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Abstract— This work examines how and to what benefit an
autonomous humanoid robot can supervise a child in an object
assembly task. In order to understand the child’s actions,
a novel 3D object tracking algorithm for RGB-D data is
employed. The tracker consists of two stages: the first performs
a tracking-by-detection scheme on the color stream, to locate the
objects on the image plane, while the second uses a particle filter
that operates on the depth data stream to refine the first stage
output and infer the objects’ rotations. Given the six degrees-
of-freedom of the assembly part poses, the system is able to
recognize which connections have been completed at any given
time. This information is then used to select an appropriate
verbal or gestural response for the robot. Experimental results
show that (a) the tracking algorithm is accurate, fast and robust
to severe occlusions and fast movements, (b) the proposed
method of assembly state estimation is indeed effective, and (c)
the resulting Child-Robot Interaction scenario is educational
and enjoyable for the children involved.

I. INTRODUCTION

An interesting application of human-robot interaction can
be found in the domain of object assembly tasks. The human
agent attempts to build a specific structure out of a number
of individual parts, while the robot is charged with the task
of assisting the human through a series of instructions, task
order suggestions and proposed corrections. This form of
guidance may be advantageous over other methods, such
as a set of written instructions or a video, because of
the feedback provided. Robotic assistance can thus lead to
reduced completion times with fewer mistakes.

In the context of child-robot cooperation, the assembly
could be a toy, a puzzle, a simple building block structure,
etc. In such cases, the presence of a robot can make the task
more enjoyable for the child. At the same time, the robot
can evaluate a wide range of the child’s abilities, including
motor skills, hand-eye coordination, spatial ability or short-
term memory retention.

Autonomous assembly guidance requires an understanding
of the assembly state at any time, so as to provide relevant
feedback with as little delay as possible. This understanding
is commonly achieved through computer vision techniques,
by inferring the positions of all the assembly parts from a
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Fig. 1: Overview of the assembly guidance system, with the 3D tracker’s
basic architecture shown on the left and the high-level planning on the
right. A tracking-by-detection algorithm estimates the assembly parts pixel
coordinates on the color stream, which are passed to the prediction phase
of the particle filter. The final pose estimates are refined based on the depth
image. The assembly state is inferred from the 3D poses of its parts and is
subsequently used to drive the robot actions.

given set of images. In this work we focus on visual tracking
of the parts as they are moved around in the 3-dimensional
workspace, hereby referred to as 3D tracking. In this way,
there is no restriction on the assembly form, meaning that
any feasible 3D construction can be tracked.

We present a method of assembly supervision through
3D tracking using a depth sensor. Such sensors provide
both color and depth streams (RGB-D) and are generally
preferred for 3D tracking over planar color-only cameras,
because the additional depth channel contains much richer
spatial information. The parts are tracked in real-time using
an algorithm consisting of two stages: the first one performs
tracking-by-detection on the RGB stream, and the second
uses the resulting 2D position estimates in conjunction with
the depth stream to infer the six degrees-of-freedom (DoF) of
the assembly parts poses. This information is used to identify
correct and incorrect connections, and ultimately to control
the robot’s feedback, in the form of verbal instructions,
pointing gestures and head movements. The outline of the
overall system can be seen in Fig. 1.

As such, the contributions of this paper are three-fold.
Firstly, we propose an efficient and robust approach to
tracking multiple interacting objects from an RGB-D stream,
which, unlike previously proposed methods, can recover
from temporary failures without requiring reinitialization,
while at the same time dealing with full occlusions. Secondly,
we demonstrate how the developed 3D tracking algorithm
can be used to effectively estimate the state of an assembly
task in real-time. Finally, we conduct an evaluation with
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a number of children, verifying that when using a fully
autonomous humanoid robot to supervise the process, based
on the estimated assembly state, the task can become more
interesting and educational.

This paper is organized as follows. In Section II we
examine related works in both assembly guidance and 3D
tracking. In Section III we explain the problem of assembly
understanding and the notation used in this work. In Section
IV we describe the two-stage tracking algorithm that we
used. In Section V we demonstrate a use case of the
developed system in which a robot interacts with a child,
and consequently we evaluate it. Finally, in Section VI we
present our conclusions.

