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ABSTRACT

Within the context of assistive robotics we develop an intelligent

interface that provides multimodal sensory processing capabilities

for human action recognition. Human action is considered in mul-

timodal terms, containing inputs such as audio from microphone ar-

rays, and visual inputs from high definition and depth cameras. Ex-

ploring state-of-the-art approaches from automatic speech recogni-

tion, and visual action recognition, we multimodally recognize ac-

tions and commands. By fusing the unimodal information streams,

we obtain the optimum multimodal hypothesis which is to be further

exploited by the active mobility assistance robot in the framework of

the MOBOT EU research project. Evidence from recognition exper-

iments shows that by integrating multiple sensors and modalities, we

increase multimodal recognition performance in the newly acquired

challenging dataset involving elderly people while interacting with

the assistive robot.

Index Terms— multimodal sensor processing, assistive robotics,

speech recognition, action-gesture recognition

1. INTRODUCTION

Human actions are inherently multimodal. Their recognition is a

multilevel problem since they include audio-visual cues posing chal-

lenges at the level of features, information stream modeling and fu-

sion. Nevertheless, multimodal human action recognition, which is

currently viewed under multiple viewpoints in the literature, is still

considered an open research field. Related application areas show

great variability: human-computer interaction [1], multimedia in-

dexing and retrieval, surveillance and multimodal event detection.

In all the above, human actions and related events have been mainly

studied only with respect to the individual modalities, apart from a

few exceptions. This lack becomes more apparent when the actions’

multimodal nature complicates things, e.g., when audio events and

spoken commands, body actions, hand gestures and interactions be-

tween multiple subjects are involved. Such multimodal actions are

of great value in human-computer interaction, and especially in as-

sistive robotics. Our aim is to account for multiple modalities in

human action recognition, while focusing, but not constraining our-

selves, in a challenging assistive human-robot interaction (HRI) task

for elderly people employing a newly acquired dataset [2].

“Human action” is usually translated in the literature as visual

action [3]. This is the reason that most state-of-the-art approaches

deal only with visual cues [4] and the most popular datasets [5] are

considered with respect to visual cues [6]. Recently, several works
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address issues raised by multiple modalities. The most common as-

pect is multimedia event detection as in [7, 8, 9]. Another view-

point, appeared in a recent challenge [10] concerning aspects of au-

dio/visual cues for multimodal voice-gestures [11, 12, 13, 14]. Other

multimodal applications list gesture and accompanying speech inte-

gration [15], integration for agreement recognition [16], social signal

analysis [17], and complex events [18].

Multimodal human action recognition poses challenges due

to distant speech recognition and noise, pronunciation variability,

scene noise by other subjects, camera motion and variation in ac-

tion/gesture performance. Another source of difficulties concerns

the nature of our task, i.e. elderly subjects who often articulate or

pronounce the multimodal gestures in a loose manner. Overcoming

such problems for each modality separately is still open. Further,

there are issues related to fusion despite numerous efforts in this

direction [19], since getting satisfactory unimodal results does not

necessarily guarantee better multimodal results. Last, application

in HRI poses additional challenges: (a) either practical such as the

real-time computation, integration issues in the robotic platform, (b)

or research, concerning other involved modalities, e.g., laser range

data, and the specific needs of the elderly. In this context, multi-

modal assistive HRI works are only recent and sparse [20, 21, 22].

To fill this gap, we introduce multimodal action recognition1

in assistive HRI for elderly subjects. We deal with the individual

modalities by advancing and adapting state-of-the-art approaches in

automatic speech recognition as well as in visual action recognition.

In the former, we employ beamformed multi-microphone array pro-

cessing for robust distant speech recognition, whereas in the latter

we adopt the state-of-the-art approach based on dense trajectories.

Then, we late fuse the separate information streams to obtain the

multimodal result. The approaches are evaluated on a challenging

newly acquired HRI assistive task [2]. For the individual modali-

ties we provide supplementary evaluations [6] showing that the em-

ployed approaches can be successfully applied in a broader context.

Finally, we briefly describe how practically this multimodal assistive

HRI is exploited in the MOBOT robotic platform providing intuition

on our goal of assistive robotics, as well as information on the robotic

platform integration for real-time performance.

