or both handshapes. In this example the RGB, depth

Fig. 15.1 Sequence of frames sampled for a video of a user performing the Italian gesture “basta”
(“that’s enough!”), obtained with a Kinect sensor. Each column corresponds to a different temporal
section of the gesture performance, covering the overall range of motion. Given the start and the
end frames here, the duration of the gesture is 36 frames, i.e. 1.8 s (with the frame rate at 20 fps).
First row: RGB frames accompanied with the skeleton of the user that is superimposed on them.
Second row: The respective depth frames. Third row: Images of the segmented handshapes
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and skeleton data were provided by a Kinect sensor. The skeleton information of
this sensor includes the human skeleton axis and its branch points, such as hands’
centers, elbows, shoulders, face, knees and other critical points.

As exemplified in Fig.15.1, shape information can become richer, and hence its
recognition easier, if we augment the geometry of a shape with optical attributes. We
offer an intuitive explanation from the domain of statistical pattern classification, by
using Bayesian inference. Let Si represent the i-th class from a collection of shape
classes. Suppose we are given measurable data D , which may contain either only
geometric information G or geometric and optical information O, and the goal is to
infer the shape class given the data via the maximum-a-posteriori principle. If we
have information only from geometry, then D D fGg, and

P.Si=D/ D P.Si/P.G=Si/

P.D/
(15.1)

where P.�/ denotes probability or likelihood. In the case of geometry plus optics,
D D .G;O/ and hence

P.Si=D/ D P.Si/P.G=Si/P.O=Si;G/

P.D/
(15.2)

In the above combined case, the deciding numerator of the right hand side, excluding
the prior class probability P.Si/ which is common in both cases (15.1) and (15.2),
is a product of two terms, the probability of optical data given the shape class
and geometry times the probability of the geometric data given the shape class.
By exploiting these two terms we may be able to increase the discriminatory
potential of their product. Thus, we may improve the classification of the shape
by using statistical knowledge about both its corresponding geometric and optical
data, whenever such information is available.

From the domain of philosophy, an extreme such example of the richness of
visual shapes versus geometric shapes is Plato’s allegory of the cave (presented
in his work “The Republic”) where silhouettes of real world objects, whose fire-
produced shadows are cast on a cave wall while the real objects are being moved
behind human spectators, cannot be recognized. In contrast, if the same real objects
are seen with direct eye contact and under the sunlight, they reveal their true identity.
In Fig. 15.2 we attempted to create an example that illustrates only the visual aspects
of the cave allegory. Namely, Fig. 15.2 shows time snapshots from a video of
people running and contrasts the complete visual perception provided by the video
RGB frames (shape geometry plus color) versus the obviously poorer insufficient
information of the 2D silhouettes (shape geometry only) of the moving objects. As
motion played an important role in the previous gesture sequence of Fig.15.1, we
also see in Fig. 15.2 that motion is an important visual cue for understanding of
moving shapes.
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Fig. 15.2 Moving shapes: time sequence of sample frames from a video showing people running
(bottom row) and their silhouettes (top row). The frame rate for this video is at 30 fps. Second
frame column is apart from the first by 34 frames (1.13 s), while third frame column is apart from
the second by 48 frames (1.6 s)

Fig. 15.3 Greek sign language alphabet: shapes, images, letters

So far, one main conclusion is that a geometric shape, defined as a 2D or 3D set
of points representing an object in the Euclidean space, is a minimalistic form of a
visual shape, where “visual” means augmenting geometry with optical attributes.

15.2.2 Adding Linguistic Information

The main message from the previous discussion, i.e. that shape inference is enriched
if we couple geometry with optics, is further illustrated in the first two rows of
Fig. 15.3. The top row shows only silhouettes of handshapes from a sign language.
The silhouette only information has some ambiguities, one of which is the question
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whether the front or back side of the handshapes is visible. In contrast, the middle
row shows their corresponding gray images (shape plus brightness texture), i.e. an
example of what we call visual shapes, which disambiguate both the visible side of
the handshape and add texture details on the visible surface. If a viewer did not know
sign language, the first two rows of Fig. 15.3 would just be some handshapes with
shape differences among them. However, if we add the information of the third row
which corresponds these handshapes with distinct letters of the Greek sign language
alphabet, then we have augmented information of a visual shape plus language. This
addition of linguistic information can improve the recognition of such handshapes,
both from an intuitive viewpoint and from a Bayesian inference viewpoint. To
detail the latter (as inspired from statistical speech recognition [23, 40]), assume
for example that we are given a time sequence S D .s1; s2; : : : ; sT/ of shapes
si from a visual language, in the form of spatio-temporal visual data, and each
shape corresponds to a word wi, then we can recognize the unknown sequence of
visual words W D .w1;w2; : : : ;wT / by estimating it via the maximum-a-posteriori
principle:

W� D arg max
W

P.W=S/ D arg max
W

P.S=W/P.W/

P.S/
(15.3)

Thus, the likelihood P.S=W/ of the visual shape sequence given its linguistic
structure is combined with the prior probability P.W/ of the linguistic sequence;
this can potentially improve the recognition by exploiting statistical knowledge of
the language, e.g. if the n-gram probabilities P.wi=wi�1 � � � wi�nC1/ are known.

One way of creating a correspondence between visual shapes and words of some
language is via clustering. As further elaborated in Sect. 15.4 on the importance
of gestures for human communication, imagine given a sequence of visual shape
data that span a domain of visual realizations of concepts or objects common to
some human community and are represented by visual feature vectors. Then, by
some clustering method such as for example the K-means algorithm we can partition
the data over this domain into cells (which are regions of the feature space), each
representing a concept or object. The mapping of visual shapes in each cell to the
cell centroid is some form of feature encoding known as vector quantization. Then,
these centroids can play the role of words or subword units in some language.
In addition to its general usefulness in pattern recognition and machine learning
[5, 14, 46], clustering via vector quantization has also been used in signal processing
for data compression [20], in speech recognition for converting continuous feature
vectors into discrete patterns [40], and in computer vision for action or object
recognition based on the bag of visual words approach [19, 27, 43].

In the following sections we shall briefly describe some paradigms where
visual shape information is supplemented by additional linguistic information. We
distinguish three cases:

(1) Relationships between visual shapes and linguistic information. These include
(i) direct correspondences as for example in Fig. 15.3 and the pictograms
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mentioned in the beginning of Sect. 15.3; (ii) cross-modal relationships in
Sect. 15.3.2 between visual objects, represented by their shape information, and
linguistic information as corresponding words in text or related audio sounds,
employed in a multimedia analysis framework.

(2) In the second case, we employ linguistic information from sign language
at the level of visual phonetics. For example, in sign language recognition
(Sect. 15.3.1) the video segment corresponding to the visual word of an isolated
sign is decomposed into a time sequence of subunits that have a phonetic
meaning.

(3) In the third case, which focuses on multimodal gesture recognition (Sect. 15.5),
linguistic information is expressed in parallel audio and visual modalities: in the
visual stream, gestures occur in a time sequence; in parallel, in the audio stream
a sequence of corresponding keywords (or spoken commands) accompanies the
visual gestures and provides additional linguistic information.

In all the above paradigms the linguistic information we employ stays only in the
specific examples as case studies, and at the level of words or word-subunits; for
instance, we do not discuss linguistic structure at the level of sentences.

15.3 Shape and Language Paradigms

Among the earliest paradigms of correspondences between shape and language are
the ideographic and logographic writing systems. In the ideographic system the
graphemes are the ideograms which are graphic symbols expressing pictorially
some concept, independently of any specific language but often assuming some
prior convention. A special case are the pictograms which further provide a pictorial
resemblance with a physical object. Thus, in pictograms there is a direct connection
between shape and language. The logographic system is based on logograms which
are graphemes that represent words or morphemes and may also contain phonetic
elements. Examples of logograms include numerous Egyptian hieroglyphs and
Chinese characters. A famous example that may fit in one of the above cases are
the shapes on the Phaistos Disk, which was discovered in 1908 at the Minoan
palace of Phaistos on the Greek island of Crete, possibly dating from the 2nd
millennium B.C.; see Fig. 15.4. Although the ancient Egyptian hieroglyphs have
been deciphered after the discovery of the Rosetta Stone in 1799, the glyphs on the
Phaistos Disk still remain an archeological mystery.