II. RELATED WORK

A. Assembly Assistance

A number of previous works have studied human-robot
collaboration in an assembly setting. While some of these
examined how a human could teach a task to a robot
[1], [2], [3], we deal with the inverse problem, where the
robot is the supervisor. In [4] a robot explained to a child
how to construct a puzzle, with the aim of sustaining the
child’s attention for a longer duration than if an adult was
present instead. Mechanisms with which robots can improve
performance in collaborative actions were explored in [5],
through experimentation on assembly task guidance.

Works on automated assembly guidance that used forms
of feedback other than robots, such as augmented reality, are
also of interest here. Earlier research in this area relied solely
on color image streams, to identify and track various objects
related to the assembly. For his PhD thesis [6], Molineros
built an automated assembly assistant, which tracked the
assembly process after placing fiducial markers on each
component. While this facilitates the tracking problem, it is
not always practical. In a more recent work [7], the authors
proposed a method of assisting the assembly of a planar
puzzle built of pentomino pieces. The parts were recognized
using a curve matching technique [8].

With the advent and popularization of depth sensors in
recent years, certain implemented systems incorporate depth
information when supervising the assembly. Under the as-
sumption that the parts shapes will be rectangular, it can be
beneficial to consider the virtual workspace as a lattice. In
[9], the assembly parts consisted of Duplo® blocks, while
[10] dealt with LEGO® bricks. In both cases, the space was
voxelized according to the dimensions of the blocks, and the
assembly model was thought to reside within this voxelized
space. The assembly state was derived by checking which
voxels have been filled.

In contrast to such works, we focused on developing a
method that is functional for a wide range of part shapes,
so long as they are non-deformable. We chose to track the
6-DoF poses of all the parts, and to check the assembly’s
connections based on the parts’ relative positions. A similar
idea, albeit for augmented reality, was presented in [11],
where the parts were identified using 3D feature descriptors
and tracked with the Iterative Closest Point (ICP) algorithm

[12]. However, as noted in the article, the system was not
robust in occluded environments, and at the time of writing
had been tested on assemblies of only two parts. Occlusion
handling, in particular, is an essential property for trackers
in assembly supervision, because the parts are often covered
by one another or by the users hands.

B. 3D Object Tracking

With respect to model-based 3D tracking, we can generally
divide most related work into three categories. The first
category treats the problem as one of energy minimization,
where the energy function depends on the discrepancy be-
tween the observation and the estimate, and optionally on
other terms that enforce real-world constraints. The second
group includes learning-based methods that employ machine
learning techniques to estimate the unknown variables. The
third category uses Recursive Bayesian Estimation to infer
the objects’ poses, given a series of measurements taken from
the images. Here, we examine works that use depth or RBG-
D data and not those that operate solely on color images.

Belonging to the first group, the ICP algorithm [12], or
one of its many variants, can be used to match a mesh
model of an object to the point cloud derived from a depth
image. In such cases, the energy function is composed of
a set of point-to-point or point-to-plane distances. In [13],
the error function contains two terms, one related to that
of the ICP algorithm and the other to motion constraints.
In this way, multiple objects can be tracked concurrently in
real-time, while self occlusions and mutual occlusions are
successfully handled, but not occlusions induced by hands
and other unrelated objects.

In [14], the energy function comprises two terms, with
the first referring to the discrepancy between the observed
depth image and the image rendered from the state esti-
mate, and the second aimed at penalizing intersections. The
minimization is performed by particle swarm optimization.
In [15], the energy contains terms with similar objectives,
but is formulated using the signed distance function (SDF),
thus allowing the problem to be solved by gradient descent.
Energy minimization-based algorithms generally suffer from
an inability to rediscover objects when lost, as they often get
trapped in local minima.

