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ABSTRACT

This paper describes MoveSynth, a performance system
for two players, who interact with it and collaborate with
each other in various ways, including full-body movements,
arm postures and continuous gestures, to compose music
in real time. The system uses a Kinect sensor, in order
to track the performers’ positions, as well as their arm and
hand movements. In the system’s current state, the musical
parameters that the performers can influence include the
pitch and the volume of the music, the timbre of the sound,
as well as the time interval between successive notes. We
extensively experimented using various classifiers in order
to detect the one that gives the optimal results regarding
the task of continuous gesture and arm posture recogni-
tion, accomplishing 92.11% for continuous gestures and
99.33% for arm postures, using an 1-NN classifier with a
condensed search space in both cases. Additionally, the
qualitative results of the usability testing of the final sys-
tem, which was performed by 9 users, are encouraging and
identify possible avenues for further exploration and im-
provement.

1. INTRODUCTION

The connection between motion and sound has always been
of particular interest to humans [1]. However, while re-
sponding to sonic input via movements of the body has
been practiced since antiquity, the composition of sound
from motional input has only recently been explored. The
first chronologically tangible result of the above exploration
is the theremin [2]. Designed to produce sound without
physical contact between the performer and itself, it uti-
lizes two oscillators, the resonant frequency of which is
determined by the distance between the performer’s hands
and the respective antennas. Both the pitch and the vol-
ume of the produced sound are directly dependent on the
resonant frequencies of the oscillators.

Since then and due to the recent advances in sensors and
motion tracking technology, a lot of ground has been cov-
ered in the design of systems that compose music using
spatial or gestural data [2]. Of particular importance to the
above was the launch of Microsoft Kinect [3] in 2010. Mi-
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crosoft Kinect consists of a variety of sensors, capable of
transmitting color, depth and IR data in a maximum rate of
30 frames per second. However, the main reason Kinect is
widely used in the design of interactive performance sys-
tems is the ability to accurately track a number of skele-
tons (up to 2 and up to 6 respectively for Kinect v1 and
v2), each represented as a number of keypoints (20 and 25
respectively for Kinect v1 and v2) [4], corresponding to
various human joints, including a central body joint and
the shoulders, elbows, and wrists for each arm.

Herein, we present MoveSynth, an interactive performance
system for two players who compose music in real time.
More specifically, in Sec. 2, we present the related work in
the fields of interactive performance systems and gesture
recognition. In Sec. 3, we describe our system in more de-
tail, explaining its architecture in depth, while also describ-
ing and using a series of offline experiments to support the
final design choices we made. In Sec. 4, we present re-
sults regarding the system’s quantitative online evaluation
as well as a pilot quality of experience (QoE) study, while
our conclusions and potential future work and extensions
are discussed in Sec. 5.

2. RELATED WORK

2.1 Interactive Performance Systems

The work presented in this paper is about an interactive
performance system for two players, which synthesizes mu-
sic depending on their movements. In the related literature,
there are two possible ways of interaction between the sys-
tem and the performers; the performers either compose the
resulting music themselves [5], or tune some parameters of
the music - like the volume and the pitch - that the system
algorithmically composes [6].

Part of the literature focuses on virtual representations of
musical instruments. In these cases, the performers pro-
duce music that corresponds to the respective instrument,
by performing movements similar to those that would be
performed in order to play the actual instrument. These can
be tracked using either cameras or other sensors, such as
accelerometers and gyroscopes. Examples of the above in-
clude enhanced traditional musical instruments in a digital-
ized form [7], assistance tools for learning how to play an
instrument [8], or purely entertainment applications [5, 9].
A large number of these applications use Microsoft Kinect
as a tracking sensor. The work in [5], for example, pro-
vides a virtual interface for three musical instruments - a
guitar, a drum kit and spider king - by tracking the per-
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former’s movements using Kinect. To increase the accu-
racy of the instrument’s representation, by offsetting the
inherent latency of the Kinect, the velocity and acceler-
ation of the performer’s hands are taken into account in
some cases [10]. For more abstract interactive systems, a
popular option is using movements of either some of the
performer’s body parts, such as their hands or arms, or the
performers themselves, as event triggers, and translating
them into changes in the pitch, the volume, or the melody
of the played music [11].