In the two following subsections we highlight some ideas relevant to this chapter
from two broad categories of moving shapes where we encounter numerous corre-
spondences between shapes and language: (i) sign gestures and facial expressions
encountered in sign language and (ii) multimodal relationships between vision plus
language (audio or text) that are abundant in movie videos.
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Fig. 15.4 Phaistos disk (At
the archaeological museum of
Heraklion, Crete)

15.3.1 Sign Language

Human languages include both spoken and sign languages. Sign languages are
natural languages communicable purely by vision via sequences of time-varying
3D shapes. They serve for communication in the Deaf communities, as well as
among deaf and hearing people if the latter learn to sign. They convey information
and meaning via spatio-temporal visual patterns, which are formed by manual
(handshapes) and non-manual cues (facial expressions and upper body motion). A
coarse correspondence of a word in spoken language is a sign in sign language. See
[15, 28] for surveys of linguistic and cognitive aspects of sign language. The area of
computer-based processing and recognition of sign videos is also broadly related to
vision-based human-computer interaction using gesture recognition [22].

While significant progress exists in the field of automatic sign language recogni-
tion from the computer vision and pattern recognition fields, e.g. see [1, 8, 32, 44,
45, 49] and the references therein, it still remains a quite challenging task especially
for continuous sign language. In addition to signs having a complex multi-cue 4D
space-time structure, the difficulty in their automatic recognition is also due to the
large variability with respect to inter-signer or intra-signer variations of signing
while expressing the same concept-word. An example exhibiting such variations
is shown in Fig. 15.5. This variation is due to various sources: (i) the physiology of
each signer and the manner of his/her signing, (ii) the coarticulation – continuous
variability that causes multiple pronunciations, and (iii) the existence of multiple
pronunciations per se (e.g. from different dialects). Due to the above variability,
instead of recognizing each sign as a whole word, a more efficient approach
(inspired by speech recognition) is to decompose signs into subunits, resembling
the phonemes of speech, and recognize them as a specific sequence of subunits by
using some statistical model, e.g. via Hidden Markov Models (HMMs). Clearly,
the subunits approach performs much better on large vocabularies and continuous
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Fig. 15.5 Multiple realizations for sign /airplane/. (a) and (b) are due to inter-signer variability.
(c) and (d) are due to intra-signer variability. On each image we superimpose the beginning and
end frames of the sign with an arrow

language; further, the subunits are reusable and help with signer adaptation. In lack
of a lexicon, a computational technique to find such subunits is data-driven, i.e.
perform unsupervised clustering on a large database and use the cluster centroids
as subunits. This performs well in several instances, especially when the subunits
are pre-classified and statistically modeled based on visual features into dynamic
vs. static, as done by Theodorakis et al. [45], where the dynamic or static refers to
the type of the signer’s hands and arms motion. However, a superior performance
accompanied with phonetic interpretability may be obtained if the chosen subunits
are also based on the phonetic structure of a sign, as for example by incorporating
the Posture-Detention-Transition-Steady Shift (PDTS)1 system [24] of phonetic
labels. A sequence of PDTS phonetic subunits is shown in Fig. 15.6. Pitsikalis et al.
[39] combined the phonetic information provided by the PDTS transcriptions of
sign videos with the automatically extracted visual features to create (1) statistically
trained phonetic subunits and a corresponding lexicon, which were then used for
(2) optimally aligning (via Viterbi decoding) the data with the phonetic labels
and hence providing the missing temporal segmentation, as well as (3) better sign
recognition. Thus, we have a clear paradigm of improved shape recognition when
the visual information is coupled with linguistic information.

While information and meaning in sign languages are mainly conveyed by
moving handshapes, they are also conveyed in part by non-manual cues such
as facial expressions. These expressions can be visually modeled by deformable
models that encode both geometric shape and brightness texture information. Such
a class of models often used in computer vision are the active appearance models
(AAMs) [11]. Examples of the deformable geometric masks of such facial AAMs
are illustrated in Fig. 15.7, which shows a few frames from a sign sequence that
involves eye blinking. The transient phenomenon of eye blinking, where the eyes
may take one of the open/closed states, conveys low-level linguistic information
such as sentence – and possibly sometimes sign – boundaries, as described in Anton-

1In the PDTS system, D is a “hold” but for shorter duration than P. S is a “movement” without
acceleration. T is more abrupt motion.
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Fig. 15.6 Sample frames from the sign /pile/ from the Greek sign language. Images marked with
“T” and “E” represent dynamic segments with the phonetic labels “Transition (T)” and “Epenthesis
(E)”, visualized by superimposing on the same image the beginning and end frames with an arrow.
Images marked with “P” represent static segments with the phonetic label “Posture (P)”, visualized
by a single frame (Figure courtesy of Pitsikalis, Theodorakis, Vogler and Maragos [39])

Fig. 15.7 Sign boundary detection based on eye blinking detection on a Greek Sign Language
database. Indicative frames (up) are marked with a black dot in the detection diagram (down)
(Figure courtesy of Antonakos, Pitsikalis and Maragos [2])

akos et al. [2] and the references therein. The detection of the eye opening/closing
transitions can be detected from the changes in the corresponding AAM parameters.
Figure 15.7 presents an example of such a detection between neutral-close-neutral
(neutral is considered as intermediate) and its correspondence with the annotated
sign boundaries. This is another paradigm of synergy between visual shape and
language.