In previous works, we investigated multichannel distant speech

recognition [23] for domestic environments. The employed meth-

ods are further explored within this work on other datasets and are

integrated into an online system for the robotic assistant. For mul-

timodal fusion we proposed a more generic scheme [14] applied in

the ChaLearn dataset [10].

1We generally employ the term “recognition” which is currently imple-
mented in the online system (see the concluding remarks in Sec. 7). For the
quantitative experiments (Sec. 6) presented we show classification accura-

cies, that is, after employing loose segmentation boundaries. Nevertheless,
this does not affect the generality of our approach.
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Fig. 1: Sample gestural and audio commands from the MOBOT 6.a dataset. The

two leftmost pictures show two commands that are acoustically very similar but

their corresponding gestures are distinguishable. On the other end, the last two

pictures show commands whose gestural performances are similar but differ a lot

acoustically.

Fig. 2: Challenges related

to the MOBOT-6a dataset.

IS: Instructor speaking,

PS: Patient speaking, BN:

Background Noise

Fig. 3: MOBOT proto-

type rollator: 1. MEMS

array, 2. Kinect 3. GoPro

camera, 4. laser range

finders, 5. encoders,

6. force/torque sensors

2. HRI ASSISTIVE TASK MULTIMODAL DATASET

The MOBOT multimodal database consists of multiple tasks based

on the daily life of elderly people with mobility disabilities.

MOBOT robotic platform: The experimental prototype used for

data acquisition consists of a passive rollator equipped with sensors,

as shown in Fig. 3, such as: laser range sensors scanning the walking

area for environment mapping and obstacle detection, and at the back

detecting lower limbs movement; force/torque handle sensors, and

visual sensors: a HD camera to record patient’s upper body move-

ments and two Kinect sensors. One Kinect captures the torso, waist

and hips and the second faces downwards at the lower limbs. Finally,

an array of 8-microphone MEMS is used for audio capturing.

Multimodal data: Herein we take advantage of the HD camera

and the microphone array inputs. The MOBOT-6a task includes 19

different gestural and verbal commands developed to accommodate

the communication with the robotic platform. The patient is sitting

in front of the rollator, placed at a distance of 2.5 meters. Each com-

mand is performed by the 13 patients, 3− 6 times.

Challenges: Mobility disabilities seriously impede the perfor-

mance ability of a verbal and/or gestural command for some users,

and therefore, alternative pronunciations are frequent and diverse.

Due to the cognitive disabilities of some users, in some cases we ob-

serve different pronunciations of a command even among multiple

performances of the same user.

3. AUDIO GESTURE COMMANDS

Speech modeling and recognition: Speaker independent acoustic

models are trained for German on 55 hours of publicly available

close-talked clean read speech from adult speakers. The HTK tools

and recipe [24] was followed for training 3-state, cross-word tri-

phones, with 8 Gaussians per state, based on standard MFCC-plus-

derivatives. After testing the recognizer on 1 hr of the available data

using 3-gram language model, the obtained word accuracy perfor-

mance was 87%. The employed speech recognition is grammar-

based: a grammar instead of an n-gram language model constitutes

a robust solution in small tasks, like the examined HRI task in which

there is less domain dependent data available for language training.

For extra robustness, we first denoise by delay-and-sum beamform-

ing of 8 MEMs channels arranged on a 4 cm linear setup. The beam-

former is steered vertically to the platform to enhance the speech

Fig. 4: Action classification pipeline.

signals coming from the front user area.

Adaptation: The targeted acoustic environment as well as the

quality of speech of the elderly users constitute the process of acous-

tic modeling quite challenging. In the absence of domain specific

data, the German triphones are adapted to a development set consist-

ing of recordings from the MOBOT corpus. We use the global max-

imum likelihood linear regression (MLLR) adaptation technique to

transform the means of the Gaussians on the states of the models.

The adapted models are then employed for keyword spotting and

command recognition as described in our previous work [23].

4. VISUAL GESTURE-ACTIONS

The employed pipeline is depicted in Fig. 4. We employ the terms

“action” or “gesture” interchangeably, since the employed method

can be applied in both cases or other more complex events.

Feature extraction and descriptors: Dense trajectories [4] con-

sists in sampling feature points from each video frame on a regular

grid and tracking them through time based on optical flow. Tracking

is performed in multiple spatial scales, and trajectories are pruned to

a fixed length L to avoid drifting. Following the trajectory extrac-

tion, different descriptors are computed within space-time volumes

along each trajectory 2.