An intriguing challenge in the design of a digital musical
instrument is the creation of a mapping between sounds
and motion that is both intuitive and easy to learn [2]. A
good example of such a mapping is linking the rhythm of
the played music to the speed of the performer’s move-
ments, since it satisfies both of these conditions [12]. Other
interesting mapping strategies include spatiality-based map-
pings, where spatially close arm postures correspond to
sounds with similar properties [13] and the use of vision-
embodied metaphors to musical features [14, 15].

Finally, it is interesting to note that the connection be-
tween motion and music can be used for educational pur-
poses, since some musical concepts are easier to explain
through linking them to a motion counterpart [12]. An ex-
ample of such an application is Robinflock [6], designed to
teach children the concept of polyphony in music.

2.2 Gesture Recognition from Skeletal Data

Gesture recognition is the research field that focuses on the
automatic extraction of meaningful data from the motion
of a person’s hands, arms, face, head, or body [16]. Its ulti-
mate goal is the classification of these meaningful data into
some kind of gesture language or non-verbal commands.
Since the launch of Kinect, an emerging subfield is that of
classifying gestures using skeletal information.

The most commonly used approach to this problem in-
volves the use of a distance metric between the observed
gesture and a number of templates. The metric is applied
either on the raw skeletal data [17, 18], or some intermedi-
ate representation, such as decompositions of the gestures
in simpler movements [19] or the correlation values of the
angles between the skeletal joints [20]. In order to take
into account the temporal development of the gestures, dy-
namic time warping is used to calculate the distance met-
ric, and the features are weighted either globally [17] or
locally [18]. Other approaches include the use of Hid-
den Markov Models for modeling the movements of the
joints [21], and classifying the gestures - after extracting
an intermediate representation - via Support Vector Ma-
chines instead of a nearest-neighbor based distance met-
ric [22, 23].

3. MOVESYNTH: A COLLABORATIVE SYSTEM
FOR COMPOSING MUSIC VIA MOTION

In this section, we present our system, MoveSynth, and
the various subsystems that compose it. It has been de-
signed to operate as an interactive performance system,
with two players controlling various musical parameters,

such as its volume, pitch and the time interval between suc-
cessive notes, depending on their full body motion, hand
position, arm posture, as well as the execution of a number
of continuous gestures.

3.1 Mode Description

MoveSynth includes the following modes, each featuring
different ways for composing music and collaborating. Nav-
igating through these modes is achievable by performing
specific gestures and movements and, in all of these, the
performers’ roles are dependent on whether they stand to
the right or the left of the camera. In all modes, sine waves
of a single frequency, corresponding to specific music notes,
are produced [24].

• Mode 1: The pitch of the music changes in discrete
time intervals. The performer to the right of the
camera plays music, by mapping their arm posture
to specific notes. The one on the left is responsible
for starting the music, stopping it, defining the time
interval length and switching to another mode, via
performing a number of gestures, as well as tuning
its volume, decreasing it as she/he moves away from
the camera.

• Mode 2: The pitch of the music changes quasi con-
tinuously. The performer to the right of the cam-
era plays music by controlling both the pitch and
the volume via adjusting vertically the position of
his/her hands. The performer on the left keeps the
same mapping as in mode 1 for all gestures, with
the exception of those responsible for controlling the
time intervals between successive notes. Since the
sound is quasi-continuous in this case, these gestures
were re-mapped to control the timbre of the sound,
which is altered by the addition of higher-order har-
monics to the initial sinusoid.

• Mode 3: Similar to mode 1, the pitch of the music
changes in discrete time intervals. The performer
on the right plays music exactly as in mode 1. The
one on the left controls the volume of the music and
the time interval between successive notes, adjusting
these parameters by vertically moving their hands.
This mode cannot be initiated or stopped on its own,
while, by by performing specific full-body move-
ments, the performers can switch back to another
mode.

The performers’ roles in each of these modes are summa-
rized in Table 1.

3.2 Feature Extraction

Since we are using Kinect in order to track the performers’
movements, we have access to the (x, y, z) coordinates of
their skeletal joints with respect to the camera, including
those of the shoulder, elbow and wrist of each arm. For the
cases where the controlling parameter is just the position of
the hand, these are enough with regards to the information
that is needed. However, their inability to generalize as fea-
tures means that, in order to classify both arm postures and
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Mode Performer 1 Performer 2
Note Playing via Start/Stop, Intervals

1 Arm Postures via Hand Gestures,
Volume via Distance

Note Playing and Start/Stop, Timbre
2 Volume via Hand

Movements
3 Note Playing via Volume and Intervals

Arm Postures via Hand Movement

Table 1. Summary of the roles of the two performers in
each of the modes of our system.

continuous gestures, we have to extract from them an in-
termediate, meaningful representation. Thus, we calculate,
for each frame, the direction vectors for each arm using the
methodology described below. For the rest of this section,
we will consider that the user’s arm can be divided in two
parts, the upper arm above the elbow and the forearm be-
low it.