15.3.2 Multimodal Relations Between Shapes and Language

Every day communication between people is a blend of different modalities.
Humans often combine different pieces of information, e.g. visual and linguistic, in
order to communicate and interact. In multimedia data such as multimodal videos,
visual, auditory and linguistic information coexist as well. In multimodal videos
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we encounter a variety of visual objects that we can recognize more easily when
there exists a concurrent linguistic reference either in the text domain or as an
acoustic event. (Note that linguistic information can also exist in a video without
text or audio, e.g. in sign language videos as described in Sect. 15.3.1.) This is
one aspect of a broader class of phenomena with audio-visual modality integration,
which is an active research area in behavioral psychophysics, e.g. see [48], and
in neuroscience where, for instance, brain activity during watching TV programs
as measured by fMRI reveals correlations between audio and visual stimuli [7].
From a computational viewpoint, this audio-visual synergy can improve recognition
performance in multimedia systems via cross-modal integration, as surveyed in [29]
and the references therein. In general, there has been significant evidence that human
perception is multimodal and hence perception of visual objects can be improved
when different modalities are synergetically employed.

A corpus-based framework for analyzing and modeling multimedia dialec-
tics is the COSMOROE framework [36] which describes the semantic interplay
between verbal and non-verbal communication; specifically, the cross-media seman-
tic interrelation between images, language (in the form of either spoken language
transcription, graphic/scene text shown on the video, or acoustic stimuli, e.g.
human/animal or environmental sounds) and body movement. In Fig. 15.8 we
provide two such examples from cross-modal relations between visual shapes and
linguistic information. For instance, in a quite complex scene as presented in
Fig. 15.8a, where there is interaction between people (with clothing that attracts
human attention), the image of the dog could go unnoticed; however, the fact that
the dog is barking guides our look towards it. Same observation applies to Fig. 15.8b
as well; the lamp could easily get overlooked if the acoustic stimulus as in the phrase
“Take the lamp out on the porch” did not take place. This association of a visual
object with the linguistic information may render the recognition procedure easier
for humans and more robust for computers.

In short, the COSMOROE framework [36] aims at finding and analyzing rela-
tions from linguistics to other modalities, especially visual shapes, in multimodal
corpora. In parallel, there is a recent trend in computer vision in the opposite

Fig. 15.8 Correspondence between shapes and linguistic information (aural or textual) in movie
videos. (a) Acoustic event: dog barking. (b) Utterance: “Take the lamp out on the porch”
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direction, i.e. associating visual objects with linguistic attributes, which can benefit
recognitions problems such as action recognition [27] and person recognition [12]
in movie videos, as well as general object recognition [18, 35].

15.4 Gestures in Human Communication

In Sect. 15.3.1 on sign language we summarized that certain types of moving bodily
shapes can convey linguistic messages that represent complete languages. Here we
further extend this idea by providing a brief survey on how gestures have been
of great significance in human communication. In particular, according to specific
theories [3, 31, 47], they have supported the beginnings of language formation, after
which gesture shapes and language can reinforce each other.

By gestures we mean visible actions involving shapes of manual and non-manual
bodily motions and postures; most of them are dynamic (i.e. time-varying for part
of their duration) and use the hands. Kendon [25] classifies human gestures in
(1) Gesticulations, (2) Speech-framed, (3) Pantomimes, (4) Emblems (quotable
gestures), and (5) Sign language. The above sequence has been called Kendon’s
continuum [30]. As the numerical index of the gesture class increases, the degree to
which speech should accompany a gesture decreases whereas the degree to which a
gesture shows language-like properties increases.