Learning-based 3D tracking is a relatively new approach to
the problem. Learning can be carried out on real or rendered
depth images, using random forests [16], [17], [18], or deep
convolutional neural networks [19]. A major disadvantage
of learning-based methods is the fact that they need large
amounts of training data. Ground truth for 6-DoF poses can
be difficult to obtain, while the alternative option of rendering
synthetic images requires careful planning, to ensure that
these images match those captured in the real world.

Methods that employ recursive Bayesian estimation usu-
ally extract features from the images and feed these features
to some version of a Kalman filter. In [20], shape and sil-
houette features are passed on to an unscented Kalman filter
(UKF) to determine an object’s 3D pose. In [21], spatially
and texturally important features are tracked using an optical

348



flow algorithm and then fed to an extended Kalman filter
(EKF). When operating directly on the depth image pixel
values, the measurement noise tends to be non-Gaussian,
meaning that filters such as the UKF and EKF are unsuitable.
To deal with this problem, a robustification method is used
in [22] that replaces the actual measurements with pseudo-
measurements by applying a suitable feature function. In
[23], on the other hand, the inference problem is solved using
a particle filter, which due to its non-parametric nature is
capable of operating directly on observations corrupted by
fat-tailed noise. Our approach is largely based on this work,
but (a) allows us to incorporate color information into the
process model and (b) better handles multiple objects.

III. PROBLEM DESCRIPTION AND NOTATION

In order to understand the state of an assembly, it can be
helpful to break it down into a series of single connections
between parts. A connection is essentially a restriction on the
relative movement between its corresponding parts, and can
thus be described by a necessary condition imposed upon the
parts’ relative pose. In the general case, this condition can
reduce the degrees of freedom by a number between one and
six. In this work we only considered rigid connections, ie.
those that reduce the number by six. Therefore, a connection
can be defined by a required relative pose between its parts.
Thus, if we know the 6-DoF poses of all the parts involved
in the assembly, we can easily estimate the state of each
connection, and, by extension, of the entire assembly.

Before describing the proposed method of 3D tracking, we
explain the notation used in this work. The 3-dimensional
vectors pk and θk are used to represent the position and
orientation (in Euler angle form) of an object k respectively,
while rk = (pk,θk) denotes its 6-DoF pose. With Rk we
refer to the rotation matrix equivalent to θk. The vector vk
denotes the velocity (linear and angular) of the object. The
previous variables, when lacking the superscript k, denote
the concatenation of all objects’ respective variables, eg. p
denotes the concatenation of all object positions, θ all object
orientations etc. Regarding the data streams, the color image
is denoted by Ic, while the depth values are contained in
the vector z. The superscript i, when used, refers to a single
pixel. For all variables, the subscript t refers to the time step.

Let c = (c1, c2, . . . , cNc) denote a binary vector of length
Nc, where Nc is the number of connections that make up the
assembly, with each element cm signifying whether a certain
connection, indexed by m, has been completed or not. For
any one of the assembly connections m between two parts
km1 and km2, we use ∆pm,e = (Rkm1)T (pkm2 −pkm1) and
∆p′

m,e = (Rkm2)T (pkm1 −pkm2) for the estimated relative
position of km2 to km1 and of km1 to km2 respectively, while
∆pm,d and ∆p′

m,d denote the corresponding desired relative
positions.

The probability of a connection being established, given
the poses of the assembly parts, is taken to be

p(cm = 1|r) = 1

2
d(∆pm,d,∆pm,e) +

1

2
d(∆p′

m,d,∆p′
m,e)

(1)

where

d(p1, p2) = min

{
1,max

{
0,

∥p1 − p2∥ − β)

α− β

}}
(2)

is a truncated affine transformation of the Euclidean distance
between two vectors p1 and p2. The parameter α controls the
allowed margin of difference between the two vectors, while
β is the largest distance at which to consider a connection
possible. We chose α = 4cm and β = 8cm. Therefore,
through (1) we can estimate the assembly state, given the
assembly part pose estimates that result from the tracker
described in the next section.