For each of the performers, beginning with the (x, y, z)
coordinates for each arm joint, we calculate, for each direc-
tion, the length of each upper arm and forearm as follows:

xup = xshoulder − xelbow, (1)

xlow = xelbow − xwrist, (2)

yup = yshoulder − yelbow, (3)

ylow = yelbow − ywrist, (4)

zup = zshoulder − zelbow, (5)

zlow = zelbow − zwrist. (6)

And we concatenate these lengths in a single direction vec-
tor per arm part:

n camup = [xup, yup, zup], (7)

n camlow = [xlow, ylow, zlow]. (8)

where n camup and n camlow denote these concatenated
vectors in the camera’s coordinate system.

Afterwards, we normalize them to unit length, to cancel
out the inherent variance due to the different natural char-
acteristics of the performers. To do this, we first calculate,
for both arms, the total length of each arm part:

lenup =
√
x2up + y2up + z2up, (9)

lenlow =
√
x2low + y2low + z2low. (10)

and then, we divide each element of the respective vectors
with these lengths.

Finally, after rotating all four - two per each arm - nor-
malized vectors to align them with the performer’s viewing
direction, we concatenate them in a single 12-dimensional
vector per frame. So, let n cam be a normalized direction
vector for an arbitrary arm part, expressed in the coordinate
system of Kinect. To align it with the user’s coordinate

Figure 1. Block diagram for the extraction of the interme-
diate geometric representation of the arm posture.

system, we multiply it with the following rotation matrix
R, where θ denotes the angle between the player and the
camera:

R =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 . (11)

After alignment and correction of the x-coordinate of the
vectors corresponding to the left arm, we concatenate all
partial hand vectors in a single feature vector, n final, as
seen in Eq. 12. We do not correct the x-coordinate of the
vectors corresponding to the right arm, since we want the
x-axes of the coordinate systems of both hands to extend
outwards.

n final =


n user upper left
n user lower left

n user upper right
n user lower right

 . (12)

This process is summarized in Fig. 1.

3.3 Activity Detection and Gesture Recognition

For the real-time recognition and classification of continu-
ous gestures, we have developed a three-stage pipeline. Its
stages include an activity detector, a classifier and a con-
trol mechanism, that only accepts as valid gestures those
that satisfy a similarity threshold to one of the gestures
included in our gesture set. The set of gestures used to
train the pipeline was a subset of the Microsoft Research
Cambridge-12 (MSRC-12) gesture dataset [25], which con-
sists of sequences of human skeletal body part movements,
represented as body part locations. Specifically, we used
the gestures encoded as G1, G3, G5, G9 and G11, since
they only involve arm movements encoded as skeletal data,
and are easily separable from each other. Fig. 2 shows the
three-stage pipeline of the gesture recognition, while the
gestures are partially visualized in Figs. 3-7.

3.3.1 Activity Detector

In order to detect the starting point of a continuous ges-
ture, we built an activity detector. In applications that use
videos as input, the optical flow [26] between successive
frames is usually computed to determine whether there is
any activity or not; in our case, we use skeletal data, and
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Figure 2. Block diagram of the three-stage pipeline for
gesture recognition.

Figure 3. Three snapshots of the execution of the gesture
G1

Figure 4. Three snapshots of the execution of the gesture
G3

Figure 5. Three snapshots of the execution of the gesture
G5

Figure 6. Three snapshots of the execution of the gesture
G9

Figure 7. Three snapshots of the execution of the gesture
G11

an estimation of the velocity of the arm joints is consid-
ered sufficient to this end. Therefore, we need to find a
threshold value for the velocity that will, when exceeded,
detect the starting point of continuous gestures. In order
to accomplish this, we calculated the average per-frame
velocity both in every gesture instance in the dataset and
in frames between successive gesture instances, where no
gesture was performed. The threshold value was chosen so
as to split the respective probability distributions, as seen
in Fig. 8. After experimentation, the threshold value was

Mean absolute value of speed metric
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Figure 8. Statistical visualization of the velocity met-
ric during various gesture (colored according to the cor-
responding gesture) and non-gesture (black) instances.
(Please see color version for better visibility)

set to be equal to 0.05.