The theory that gesture-based human communication evolved first whereas
conventional languages evolved later has had many supporters from the antiquity
until it became more definite in the eighteenth century; afterwards gesture and
sign languages started being studied as natural languages. Wittgenstein in his work
[52] on the philosophy of language argued that “What we call meaning must be
connected with the primitive language of gestures”. In search of the origins of
human communication, Tomasello [47] has provided ample evidence about the
critical importance of gestures, in particular of the pointing and pantomiming
types, for humans to develop (i) social cognitive skills that create a common con-
ceptual ground, including joint attention, shared experience and common cultural
knowledge, and (ii) social motives such as requesting, informing, helping and
sharing with others. These developments of social cognition and motivation create a
shared intentionality, as is called by some modern philosophers of action, e.g. [42].
Quoting from [47], “pointing (deictic gestures) direct the attention of a recipient
to something in the immediate perceptual environment, whereas pantomiming
(iconic gestures) direct the imagination of a recipient to something that typically
is not in the immediate perceptual environment by simulating an action, relation,
or object”. Interestingly apes have also developed pointing (attention-getters) and
pantomiming (intention-movements) gestures for their communication. One big
difference between the gesture-based ape versus human communication is that
for apes it serves individual intentionality, whereas for humans it serves shared
intentionality. This shared intentionality is at the heart of the cooperative model
for human communication [47].
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Thus, according to the theory and evidences in [47], the human social cognitive
skills and social motivation create a cooperative psychological infrastructure of
human communication based on gestures, which laid the foundations for the
later development of conventional languages. By “conventional language” we
mean a symbolic communicative code, which assumes some preexisting codified
form of communication like the gesture modality. Such a linguistic code is
based on a non-linguistic infrastructure of intentional understanding and common
conceptual ground [47, 51]. From a computational viewpoint, we may conjecture
that nowadays, if we are given a collection of gestures referring to a common
perceptual ground of objects, then by clustering and feature encoding we could
in theory map gestures to some abstract language words which could be the
cluster centroids. Of course, after their early development, human conventional
languages, mainly spoken languages, evolved into a very creative and versatile
form of communication which, despite its complexity, has fundamentally supported
and propelled human civilization. In contrast to gestures, the vocal modality in
nonhuman mammals remained inflexible and has not created a language. Quoting
from [47], “for all mammals, including nonhuman primates, vocal displays are
mostly unlearned, genetically fixed, emotionally urgent, involuntary, inflexible
responses to evolutionarily important events that benefit the vocalizer. In stark
contrast, a significant number of nonhuman primate gestures, especially those of
great apes, are individually learned and flexibly produced communicative acts,
involving an understanding of important aspects of individual intentionality.”

Another supporter of the “gesture-first” conjecture is Arbib [3] who supports a
theory that human language evolved as a result of biological and cultural evolution
starting from simple manual gestures we share with apes, progressing to the
imitation of manual skills and pantomime, and culminating to the development of
sign language and speech.

In addition to the gesture-first theory which advocates that human language
started as non-spoken gestures and signs, there are also combined theories that
advocate a fusion of the gesture and speech modality. For example, based on
evidence from neurological and psychological data, McNeill [31] argues for a two-
phase development of language acquisition in children: The first phase is based
only on gestures without speech. Later, when the required brain structures have
matured at age about 3–4, the second phase begins and involves both speech and
gestures. This gesture-speech unity continues in adult life and uniquely characterizes
the human language that we have actually evolved as a species.

It is this multimodal view of the language, containing both imagery via gestures
and linguistic codes via speech, that we further pursue in this chapter by discussing
computational approaches to automate its recognition, as explained next in the
paradigm of audio-visual gesture recognition.
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15.5 Multimodal Gesture Recognition

Multimodal gestures, i.e. time sequences of isolated gestures with simultaneous
utterance of the corresponding keyword (or spoken command), is a primary domain
where the fusion of visual shapes (gestures) with linguistic information (spoken
commands) leads to significantly improved recognition over visual only recognition.
They are becoming increasingly useful for human-computer interaction [6, 22, 26,
34]. In this section we highlight the main ideas and method of the chapter authors’
recent works in [37] and [38] for the effective recognition of multimodally expressed
gestures as performed freely by multiple users. The experiments were performed
on a demanding dataset [17] which was acquired via Kinect for the purpose of
the ChaLearn multimodal gesture recognition challenge (in conjunction with ACM
ICMI 2013) [16]. It comprises multimodal cultural-anthropological gestures of
everyday life, in multi-user spontaneous realizations of both spoken and hand-
gesture articulations, intermixed with other random and irrelevant hand or body
movements and spoken phrases. The use of Kinect enables multimodal capturing
and provides four information streams, three visual (RGB color video, depth video,
and skeleton with tracking of its branch points) and one aural (audio stream),
all essential to multimodal processing. In the next subsections, we briefly review
the approach in [37, 38] for multimodal gesture recognition, where the additional
employment of speech significantly improves the performance of recognition over
using only visual shape information (handshape and skeleton).