IV. 3D TRACKING

The objective of 3-dimensional visual tracking is to con-
tinually estimate the pose of one or more objects in a 3D
space, given a stream of images depicting the objects. As the
objects’ paths are continuous, the previous pose estimates are
combined with the latest color and depth images in order to
produce the newest estimate, thus differentiating the problem
from object detection. If we only use the latest estimate, then
the tracking problem involves the estimation of

E
[
p(rkt |rt−1, Ict, zt)

]
(3)

where p(.) denotes a probability density function and E[p(.)]
its expected value. In other words, we wish to calculate the
expected value of each pose probability distribution, given
the previous pose estimates and latest images.

In this work, we split the problem of 3D tracking
into two tasks. The first is a 2-dimensional tracking-by-
detection problem using solely the RGB stream. This is
well-researched and can be performed effectively with little
computational cost, using a number of different methods. The
second task involves inferring the objects’ 3D poses from
the depth stream, using a particle filter. This is facilitated
by incorporating the 2D tracker output into the algorithm,
as explained in section IV-B. The proposed solution results
in a two-stage tracker, that is both efficient and robust to
rapid movements and occlusions. The idea is that while the
second stage is highly accurate, it loses track of the objects
when they move too fast. The first stage, on the other hand,
is less accurate but able to rediscover objects after temporary
failures. Thus, the overall tracking algorithm possesses the
benefits of both stages. In the following subsections we
describe the two stages in detail.

A. 1st Stage: RGB-based Tracking-by-Detection

Tracking-by-detection involves detecting some objects in
a series of images, based on a set of distinguishing features,
and then associating the detections with the objects that
are being tracked. In the general case, given a detection
algorithm that operates on an RGB image Ic, we can produce
a probability map p(ω(i) = ωk|Ic) for each object k, where
ω(i) is the class of the object visible in pixel i and ωk

is the k-th object class. Thresholding this map gives us a
set of candidate regions within which each object might be
depicted. Note that the number of detected regions for each
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object may be larger than one, if there are artifacts of similar
appearance in the image, or zero, if the object is occluded
or has left the image boundaries.

If the objects are easily distinguishable based on the
features used by the detector, then we can simply choose
the detected region with the largest area for each object.
Otherwise, we must assign the detected regions to the tracked
objects. To solve the data association problem in such cases,
we opted for an approach based on the Hungarian algorithm
[24]. Specifically, for each set of similar objects, we retain
the detected regions with the largest area. Specifically, for
a set of Ns similar objects, we retain the Nr detected
regions with the largest area. If there are enough such
regions, then Nr = Ns, otherwise all the detected regions
are retained (Nr < Ns). We then calculate the pairwise
distances of each region’s center from each object’s previous
known position. These distances represent the costs of the
assignment problem. The Hungarian algorithm matches the
regions to the objects in such a way as to minimize the total
cost. Finally, a confidence score sk is produced for each
object’s estimate:

sk =
Ak

Ak +
∑

j A
′
j

(4)

where Ak is the object’s respective region area, and A′
j are

the areas of the detected regions that don’t correspond to any
object (background artifacts, noise, etc.).

In the experiments of Section V we used colored bricks,
for which a simple color thresholding sufficed. Therefore,
the detector simply produced a value of 1 over the pixels
whose HSV color values lay within a specified range and
0 otherwise. Note, however, that a wide range of more
complex detectors could potentially be used, depending on
the difficulty of the scene, provided they are capable of real-
time performance.

B. 2nd Stage: Depth-based 3D Tracker

For the depth-based tracking algorithm we chose to follow
the method described in [23], because it is efficient, capable
of running in real-time, and can deal with occlusions, both
partial and complete.

We made a few alterations to the algorithm, in order to
better deal with multiple connecting objects. Namely,

• we introduced a collision penalization factor to reduce
pose intersections.

• we modified the input variable to allow the exploitation
of the color tracker estimates of Section IV-A.

• we imposed connection constraints on the pose esti-
mates when the connections appear likely, to reduce
the number of variables that require estimation and to
stabilize the output.