3.3.2 Continuous Gesture Classification

After any positive activity detection, the skeletal data for
the next 31 frames (preprocessed as described in Sec. 3.2)
are transmitted to the classifier. The duration of each ges-
ture was taken to be equal to 1 second, and thus, taking
into account the 30 fps frame rate of the Kinect sensor, 31
frames are required to cover, time-wise, the gesture dura-
tion. In order to choose the optimally performing classi-
fier, we extensively experimented, using 5-fold cross vali-
dation, with Hidden Markov Models (HMMs), with either
discretized or continuous observation variables, and the k
nearest-neighbor algorithm (kNN). For each case, the fol-
lowing hyperparameters were tuned, in order to determine
the optimal setup:

• HMMs with discretized observation variables: Num-
ber of codewords (up to 80) and number of states (up
to 7).

• HMMs with continuous observation variables: Num-
ber of Gaussian mixtures per state (up to 5) and num-
ber of states (up to 7).

• kNN: Number of voting neighbors (up to 7).

Based on the recognition results of the different classi-
fiers, as shown in Table 2, the nearest-neighbor classifier
outperformed the HMM classifier accomplishing an accu-
racy of 98.6%. In order to further enhance the results, we
applied a number of modifications on it. Initially, we ex-
perimented with reducing the size of the training set us-
ing k-means, in order to reduce the runtime of 1-NN. Con-
sequently, and after concluding that keeping 20 templates
per class provides optimal runtime with minimal accuracy
loss:

• We applied Principal Component Analysis (PCA) in
our data, to reduce the number of features per ges-
ture, experimenting with the number of kept compo-
nents.
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Algorithm Optimal Setup Accuracy
Disc. HMMs 7 states, 80 codewords 93.1%
Cont. HMMs 5 states, 5 mixtures 97.1%
Nearest Neighbor 1 voting neighbor 98.6%

Table 2. Accuracy percentages (%) for the 3 baseline al-
gorithms we experimented with. “Disc”. denotes dis-
cretized observation variables, “Cont.”, continuous obser-
vation variables.

Modification Optimal Setup Accuracy
Dataset reduction 20 templates/class 97.2%
PCA 20 features/template 97.3%
DTW 5-width search 97.8%

Table 3. Accuracy percentages (%) for the various modifi-
cations of the nearest-neighbor algorithm we experimented
with.

• We also used Dynamic Time Warping (DTW), in
order to allow for slight discrepancies between the
train and test data, with regard to the exact temporal
execution of the continuous gestures.

The best results of this experimentation are provided in
Table 3. It is worth noting that, as a result of these exper-
iments, we used a nearest-neighbor-based classifier in the
final application, using 20 templates per class. Despite the
fact that both PCA and DTW outperformed their baseline,
neither was used in the final application since the accuracy
gain was not large enough to overcome the real-time con-
straints.

3.3.3 Continuous Gesture Acceptance/Rejection

Finally, in order to determine whether a performed and
classified continuous gesture actually belongs to our ges-
ture set, we developed a gesture-rejecting system that works
as follows: Given the distance, as returned by the nearest-
neighbor algorithm, between a performed gesture and its
closest template from any class, this metric is compared
to a class-specific threshold. If the threshold is surpassed,
then the gesture is assigned to a “None” category. Other-
wise, the performed gesture is accepted. In order to deter-
mine the optimal values for the thresholds, we followed a
procedure similar to the one for the activity detector. Thus,
after dividing the gesture instances in train and test data,
and compressing the train data to 20 templates per class
using k-means, we calculated the distance between every
test instance and each class, choosing, for each class, the
minimum out of all its respective template distances. Af-
terwards, we used them to generate the probability distri-
bution of the instance-template distances for each class, for
both the correct class and non-correct classes. Finally, we
selected as threshold value the one that optimally splits
these distributions. An indicative visualization of these
distributions is shown in Fig. 9.

3.4 Arm Posture Classification

The frequency range of our system was decided to be equal
to an octave, ranging from C5 to C6. As a result, for all our
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Figure 9. Statistical visualization of the distances of an in-
stance to a) all templates in its closest class, b) all templates
in its second closest class. In this case, the distance thresh-
old that better splits these distributions is approximately 5.
(Please see color version for better visibility)

operation modes apart from mode 2, we needed to define
an arm posture that would produce each note, leading to
a total of 12 different arm postures. The classification of
the arm postures is done by using a simple template match-
ing algorithm, with one template per class. Again, the arm
postures are represented by the 12-dimensional vector de-
scribed in Sec. 3.2.