15.5.1 Methodology

The multimodal gesture recognition system exploits the color, depth, skeleton and
audio signals captured by the Kinect sensor. See Fig. 15.9 for an overall view of
the proposed fusion scheme. It extracts features for the handshape configuration,
the movement of the hands and the speech signal, and it essentially implements a
two-level2 fusion approach:

1st Pass (P1): To independently account for the specificities of each of
the modalities involved, we first train separate gesture-word models for each
modality. These unimodal models are then used to generate a set of possible
gesture-word sequence hypotheses for a given recording. Then, this original set
of hypotheses is multimodally rescored and resorted.

2In the work of [38] the P1/P2 terms are not employed any more compared to [37], since [38]
includes several other contributions, the discussion of which is beyond the scope of this chapter.
Herein we keep the P1/P2 terms only for descriptive reasons.
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Fig. 15.9 Overview of the multimodal fusion scheme for gesture recognition based on multimodal
hypotheses rescoring. Single-stream models are first used to generate possible hypotheses for the
observed gesture sequence. The hypotheses are then rescored by all streams and the best one is
selected. Finally, the observed sequence is segmented at the temporal boundaries suggested by the
selected hypothesis and parallel fusion is applied to classify the resulting segments. Details are
given in Sect. 15.5.1.2 (Figure courtesy of Pitsikalis, Katsamanis, Theodorakis and Maragos [38])

2nd Pass (P2): Based on the temporal boundaries of the gestures in the best
fused hypothesis, a parallel segmental fusion step as in [49] exploiting all three
modalities further improves recognition.

Gestures in our case occur in parallel with their semantically corresponding
speech words, without implying however strictly synchronous realizations in all
modalities. Given a vocabulary V D fgig, i D 1; : : : ; jVj, of multimodal gestures
gi that are to be detected and recognized in a recording and a set C D fOmg,
m D 1; : : : ; jCj, of measurements from multiple information channels/streams that
are concurrently observed, our goal is to generate the best multimodal hypothesis
h for the sequence of gesture appearances, based on these observations. In our
experiments, the latter set comprises three streams, namely handshape features,
skeleton features and audio spectral features. In essence, any set of information
streams can be employed in this framework, although the combination of visual and
audio cues significantly enhances recognition results.

15.5.1.1 Single Information Stream Modeling

The modeling methodology essentially follows the keyword-filler paradigm for
speech [41, 50] and is based on hidden Markov models (HMMs). For a tutorial on
HMMs and their application to speech recognition, the reader is referred to [23, 40].
The problem of recognizing a limited number of gesture-words in a video possibly
comprising other heterogeneous events as well, is seen as a keyword detection
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problem. The gesture-words to be recognized are the keywords and all the rest is
ignored. Each gesture-word is modeled by a left-to-right HMM with a common
number of states and with Gaussian mixture models (GMMs) representing the state-
dependent observation probability distributions. There are also two separate filler
HMMs to represent either silence/inactivity, or all other possible events (called
“background model” – BM) appearing in that stream.

15.5.1.2 Multimodal Fusion

N-Best Rescoring and Resorting: Using the single stream gesture models and a
gesture grammar G, which defines the set of alternative hypotheses allowed, a list
of N-best possible hypotheses is initially generated for the unknown sequence for
each stream. Specifically, by applying Viterbi decoding [40] we can estimate the
best hypothesis Ohm per stream:

Ohm D arg max
h2G

log P.Omjh; m/; m D 1; : : : ; jCj; (15.4)

where Om is the observation sequence for modality m, m is the corresponding set
of HMM models, and G is the set of alternative hypotheses allowed by the gesture
grammar.