2Descriptors include: the Trajectory descriptor, HOG [25], HOF [26] and
MBH [4] computed on both axes (MBHx, MBHy). Trajectory descriptor
encodes the shape of the trajectories. HOG describes the local static appear-
ance based on the orientation and magnitude of the image intensity gradient.
HOF captures motion information using the orientation and magnitude of the
optical flow. MBHx/MBHy are computed on the gradient of the horizon-
tal/vertical optical flow components and MBH is their concatenation.
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Task Models Users avg.

MOBOT-6a

p1 p4 p7 p8 p9 p11 p12 p13

baseline 87.50 60.87 41.67 58.06 66.67 45.45 70.83 81.25 64.03

+MLLR 96.88 78.26 79.17 90.32 80.00 81.82 79.17 87.50 84.14

MOBOT-3a

u1 u2 u3 u4 u5 u6 u7 u8 u9

baseline 54.29 33.33 59.05 28.85 36.63 55.34 57.14 52.38 48.08 47.23

+MLLR 90.48 87.62 96.19 88.46 90.10 96.12 97.14 98.10 90.38 92.73

Table 1: Audio classification accuracies for leave-one-out experiments on tasks: (a)

MOBOT-6a and (b) MOBOT-3a. The baseline refers to non-matched acoustic mod-

els trained on the large vocabulary German corpus task; then the performance is

increased by MLLR adaptation.

MOBOT 6.a HMDB51

20

40

60

a
c
c
u

ra
c
y
 (

%
)

HMDB51

 

trajectory
HOG
HOF
MBHx
MBHy
MBH
combined

Fig. 5: Classification accuracy on the MOBOT-6a

and HMDB51 datasets for multiple descriptors.

On MOBOT-6a average accuracy over all patients

is shown.

Feature encoding: Extracted features are encoded using separate

codebooks per descriptor. Codebooks are constructed by clustering

a subset of selected training features into K clusters. Each trajec-

tory is assigned to its closest visual word. We use Bag of Visual

Words (BoVW) encoding, i.e. a histogram of visual word occur-

rences, yielding a sparse K-dimensional video representation.

Classification and fusion: Videos are classified based on their

BoVW representation, employing non-linear support vector ma-

chines (SVMs) with the χ2 kernel [25]. In addition, different

descriptors are combined in a multichannel approach, by computing

distances between BoVW histograms as:

K (hi,hj) = exp

(

−
∑

c

1

Ac

D
(

h
c
i ,h

c
j

)

)

, (1)

where c is the c-th channel, i.e. hc
i is the BoVW representation of the

i-th video, computed for the c-th descriptor, and Ac is the mean value

of χ2 distances D
(

h
c
i ,h

c
j

)

between all pairs of training samples.

Since we face multiclass classification problems, we follow the one-

against-all approach and select the class with the highest score.

5. MULTIMODAL FUSION

The late multimodal fusion scheme is as follows: First, the audio

and visual scores are normalized to have zero mean and standard

deviation equal to one. Then, given the scores for all classes, spoken

commands or gesture-actions, the N-best audio gesture commands

gi, i ∈ 1 . . . N are rescored by combining their scores Si
a with the

corresponding visual ones Si
v . As a result, the gi are resorted based

on multimodal scores Si
av , obtained by applying a weighted linear

combination:

S
i
av = wa ∗ Si

a + wv ∗ Si
v (2)

with tunable weights for the audio (wa) and visual (wv) modalities.

The best multimodal hypothesis gj is selected as the one with the

maximum audio-visual score Sj
av where j = argmaxi S

i
av . The N

parameter corresponds to the number of audio hypotheses employed

for rescoring.

6. EXPERIMENTS

Single- and multi-modal gesture classification experiments are car-

ried out on a subset of the MOBOT-6a dataset by including 8 sub-

jects and 8 gestures 3, without limiting the generality of results4.

Single-modality results on supplementary data are also reported for

comparison.

3The 8 selected gestures are: “Help”, “WantStandUp”, “PerformTask”,
“WantSitDown”, “ComeCloser”, “ComeHere”, “LetsGo”, “Park”.