After choosing the arm postures that will correspond to
the various musical notes, it was necessary to find a map-
ping between these postures and the notes. As a constraint,
we desired that successive, pitch-wise, notes correspond to
arm postures that are spatially close enough to be immedi-
ately accessible from each other. We faced this as a discrete
optimization problem, and therefore used an evolutionary
algorithm in order to find the optimal mapping. The algo-
rithm works as follows:

At the first iteration, 50 random mappings between arm
postures and musical notes are produced. Then, for the
next 50 iterations:

• The mappings are evaluated through the cost func-
tion in Eq. 13, which penalizes large sonic differ-
ences in close spatially arm postures:

C =

12∑
i=1

12∑
j=i+1

d sonic(i, j)

d spatial(i, j)
, (13)

where i, j are arm posture indices, the sonic distance
is expressed in number of semitones and the spatial
distance is the Euclidean distance between the two
arm postures.

• After the evaluation, we create the next generation
of mappings using:

– The 4 best mappings of the previous generation
unchanged.

– For each of them, 9 permutations of the map-
ping, each produced by swapping two arm pos-
tures of its “parent” mapping.

– Finally, 10 new, random mappings.
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Pose Description (Left Arm, Right Arm) Note
(Down, Down) C5
(Down, Front) C5#

(Down, Stretched) D5
(Stretched, Stretched) D5#

(Stretched, Down) E5
(Front, Stretched) F5

(Diagonal Stretch, Diagonal Stretch) F5#
(Front, Front) G5
(Up, Front) G5#

(Diagonal Up, Diagonal Up) A5
(Up, Up) A5#

(Up, Down) B5

Table 4. The mapping between arm postures and musical
notes.

After all 50 iterations, we choose the overall best scor-
ing mapping as the final one. That mapping between arm
postures and notes is presented in Table 4.

4. REAL-TIME EVALUATION AND USABILITY
TESTING

Our system was subjected to both quantitative and qualita-
tive evaluation. The purpose of the first set of experimental
evaluation was to validate its real-time functionality, while
the second set was geared towards measuring the quality
of the user experience (QoE).

4.1 Quantitative Evaluation

4.1.1 Arm Posture and Gesture Classification

The first quantitative experiment was carried out to evalu-
ate the performance of the arm posture classifier described
in Sec. 3.4, as well as the continuous gesture classifier pre-
sented in Sec. 3.3, in real time. Both these cases share a
similar experimental protocol. In particular, all possible
arm posture and continuous gesture instances were recre-
ated in front of a Kinect sensor. In the case of arm postures,
each of them was executed 5 times, with the execution du-
ration being equal to 5 seconds. Since the postures were
evaluated in a per-second basis, a total of 300 instances
were classified. It is worth noting that, out of these, only 2
were misclassified, resulting in an accuracy of 99.33%.

In the case of the continuous gestures, each of the five
gestures was executed 8 times. The results of this classi-
fication experiment are presented in Table 5, in the form
of a confusion matrix. We note that, out of the 40 per-
formed instances, only 38 were successfully recorded, due
to failure of the tracking system, and out of these, 3 were
misclassified, resulting in an accuracy of 92.11%.

4.1.2 Arm Posture - Note Mapping Evaluation

Finally, it is desired that any two sonically close arm pos-
tures are directly accessible from each other. The testing of
this condition was not carried out in real time to ensure in-
dependence between the testing results and any other pos-
sible malfunctions. To this end, we used Matlab in or-
der to simulate all possible spatial transitions through arm

G1 G3 G5 G9 G11
G1 8 - - - -
G3 - 6 - - -
G5 1 - 7 - -
G9 - - - 8 -
G11 - - 2 - 6

Table 5. Confusion matrix - where the rows correspond to
the ground truth and the columns to the classifier’s output
- for the real-time continuous gesture classification experi-
ment. A temporary failure of the tracking system resulted
in only 6 takes of the gesture G3 being recorded.

Dist. # of Frames # of “Mistakes” Acc.
1 551 17 96.91 %
2 501 35 93.01 %
3 451 46 89.80 %

Total 1503 98 93.48 %

Table 6. Number of “misclassifications” of intermediate
arm postures, respective to the sonic distance (in semi-
tones) between the initial and final postures.

postures that correspond to a sonic distance of one, two,
and three semitones. Between each such pair of arm pos-
tures, we interpolated 50 intermediate postures and classi-
fied them. Since we want direct accessibility between soni-
cally close arm postures, we recorded as misclassifications
the cases, where the intermediate posture was classified as
a posture different to its starting and its final. We present
the results of this experiment in Table 6. The results are
satisfying, indicating that the performers should be able to
directly transition between sonically close arm postures in
the majority of the cases.