Similarly, in the more general case, we can generate a complete list of the N-
best gesture-word sequences per stream, and form a set H D fh1; : : : ;hLg of all
the hypotheses (L in total) for the available modalities. Given this set, we sort
the hypotheses [10, 21, 33] and identify the most likely hypothesis exploiting all
modalities. In this direction, we estimate a combined score for each possible gesture
sequence as a weighted sum of standardized modality based scores:

vi D
jCjX

mD1
wmv

s
m;i; i D 1; : : : ;L (15.5)

where the weights wm for each modality m can be determined experimentally (by
maximizing the recognition score on the validation set). The modality-based scores
vs

m;i are standardized versions of vm;i which are estimated by means of Viterbi
decoding:

vm;i D max
h2Ghi

log P.Omjh; m/; i D 1; : : : ;L; m D 1; : : : ; jCj; (15.6)

This maximization searches over acceptable gesture sequences that follow a spe-
cific hypothesis-dependent finite-state grammar Ghi . Thus, this is a constrained
recognition problem where the search space of possible state sequences includes
only sequences corresponding to the hypothesis hi plus possible variations by
keeping the appearances of target gestures unaltered and only allow SIL (silence)
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and BM (background model) labels to be inserted, deleted and substituted with
each other. The most probable gesture-word sequence hypothesis h� D hi� , where
i� D arg max

i
vi, after this step is the one with the maximum combined score.

Segmental Parallel Step: Herein we exploit the modality-specific time boundaries
(found via forced alignment) for the most likely gesture sequence and segment each
observation stream, to reduce the recognition problem to a segmental classification
one. For every segment and each stream, we compute the log probability:

LLt
m;j D max

q2Q
log P.Ot

m;qjm;j/; j D 1; : : : ; jVj; (15.7)

where t is the time index of the segment, m;j are the parameters of the HMM model
for the gesture gj and the stream m; q is a possible state sequence. These segmental
scores are linearly combined across modalities to get a multimodal score:

LLt
j D

jCjX
mD1

w0
mLLt

m;j (15.8)

where w0
m is the stream-weight for modality m set to optimize recognition perfor-

mance of this step. Finally, the recognized gesture for each segment t is the one
with the highest multimodal score. This final stage is expected to give additional
improvements, allowing local refinements by exploiting possible benefits of a
segmental classification process.

15.5.2 Experimental Results

15.5.2.1 Multimodal Gesture Dataset

For the experimental work we employed the ChaLearn multimodal gesture chal-
lenge dataset [17], which focuses on multiple-instance, user-independent learning
of gestures from multimodal data. It provides via Kinect RGB and depth images of
face and body, user masks, skeleton information, as well as concurrently recorded
audio including the speech utterance accompanying the gesture. See top row of
Fig. 15.10 for an example of the data. The vocabulary contains 20 Italian cultural-
anthropological gestures, performed by 39 users in 13,858 gesture-word instances
in total. Gesture recognition over this dataset presents several challenges: presence
of distracting gestures, large number of categories, length of gesture sequences, user
variety and corresponding variability in gestures and spoken dialects, variations in
background and lighting; see Fig. 15.11.
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Fig. 15.10 A collection of sample cues as well as extracted features for each modality. Top row:
visual data (RGB and depth) and audio data. Bottom row: visual features (skeletal points, HOGs in
the RGB and depth channels) and audio features (MFCCs)

Fig. 15.11 (a,b) Arm position variation (low, high) for gesture “vieni qui” (“come here”);
(c,d) Left- and right-handed instances of gesture “vattene” (“go away”). Gesture motion is
visualized by superimposing on the same image the beginning and end frames with an arrow

15.5.2.2 Multimodal Features

We statistically train separate HMMs at the level of word-gestures per each
modality, i.e. handshape, skeleton and audio.
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Table 15.1 Single
modalities evaluation
expressed as accuracy (in %)

Audio Skeleton HandShape

87.2 49.1 20.2

Table 15.2 Our approach in
comparison with the first
three places of the ACM 2013
Gesture Challenge

Approach Accuracy %

Ours [38] 93:3

iva.mm [53] 87:2

wweight [17] 84:6

E.T. [4] 82:9

Handshape Cue: The features employed are Histograms of Oriented Gradients
(HOGs) [13] as extracted in both hands’ segmented images for both RGB and
depth modality. We segment the hands by employing the hand’s tracking and by
performing threshold depth segmentation. Essentially, any visual descriptor could
be computed on the handshape information; HOGs are just an example that is used
widely in the literature (e.g. in [9]).

Skeleton Cue: The features employed for the skeleton cue include: the hands’
and elbows’ 3D position, the hands’ 3D position with respect to the corresponding
elbow, the 3D direction of the hands’ movement, and the 3D distance of hands’
centroids.