4Experiments on in-house gesture data based on the same vocabulary of
19 gestures have shown that our classifier generalizes effectively when gradu-

6.1. Audio modality results

We first evaluate the audio based classification on the MOBOT-6a

task. As seen in Table 1, the achieved average accuracy on the con-

ducted leave-one-out classification experiments are 84.14%. There

is an improvement of 20 percentage points (pp) after adapting the

acoustic models to the testing environment.

The current setup is also evaluated on a supplementary audio-

only dataset, that is the MOBOT-3a which consists of recordings

from 9 adult users operating by voice the MOBOT platform while

holding and following the rollator. These results are higher reach-

ing a 92.73% accuracy. As expected, this performance is better due

to the fact that the speakers are closer to the microphones and the

speakers are not elderly patients as in the MOBOT-6a task, but typ-

ical adults; their pronunciation and quality of speech is better and

more matched with the training data of the acoustic models. Overall,

speech appears to be a dominant modality for the examined tasks and

the achieved performance renders the system usable as stand-alone

or combined with other modalities. However, as seen in the tougher

task, when it comes to the HRI assistive task for the elderly the per-

formance drops, and thus we have a lot to expect by the fusion with

the visual modality.

6.2. Visual modality results

MOBOT-6a experimental setup and results: We first extract dense

trajectories using the default parameters 5. For the encoding stage

we generate a codebook of K = 4000 visual words per descrip-

tor, learned with K-means using 100000 randomly selected training

features. Each feature is assigned to its closest visual word. The

regularization term of the SVM is C=100.

Table 2 shows the accuracy of our action classification system

on each patient for MOBOT-6a. The combined descriptor computed

with (1) is employed in these experiments. Results show that the

large variability of the gesture performance among patients has a

great impact. Figure 5 depicts the mean accuracy over all patients for

each descriptor. The combined descriptor performs better, since it

encodes complementary information extracted from the RGB chan-

nel. In all following experiments we use the combined descriptor.

Supplementary dataset and results: The HMDB51 action

dataset [27] lists 6766 videos from movies and YouTube. It is a

ally increasing the number of gestures from 8 to 19. Particularly, the classifi-
cation accuracy drops from 93.04% (for 8 gestures) to 84.74% (19 gestures)
but still the performance renders the system usable.

5 Dense trajectories of length L frames are extracted and descriptors are
computed within space-time volumes of size N ×N × L aligned with each
trajectory. This volume is subdivided to a spatio-temporal grid of size nσ ×

nσ×nτ and descriptors are computed in each grid’s cell separately. The final
descriptor is formed by concatenating individual cells’ descriptors. Here we
employ L = 15, N = 32, nσ = 2, nτ = 3 as in [4].

Proc. 41st IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP-16), Shanghai, China, Mar. 2016



p1 p4 p7 p8 p9 p11 p12 p13 avg.

40.62 65.22 50.00 64.52 66.67 63.64 70.83 34.38 56.98

Table 2: Visual classification accuracy per patient, MOBOT-6a

dataset. “avg.” stands for average accuracy over patients.

ComeNear ComeHere

A,7

F,6
A,13

F,5

WantSitDown
V,4

Park

V,8
LetsGo

V,4
V,5

WantStandUp
V,8

V,4

Fig. 6: Multimodal confusability. Nodes correspond to multimodal

commands. Archs link a multimodal gesture, e.g. “COME HERE”,

to the ones confused to, e.g. “COME NEAR” because of an error by

one of: audio (A), visual (V), fused (F). Note the number of confu-

sion cases (shown if > 4), to which the linewidths are proportional

to. F corresponds to multimodal errors.

very challending dataset since it has 51 action classes and ranging

from facial actions (e.g. smile) to body movements (e.g. stand) and

actions are performed in uncontrolled settings. We use the original

setup with 3 splits and report average classification accuracy. Fig-

ure 5 depicts classification accuracy on HMDB51 and MOBOT-6a.

Performance on HMDB51 is consistent with the reported one in [4]

using similar settings and is placed within the state-of-the-art (e.g.

55.27% in [28]). Results on both datasets corroborate our choice of

the combined descriptor in our experiments.

6.3. Multimodal fusion results

Fusion is evaluated on the MOBOT-6a dataset following the same

leave-one-out setup.