The changes are described in detail below.
1) Bayes model: As shown in [23], the recursive nature of

the tracking problem allows us to use a Bayes filter, whose
hidden state corresponds to the object poses and the observed
state is the received depth image. Specifically for the hidden
state, the vector xt = (rt, vt) is used. The state is augmented

with a set of binary variables oit that model the occlusions
at each pixel i, with oit = 0 meaning an object is visible in
that pixel and oit = 1 denoting an occlusion, and an input
variable ut which is used to inject prior knowledge into the
process model.

The tracking problem is thus formulated as the inference
of the probability distribution p(xt|xt−1, ut, zt). This also
demands the estimation of p(oit|xt, ut, zt) over all pixels.
Due to the non-linear nature of the problem, optimal analytic
solutions cannot be found. Instead, a particle filter is used to
sample the desired probability distribution. As explained in
[23], the particles need only be distributed over the space of
xt, since the occlusion variables oit can be integrated out of
the equations.

In this work, we employ the same Bayesian network,
with the addition of the binary vector ct, which represents
the apparent connections between objects, as explained in
Section III. The independence assumptions between the
different variables can be seen in Fig. 2.

2) Process and observation models: The process model
of [23] is used, which includes a velocity term, a system
input, and a noise vector drawn from a Gaussian distribu-
tion, to model uncertainty. The occlusion variable transitions
are considered to be random events, described by constant
probabilities that are set offline.

The original likelihood function p(zt|rt, ot) of [23] com-
pares the measured depth values at each pixel with the
expected values produced via rendering techniques. Here, we
introduce a penalty factor, which penalizes object collision.
When two objects are close to one another, it can be difficult
for the tracker to distinguish them. Particularly for objects
of similar shape, we observed that the estimated poses often
lead to invalid configurations, with one object’s representa-
tion intersecting another’s. To avoid this, we changed the
final observation model to p∗(zt|rt, ot) = κ(rt)p(zt|rt, ot),
where κ(rt) is a factor that penalizes collisions in the pose
estimates. We used the simple function

κ(rt) =

{
0.01, if any intersections exist
1, otherwise

(5)

We found that such a function suffices to reduce the col-

Fig. 2: Independence assumptions made by the filter. The box is a plate
which represents all I pixels. Figure modified from [23], with the addition
of the connection variables ct, shown in blue.
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lisions between relatively simple shapes. A question for
future work is how this penalization could be improved for
more complicated object forms, while maintaining a low
computational cost.

3) Input: In Section IV-A we provided a method of
producing crude position estimates on the image plane for
each object k. Using these estimates, coupled with the depth
values at the respective pixels, we can calculate the corre-
sponding 3D coordinates Pk

t though the camera’s inverse
perspective mapping. These coordinates are then used to
form the object’s input vector ut, as follows

uk
t = (Pk

t − pk
t−1) · sk (6)

Here sk is the confidence score of the k-th object’s 2D
position estimate (equation (4)).

Effectively, the input acts as a correcting force on the
position estimates, pushing them closer to those provided
by the first stage of the tracker. Having more reliable
2D estimates means the control input will have a greater
influence on the particles. If an object was undetectable in
the first stage, then sk = 0 and the input will have no effect.

4) Connections: Since our goal is to recognize connec-
tions between the tracked parts, we found it beneficial to
enforce connection constraints upon the pose estimates when
the respective connections appear likely enough. In doing so,
we reduce the number of pose variables that need to be esti-
mated, thus achieving a smoother and more accurate output.
The connections that define the assembly task are defined
offline and known to the system at runtime. Therefore, we
have a finite and rather small set of connections which may
be enforced at any time.

In Fig. 2 we introduced the binary vector ct which encodes
the connections state at time t. Specifically, each element
cm,t describes whether or not the m-th connection has
been established. As shown, ct depends on the current state
estimate and influences the next estimate.

From the previous time step we can compute a set of
probabilities p(cm,t|rt−1) from equation (1). Each connec-
tion is enforced on a fraction of the total N particle estimates,
proportionate to the connection’s previous probability. What
this means is that the connected objects will be represented
as a single object by the chosen particles. In this manner, we
approximate the marginalization of the connection variables.
We found that using a cap of ∼ 60% of the total particles
achieved the desired results.