Audio Cue: To efficiently capture the spectral properties of speech signals, our
frontend generates 39 acoustic features every 10 ms. Each feature vector comprises
13 Mel Frequency Cepstral Coefficients (MFCCs) along with their first and second
derivatives.

A visualization of the extracted features for all the available modalities is
presented in bottom row of Fig. 15.10.

15.5.2.3 Recognition Results

We summarize the most recent3 experimental results from [38].
In Table 15.1 we show the recognition results for each modality. The results

are expressed in accuracy (%), which is computed as 100 � WER where WER is
the percent word error rate that includes insertions, deletions and substitutions. As
observed, the audio modality is the strongest one.

Table 15.2 shows the performance of the proposed multimodal two-pass fusion
scheme [38] in comparison with other approaches who participated in the Gesture
Challenge [17]. Our scheme begins with a first-pass fusion step (P1) leading to

3The multimodal gesture recognition system in [38] is an extension of [37], where additional
components are included such as voice and gesture activity detection and a gesture-loop grammar,
which improve the recognition results.
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the best fused hypothesis as a result of the N-best rescoring. Then follows the P2
component as the second-pass fusion step; in this we employ the gesture-word
level segmentation of the above best fused hypothesis, leading to the second-
pass fused result and the final recognized words. This multimodal fusion yields
a recognition accuracy of 93.3 %, which outperforms the other approaches and
reduces the smallest previous error by a relative 47 %.

A gesture sequence decoding example is shown in Fig. 15.12. Herein we illustrate
both audio and visual modalities for a word sequence accompanied with the ground
truth word-level transcriptions (row: “REF”). In addition we show the decoding
output employing the single-audio modality (AUDIO) and the three presented fusion
cases (P1, P2 and P1CP2). As we observe there are several cases where the subject
pronounces an out-of-vocabulary (OOV) word and either performs a gesture or not.
This indicates the difficulty of the task as these cases should be ignored. By focusing
on the recognized word sequence that employs the single-audio modality we notice
two insertions (words “PREDERE” and “FAME”). By employing either the P1 or
P2 the above word insertions are corrected as the visual modality is integrated and
helps identifying that these segments correspond to OOV words. Further, the single
pass fusion components lead to errors which the proposed approach manages to
deal with: P1 causes insertion of “OK”, P2 of a word deletion “BM”. These are in
contrast to P1C P2 which recognizes correctly the whole sentence.

Note that for the above audio-visual fusion on the Gesture Challenge dataset,
we implicitly address inter-stream differences, since (a) our modeling deals with
not perfectly aligned audio and visual information (we enforce different boundaries
for each stream), and (b) with fusion we can handle cases where one stream is less
informative than the others. In fact, Fig. 15.12 presents cases (third and sixth frame)
where the audio modality is ambiguous (and estimates the wrong word), whereas

Fig. 15.12 An example of recognizing a gesture-word sequence. Audio (top) and visual modalities
(second) via a sequence of images for a word sequence. Ground truth transcriptions (“REF”).
Decoding results for the single-audio modality (AUDIO) and the three different fusion schemes
(P1, P2 and P1+P2). Errors are highlighted: deletions (blue color) and insertions (green color). A
background model (BM) models the out-of-vocabulary (OOV) words (Figure courtesy of Pitsikalis,
Katsamanis, Theodorakis and Maragos [38])
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for the visual streams we are more confident about the gesture, so with fusion of the
results we get the correct gesture-word for these segments.

15.6 Conclusions

In this chapter we have proposed a broader view of shapes and their temporal
sequences as communicative devices. In particular, we have emphasized the connec-
tions between shape and language and have argued for improving shape recognition
by adjoining linguistic information. To illustrate this idea we have provided several
paradigms including examples from sign recognition and shape-language relations
in multimodal videos. Then, we have focused on the class of multimodal gesture
sequences and showed the great improvement in gesture recognition achievable by
fusing visual gesture shapes with spoken commands in multimodal videos. These
paradigms employed some specific methodologies from pattern recognition, i.e.
HMMs, motivated by the relative success they have had in speech recognition
on integrating acoustic with linguistic information, but there are also alternative
machine learning approaches that could be applied. However, despite the possibility
of employing more efficient methodologies, the main thesis of this chapter remains
the capability of improving shape recognition by adding linguistic information. This
is possible and meaningful for those categories of shapes whose modeling can be
considered in a linguistic context.
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