Parameters: The fusion parameters are optimized in subsets of

the training sets by considering the average performance across the

conducted leave-one-out experiments. The optimum values were

(N,wa, wv) = (2, 0.95, 0.05) after searching the N parameter in

the range of values [2, 8] and testing the audio weight wa using steps

of 0.05. Indicative obtained average accuracies in the training sets

for wa = {0, 0.6, 0.8, 0.95, 1} are {81.3, 83.2, 89.0, 91.2, 85.2}.

The optimal value N = 2 indicates that the correct hypothesis can be

found frequently between the 1st or 2nd best audio hypothesis. This

is not to underestimate the visual modality as shown next, which is

expected to provide supplementary information e.g. when the audio

evidence is not enough.

Qualitative results: The complementarity of the audio-visual

modalities and the benefits of fusion are justified by the exploration

shown in Table 3, showing cases where fusion achieved better. In

the first example of the first column, and as mentioned in Fig. 1, al-

though the audio confuses “Come here” with “Come near” which are

similar, the error is recovered after the fusion because of the more re-

liable visual output. Accordingly, in the second column, the gesture

“I want to sit down” is confused with “Come here”. However the

fusion result is correct due to the audio. Finally, fusion may recover

errors from both modalities as seen in the third column. Supplemen-

tary intuitive confusability results are shown in Fig. 6.

Classification results: As shown in Figure 4, the proposed

scheme yields a significant relative improvement of 61% compared

to the visual based gesture classification performance (56%). How-

ever, the visual modality benefits audio in the fusion process by

increasing its performance from 84% to 90%. Overall, the achieved

REF ComeHere WantSit ComeHere Park

A ComeNear (0.75) WantSit (0.58) ComeCloser (0.26) Park (0.42)

V ComeHere (0.63) ComeHere (0.45) WantSit (0.35) Park (0.94)

AV ComeHere (0.72) WantSit (0.56) ComeHere (0.26) Park (0.44)

Table 3: Examples of correct (in green) multimodal (AV) classifica-

tion in cases of incorrect (italics in red) audio (A) and/or visual (V)

based classification. The best hypothesis is shown for each modal-

ity along with their scores. “REF” stands for the ground truth. In

the third column, the correct result (“ComeHere”) was the 2nd best

audio hypothesis, but it was chosen after rearranging the audio hy-

potheses using the audio-visual scores.

p1 p4 p7 p8 p9 p11 p12 p13 avg

A 96.87 78.26 79.16 90.32 80.00 81.81 79.16 87.50 84.13

V 40.62 65.21 50.00 64.51 66.66 63.63 70.83 34.37 56.98

AV 87.50 100.0 79.16 96.77 86.66 90.90 95.83 84.37 90.15

Table 4: Multimodal (AV) human action classification on the

MOBOT-6a data. The N-best list rescoring fusion is compared to the

unimodal classification results of the audio (A) or visual (V) streams.

performance in the challenging MOBOT-6a scenario renders the

multimodal framework a robust solution.

7. CONCLUSION

In our ongoing work we also focus on the incorporation of the pre-

sented approaches in an integrated system on the online processing

MOBOT platform employing the robotic operating system (ROS).

Based on the multimodal inputs we detect and recognize the issued

audio-visual command addressed to the robotic assistant: e.g. the

elderly user calls the system by uttering a keyword (“MOBOT”) and

then provides a voice command along with a gesture. The audio

part includes, in addition to the described components, an always-

listening one. This is built by: a) voice activity detection, b) key-

phrase detection based on the keyword-filler approach, to identify

an activation phrase, and c) grammar-based automatic speech recog-

nition. This achieves real-time performance with accuracies close

to the reported ones. Regarding gesture recognition, we employ an

activity detector, excluding static segments and background move-

ments. Currently, the gesture activity detector and the action classi-

fication systems operate at approximately 13 and 3.8 fps respectively

on Kinect data.

To conclude with, we described a novel robotic system for mul-

tisensor signal processing and presented promising results in multi-

modal human action recognition, in a newly acquired assistive HRI

dataset, focusing on elderly subjects. The qualitative and quanti-

tative multimodal recognition results reach on average 90%. Inte-

gration on the robotic platform poses several practical issues which

have just been briefly mentioned in this paper. All these highlight

this newly formed interdisciplinary research direction which poses

challenges on multimodal signal processing, modeling, fusion and

on assistive robotics.
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