5) Algorithm: Having formulated the process and obser-
vation models, the algorithm of [23] is used to produce
the object poses. While not stated in the article, the code
provided by the authors allows their algorithm to be extended
to multiple objects, by dividing the samples into blocks,
applying the transition model to each object sequentially and
re-sampling for each block, if necessary. In this way, the
high-dimensional state can be estimated accurately, despite
the limited number of particles.

The parts’ initial poses are determined as follows. The
tabletop is detected in the depth image by taking the largest
smooth area. A least-squares approach is used to find the

Rect. 1
Rect. 2

Square

Fig. 3: Three structures used in the assembly experiments.

plane that best fits the points belonging to the detected area.
Thus, the point cloud can be filtered to exclude any points
below the detected plane. The remaining points are then
clustered using the DBSCAN algorithm [25], so each cluster
of points belongs to a different part. Using the estimated
positions given by the 1st stage of the tracker (Section IV-
A), the part representations are positioned in the center of
their corresponding point clusters. A set of random rotations
is produced, and each rotation is applied to the parts before
performing the ICP algorithm to refine the poses. For each
object, we choose the best final fit over all rotations in the
random set.

C. A Word on Combining Modalities

As explained previously, we chose to combine the depth
and color data by infusing the detected pixel estimates into
the process model of the particle filter. This idea of treating
certain data as system input instead of actual measurements
can be found in other works, particularly in those using
Inertial Measurement Unit (IMU) data to estimate the state
of unmanned vehicles, eg. in [26]. Other options considered
here were (i) to incorporate the color-based information in
the filter’s update stage by changing the observation model
accordingly, or (ii) to use two independent trackers whose
results are then weakly fused to produce the final estimates.

The problem with (i) is that when an object is lost, the
particles will remain centered around an invalid point in
the search space and therefore the tracker will not be able
to rediscover the object. Method (ii) also suffers from the
same issue, while at the same time it ignores the correlation
between the two modalities, in effect solving two problems
as though they were independent of one another. On the other
hand, our approach alleviates the need for re-initialization,
and provides an inherent robustness when either one of the
two stages fails. Also note that the system’s modularity
allows us to easily replace one of the two subcomponents
with a more complex alternative, if necessary.

V. EXPERIMENTS AND RESULTS

Having established the core tracking algorithm, we now
demonstrate how this can be employed towards our initial
goal of robot-to-child assembly guidance. We first illustrate
the advantages of our tracking algorithm over other methods
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proposed in the literature, and then describe the setup used
and evaluate the developed system’s overall performance.

A. Tracking Evaluation

In Section II we provided a non-exhaustive list of recent
works focused on 3D tracking algorithms. To the best of
our knowledge, there has yet to have been an extensive
comparative study of such algorithms, making it difficult
to identify a single state-of-the-art method. This is further
complicated by the fact that each algorithm is designed for a
different purpose, depending on the shape, texture and sym-
metry of the objects, the expected level of occlusion and the
processing rate and scalability requirements. Nevertheless,
we chose to compare our proposed algorithm against the SDF
tracker of [15], due to its accuracy and availability of code.
Other methods may produce similar or better results, but we
expect most of them to exhibit the same pitfalls as the SDF
tracker, which we show below. A more thorough comparison
of different trackers across multiple datasets would be an
interesting topic for future research.

Since obtaining ground truth for 6-DoF tracking is difficult
without the use of intrusive means such as fiducial markers,
we conducted a similar experiment to one of those proposed
in [15], where the objects are placed in a fixed configuration
while the camera is moved around. Two of the bricks
shown in Fig. 3, one blue and one green, were placed on
a table at a small distance (∼ 10cm) from one another.
In order to demonstrate our trackers robustness, we also
placed an obstacle on the table, to introduce both partial
and full occlusions at times. We also moved the camera at
varying speeds, with sudden jolts equivalent to rapid object
movements in a real-world setting. If the tracking is accurate,
the estimated distance between the two bricks should ideally
remain steady for the duration of the experiment.

