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Abstract

Visual relationship detection has been motivated by the “insufficiency of objects to
describe rich visual knowledge”. However, we find that training and testing on current
popular datasets may not support such statements; most approaches can be outperformed
by a naive image-agnostic baseline that fuses language and spatial features. We visualize
the errors of numerous existing detectors, to discover that most of them are caused by
the coexistence and penalization of antagonizing predicates that could describe the same
interaction. Such annotations hurt the dataset’s causality and models tend to overfit the
dataset biases, resulting in a saturation of accuracy to artificially low levels.

We construct a simple architecture and explore the effect of using language on gen-
eralization. Then, we introduce adaptive local-context-aware classifiers, that are built
on-the-fly based on the objects’ categories. To improve context awareness, we mine and
learn predicate synonyms, i.e. different predicates that could equivalently hold, and ap-
ply a distillation-like loss that forces synonyms to have similar classifiers and scores. The
last also serves as a regularizer that mitigates the dominance of the most frequent classes,
enabling zero-shot generalization. We evaluate predicate accuracy on existing and novel
test scenarios to display state-of-the-art results over prior biased baselines.

1 Introduction
Integrating visual relationships, i.e. <Subject, Predicate, Object> triplets, on a directed graph
structure has powered applications such as image retrieval [15] and generation [11, 16, 30,
43], captioning [22, 50] and visual question answering [8, 53, 59]. Scene graphs’ signifi-
cance springs from the observation that images are more than disconnected objects together
[21, 28] (Fig. 1a). Results on the most commonly used datasets [20, 28], however, show that
a baseline relying only on object categories and locations is able to outperform most state-
of-the-art methods (Fig. 1b). On the other hand, heavy use of such priors [3, 6, 57, 58, 63]
leads to saturated performance and misclassification of the same examples (Fig. 2).

A major cause for this behavior is the severe lack of causality in the datasets’ annota-
tions, due to the ambiguous and overlapping predicate meanings, which we call synonyms
(Fig. 1a). Having multiple synonyms antagonizing each other with a standard Cross-Entropy
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2 GKANATSIOS, PITSIKALIS, MARAGOS: FROM SATURATION TO ZERO-SHOT VRD

Figure 1: (a) A rich scene representation demands more than objects’ categories and loca-
tions. (b) However, an image-agnostic baseline based on such features, highlighted with
darker color on the recall (R@100) bar plots, still prevails over most methods, even in zero-
shot cases (VRD-zs). (c) If we examine per-class accuracy, we find that such models learn
to mimic the dataset’s biases: the co-existence of multiple antagonizing predicates with the
same meaning, e.g. “next to”, “near” and “siting next to” on subfigure (a), hurt causality in
favor of the most frequent predicates per local context (subject-object categories).

loss (CE) and a single ground-truth confuses networks towards the most generic and frequent
predicates (Fig. 1c), hampering potential higher-level applications [42]. To strengthen this,
we implement several models, to find that their predictions are highly correlated and often
wrongly penalized as incorrect (Sec. 2 and Fig. 2). For instance, in Fig. 2c, four models
predict “next to”, which is the most frequent synonym for the ground-truth “by”. The fact
that the annotators interchangeably use these predicates for the same data perturbs by con-
struction their semantic information. Even worse, as we further discuss in Sec. 2, in order to
answer “by”, such models have to forget “next to”.

The above observations question the validity of current evaluation protocols. Indeed, if
we merge synonyms and re-evaluate, we unfold a large gain for all tested models on three
datasets (see Sec. 2), accompanied by an increased correlation of their outputs (Fig. 2e).
Such results suggest that the true margin for improvement on current setups remains unclear.