4.2 Qualitative Evaluation

A variety of methods have been proposed in order to mea-
sure the quality of the interaction between the system and
the performers in interactive performance systems in a quan-
tifiable way. In many cases, as in [12] and [27], some
subscales of the Intrinsic Motivation Inventory (IMI) [28],
which was created as a means of assessing and evaluating
the experience of users in participatory laboratory exper-
iments, are used. Other approaches, such as the one de-
scribed in [14], are based on a transparency metric for both
the performers and the audience, used as a measure of the
expressivity of the performance [29].

4.2.1 Methodology

In our case, our system’s interactive and sonic environment
was evaluated by testing the system on a number of per-
formers. A total of 9 users took part on this preliminary
qualitative study, the majority of whom were undergradu-
ate or PhD students at the National Technical University of
Athens. Three of them had knowledge of playing a musical
instrument, while the majority had some prior experience
in using gesturally controlled systems.

First, a brief explanation of how the system works was
provided to the users. Then, each of them tried out the sys-
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L. Curve Excit. Intuit. Pleasure Control
1

2

3

4

5

Figure 10. Visualization, in a five-point Likert scale, of the
means and standard deviations for the scores of the sys-
tem’s learning curve, user excitement, system’s intuitive-
ness, user pleasantness about the sonic output, and user
overall system control, as derived from the questionnaire
given to the users.

tem, taking both possible performer roles. After testing the
system for a reasonable amount of time, the users answered
a questionnaire, designed to gauge their opinion about the
various features of the system, as well as its usability, in
a five-point Likert scale. Additionally, the questionnaire
aimed to determine the degree of collaboration between the
users, as well as their preferred system mode. Qualitative
comments about possible new features, improvements or
alterations on existing ones were also provided in written
form.

4.2.2 Qualitative Results and Discussion

The vast majority of the users showed enthusiasm and ex-
citement while they were testing the system. In addition,
the majority of the users were pleased by the control they
had over the system, being able, after some exploration, to
produce the melodies and sound effects they had in mind.
The intuitiveness of the system was also highly rated, while,
regarding its learning curve, the system was described as
relatively easy to learn and play with, at least after some
training with the gestures. The sonic output of the system
was less well received, being overly reminiscent to “elec-
tronic music” to some of the users. A mean-standard devi-
ation plot of these results is shown in Fig. 10.

The comments by the users about issues not covered in
the questionnaire were of particular interest. In particu-
lar, some users commented that the time interval between
different notes could have been controlled more directly,
with the notes changing in sync with the arm postures in-
stead of using a predetermined time interval. Another fre-
quent comment involved the potential control of some mu-
sical parameters by more fine-grained movements, with
one user pointing that “it felt somewhat unnatural to play
music out of the range of a typical musical instrument”.
It is also worthy to note that the users felt that they were
collaborating at composing the music, albeit not in the de-
gree we would have wanted. Finally, a technical request
involved the robustness of the system in the case of per-
former occlusions, since the system has specific require-
ments about performer placement.

Finally, regarding the comparison between the various
modes our system offers, the majority of the users showed

a preference to mode 3. This is to be expected, as the sec-
ond mode involved perhaps a more intuitive, but harder
to accurately control frequency and amplitude mapping,
while the comparison between the roles of the second player
in modes 1 and 3 favors the second.

5. CONCLUSIONS AND FUTURE WORK

This paper describes our work in using motion tracking
technology to develop a system that composes music via
movement. The results are generally encouraging; both the
arm postures, hand positions and continuous gestures used
as event triggers are easily detected and identified, and the
people who tested the system were generally pleased with
the result. The responses to the preliminary qualitative
evaluation highlighted a number of issues that we would
like to include in our future work. More specifically, we
aim to improve the degree of collaboration between the
two players. Also, a visual assistant, where the players
could see skeleton representations of themselves mirroring
their movements in real time and indicating their current
contribution to the sound, could be helpful. In addition,
the actual sonic output could be altered to something less
intrusive than sine waves, such as the sound of an actual
musical instrument. Last but not least, we are eager to ex-
plore more possible mappings, based on both full-body and
gestural motion, and explore the potential of this idea in
educational applications.
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