The results are shown in Fig. 4. We plot the absolute
difference between the estimated distance and the ground
truth for both trackers, across two different runs. While
the SDF tracker is initially more accurate, it fails against
rapid movements and full occlusions. The proposed method,
on the other hand, retains a relatively low output error
under such conditions. Therefore, at the price of slightly
reduced tracking accuracy, the algorithm is very robust and
is able to recover from temporary failures, without the need
for reinitialization techniques. Note that for fairness, both
algorithms were run on a single CPU core, and the image
data were fed to the trackers in real-time.

B. Assembly Guidance Setup

The chosen structures consisted of up to six 3D printed
bricks which could be connected to one another: two long
blue bricks, two medium-length green bricks and two shorter
red bricks. The assemblies requested of the child were
two rectangular structures and one square, as shown in
Fig. 3. For the rectangles, three connections needed to be
completed (whereby the fourth connection was established
automatically), while the square required five connections.

Fig. 4: Comparison of the distance error between two objects across two
different runs (top and bottom), estimated by the proposed algorithm (red)
and the SDF tracker (blue) of [15]. The yellow region signifies a full
occlusion of an object, while the green regions mark camera jolts. The
blue and red arrows show the points where the objects were lost. Note that
the blue curve remains out of sight from the points where the objects are
lost, meaning that the tracker never recovers.

The bricks were placed on a table in front of a Microsoft
Kinect device. A Nao robot [27] was positioned to the side
of the table, facing the assembly parts. The child sat in front
of the table facing the Kinect device, ready to manipulate
the bricks as he/she wished. The setup is shown in Fig. 5(a).

The set of desired connections were predefined, with
each one described by a necessary relative pose between
the two corresponding parts. A discrete number of wrong
connections were also considered, such as having the two
green bricks together or at a wrong angle. The tracking
algorithm described in Section IV was used to determine
the brick configuration in each new frame. Equation (1) was
used to check which connections had been established. Since
the same-colored bricks were identical in form, they could
be used interchangeably in the task. For this reason, care was
taken to check all feasible combinations for each connection.

Based on the assembly state, the system then chose from a
list of responses to aid the child towards their final goal. The
chosen response was carried out by the robot, and aside from
verbal instructions, also included pointing gestures and head
movements, to make the messages clearer. There were three
types of responses available: explanatory, congratulatory and
corrective. The former were used when introducing the task,
when describing each individual step and when the child
didn’t complete the last given instruction in a given time.
The congratulatory messages were given after each correct
action, while the corrective ones were given when a mistake
was identified.

C. Experimental procedure

The setup was placed in a Greek primary school, where
a total of 21 children, aged 9-10, were invited to interact
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(a)

(b) (c)

(d) (e)

Fig. 5: Setup (a) and four snapshots (b)-(e) taken from the brick assembly experiments, showing (b) a correct connection that was successfully recognized,
(c) an incorrect action successfully recognized, (d) a correct action not recognized, and (e) a false alarm. (Child not shown for privacy reasons.)

with the robot. Children of this age group were chosen for
experiments, because the Greek school curriculum introduces
basic geometric concepts such as right angles and basic shape
distinctions at around this age, meaning that the tasks were
educational and relatively challenging. Six of the children
played with the robot on their own, while the remaining
children sat in groups of five. In each trial, the child or
group was presented with the setup described above, and
was guided by the robot in the creation of one or more of
the structures shown in Fig. 3.

D. Results

In Table I, a number of statistics extracted from the ex-
perimental data are presented. The ground truth timestamps
when each connection was completed were noted during each
trial. Comparing these with the estimated times, we are able
to evaluate the system’s ability to understand the assembly’s
state. The first row shows the median difference between the

Rectangles Square

(a)
Median connection time error (s) 3.42 7.02

Total connections identified within 5s (%) 50.00 43.24

Total connections identified within 20s (%) 56.25 59.46

Correct connections identified within 5s (%) 70.00 39.39

Correct connections identified within 20s (%) 80.00 57.58

(b)
Average number of mistakes/trial 0.86 0.67

Completion time (s) 48.49 110.09

TABLE I: Statistics related to the System’s accuracy (a) and the children’s
performance (b), for the two rectangles and the square of Fig. 3, averaged
over all trials.