The goal of this work is to explain the effect of language and synonyms on performance,
challenge training and testing on existing datasets and reclaim the importance of contextual
visual cues towards zero-shot generalization. We start with an analysis on common datasets
and test multiple baselines on different setups, to show that more than half of the gap between
current state-of-the-art performance and the upper bound of 100% is due to synonym pred-
icates, concealing other causes of errors. Next, we build on visual and spatial features and
study the effect of integrating linguistic attention. We boost our network’s performance by
introducing a recurrent local-context-aware classifier, that learns to build predicate templates
on-the-fly, conditioned on the object categories. To minimize competition between predicate
synonyms, we propose a loss term that pulls their classifiers closer, improving the learning of
rarer classes by considering their similarity with more common classes. We also examine a
regularization of the output space using a local-context-wise smoothed entropy-loss that dis-
tills semantic knowledge from a synonym-aware teacher. Lastly, we further contribute with
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Figure 2: (a-d) Predictions of the seven baselines of Sec. 2 on different images. Green fonts
denote correct classification, red erroneous and orange correct synonyms that are penalized
as wrong. (e) Correlation between models’ outputs for standard (above) and merged (below)
VRD annotations. Save the spatial model, the outputs of all other models, especially those
who use language, are highly correlated, inclining to misclassify the same samples.

benchmarking novel evaluation scenarios that are able to demonstrate the effectiveness of
zero-shot classifiers. Comparisons on these setups showcase clear margins of the proposed
method against other approaches, achieving a new state-of-the-art on zero-shot VRD [28]
and UnRel [32] while remaining on par with the state-of-the-art on the full set.

2 Saturation on Visual Relationship Detection Datasets
We present an analysis on VRD [28] and Visual Genome (VG) [20] to showcase and ex-
plicate the saturation of current methodologies’ results. Since there are more than 10 VG
variants used in recent literature [9], we choose the most commonly used VG200 [48] and
VrR-VG [27] that is constructed to focus on visually-relevant relations. To the best of our
knowledge, we are the first to report zero-shot detection results on VG regardless of split.

We implement four baselines that use only visual (V), linguistic (L), spatial (S) and a
combination of linguistic and spatial (LS) features. Next, we re-implement three state-of-
the-art models, ATR-Net [9], UVTransE [14] and RelDN [63], that exploit all kinds of the
aforementioned features in diverse ways. Despite the vastly different architectures, all these
models display saturation on a seemingly low threshold of 58.5% on VRD, 70.2% on VG200
and 54.5% on VrR-VG, while LS performs on par with the state-of-the-art (Table 1).

We exploit the fact that VRD and VG often have multiple predicates annotated for a
single sample to mine synonyms: if the same sample (pair of objects) is annotated with more
than one predicates, then these predicates should be synonyms given these subject and object
labels. A common example is “person has jacket” and “person wears jacket”, that are often
annotated together. We do not proceed however into saying that “has” is generally equivalent
to “wears”, respecting polysemy of predicate words in different context. This allows us to
merge labels that represent a group of synonym predicates under specific context. Note that
these labels are used exclusively for evaluation (denoted with “merged” in Tables 1 and 2):
all models are trained on standard VRD/VG annotations.

Considering predicate synonyms erases a great percentage of errors on all three datasets,
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Model VRD VG200 VrR-VG VRD zs VG200 zs VrR-VG zs
top-1 merged top-1 merged top-1 merged top-1 merged top-1 merged top-1 merged

V 52.59 77.00 64.55 89.01 45.22 69.49 24.57 36.47 23.68 31.81 25.79 36.91
L 54.28 79.55 68.64 91.58 52.54 74.43 17.12 28.77 15.44 24.14 25.31 36.42
S 47.58 70.49 52.6 83.21 25.68 57.67 25.51 36.82 19.48 27.14 17.48 28.46
LS 57.56 82.06 69.67 92.20 54.52 75.65 26.37 39.55 19.57 28.52 28.28 39.5
ATR-Net [9] 58.48 82.76 70.18 92.42 54.43 75.44 27.10 40.50 22.31 31.35 28.64 39.99
UVTransE [14] 57.25 81.50 69.05 91.72 54.50 75.43 27.48 40.58 24.69 33.37 31.21 42.32
RelDN [63] 54.47 78.90 67.11 90.67 50.91 72.28 25.26 37.41 22.58 31.32 26.03 37.37