No. Question MOP
1 Were you comfortable working with the robot? 1.81
2 Would you play with a robot again, sometime? 1.81
3 Was the robot helpful? 1.10
4 Did the robot make a lot of mistakes? 0.95
5 Did the robot behave like a human? 1.10
6 Were the robot’s instructions clear? 1.95
7 Were the tasks easy? 1.95

TABLE II: Questions and results of the questionnaire presented to the
children, following their interaction with the robot. The responses were
mapped to a scale of 0-2 (0: “no”, 1: “quite”/“maybe”, 2: “yes”), from
which the Mean Opinion Score (MOP) was calculated.

actual connection timestamps and the timestamps estimated
by the system, excluding the connections that were never
identified. The second and third rows contain the percentage
of connections that the system successfully recognized within
a time margin of 5s and 20s respectively, including both
correct connections that the child completed and mistaken
connections. In the fourth and fifth rows the success rate is
noted only for the correct connections required to complete
the assembly.

The remaining rows of Table I are related to the children’s
performance in building the requested structures. The sixth
row contains the average number of mistakes the children
made per trial, including using the wrong brick and placing
the correct brick at a wrong angle. The seventh row shows
the average time it took the children to complete each shape.

The results show that the system can correctly estimate
the assembly state to a satisfying degree, despite a multitude
of difficulties, including severe occlusions, very fast move-
ments, and temporary absences of parts from the field of
view of the camera. The rectangles were generally easier for
the system to handle, because there were fewer parts that
required tracking, but also because the red bricks were a lot
harder to track, due to their smaller size. The children made
less than one mistake per trial on average, proving that the
robot’s instructions were helpful and clear. Note that because
the children were not familiar with the bricks or the robot at
the beginning of the experiments, and as the rectangles were
requested before the square, the number of mistakes for the
rectangles was higher on average. The completion time is of
course higher for the square, though, as it is more complex.

The majority of failure cases were caused when the two
stages of the tracker disagreed on the identities of two iden-
tical bricks. For example, in Fig. 5(d) the two submodules
disagreed on which red brick was which. This led to a
large corrective input value for the particle filter, causing
erroneous position estimates. This was further complicated
by the fact that the children chose the wrong brick at times.
Other failures occurred when two bricks were close but not
connected, leading to false alarms, as shown in Fig.5(e), and
when the bricks were outside the camera’s field of view.
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Following the experiments, the children were given a
questionnaire, as shown in Table II. Each question could
be answered “yes”, “no” or by some intermediate response
(“quite”, “maybe” etc.). The answers were mapped to a scale
of 0-2, with 2 being the most positive. The mean opinion
scores are shown in the third column of Table II. The answers
demonstrate that the children viewed the method of robotic
supervision very positively, finding the interaction enjoyable
and the instructions comprehensible. The fact that they found
the tasks easy, while also realizing that the robot made a fair
number of mistakes, shows that they were able to distinguish
the robot’s mistakes from their own, and therefore were not
discouraged by the incorrect responses given by the robot.
Finally, their willingness to play with a robot again in the
future also provides an inspiring takeaway from this work.

VI. CONCLUSION

In this work we proposed a RGB-D based method of 3D
object tracking in an assembly task. The proposed method
extends the state-of-the art in two ways: by incorporating
both RGB and depth information, and by the ability to
robustly track multiple object even in the presence of sig-
nificant hand occlusions. In addition, a major contribution
of the paper is the integration of the tracking system in a
Child-Robot Interaction use case, using a Nao robot. The
system was evaluated according to the proposed educational
scenario, in which 21 children from a primary school were
guided to form geometrical shapes. The objective and sub-
jective evaluation confirms the success of our system both in
terms of performance and enjoyability. As future work we
intend to extend our system to track more complex objects,
i.e., toys, and design more demanding and educational tasks
for the use of robotic agents as supplementary material in
primary schools.
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