Table 1: Evaluation of four simple and three state-of-the-art models on three datasets. Merg-
ing synonyms largely boosts results in all cases, but there are inconsistencies between full-
and zero-shot performance for most models. Notice how the simple image-agnostic base-
line LS performs on par or better than state-of-the-art detectors, questioning the necessity of
complex formulations, as well as scorning the “more than objects together” idea.

proving that the co-existence of multiple correct answers is indeed a major cause of confu-
sion. The gain is consistent across the different baselines, approximately 24% for VRD and
23% for VG200 and VrR-VG (Table 1). However, spatial features (S) benefit more than 30%
on the two VG splits, disproving previous works [62] that have doubted their importance;
they are a strong cue if we circumvent the problematic annotations.

Performance is not consistent on the zero-shot set. On the full set, language is the most
prominent feature and supplants visual features even on the “visually-relevant” VrR-VG,
disclaiming the introduction of thousands of noisy object classes as a proper way to create
an unbiased dataset. Nonetheless, things change radically on the zero-shot set, with language
contributing the minimum and visual features the maximum to generalization.

These observations motivate a rethinking of the open margin to improve on these datasets.
We find that many of the remaining errors are also due to synonyms that are not merged, since
they are never annotated together. In fact, after manually merging the most common geo-
metric predicates (e.g. “behind”, “near” etc.), we are able to mine an approximately 4% of
remaining errors on VRD, that are mostly hard and uncommon examples, e.g. in Fig. 2d, all
models misdetect the person on the road, while she is standing on the pavement next to the
road. Solving such errors is out of the scope of this paper; we instead propose an effective
method to learn synonyms during training and regularize the output space of relations so that
less frequent predicates are learned jointly with their more frequent synonyms.

3 Local Context and Synonymy
A scene graph is constructed by connecting subject and object nodes with predicate edges.
The local context of an edge P is the subject S and the object O of the relationship <S,P,O>
and can reason on the possibility of a predicate, as well its probability given that another
predicate also holds. We present our visual-spatial baselines and then contrive a context-
aware classification module and two loss terms to efficiently exploit local context. All models
are trained on standard VRD/VG annotations.

Visual-spatial architectures: Our visual-spatial baseline VS (Fig. 3) fuses subject, pred-
icate and object appearance features [28, 60], together with binary object masks [6] and
box-deltas [61, 63]. The output of this module is an encoded relationship feature vector F .

Language can now be employed as a feature [28, 62], attention mechanism [9, 49] or
classifier [9, 67]. We implement attention to show that even such implicit use of language is
able to bias the model. Our scheme attends the object areas with the respective word embed-
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Figure 3: A network encodes appearance and location features into a vector F . A GRU en-
codes <S,P,O> phrases into local-context-aware classifiers. Features and classifiers are pro-
jected into a space where relationship scores are computed as cosine similarities. Both inter-
nal and external knowledge are exploited to pull classifiers of synonym predicates closer (lin-
guistic synonymy) and boost the scores of the ground-truth’s synonyms (visual synonymy).

dings [31] and the predicate area with the concatenation of subject and object embeddings.
We add attentive and non- features element-wise and then fuse them with the spatial features
as in the first variant. It is advantageous to deeply supervise the attentive areas, specifically,
impose a predicate CE loss on the predicate area and object classification losses on the ob-
jects, forcing the attentive object features to represent the object classes, while non-attentive
features represent the visual appearance. We experimentally prove (Sec. 4) that this model,
VSA (visual-spatial-attention) tends to mimic LS, superseding other features.

Context-aware classifiers The above baselines learn a single classifier per predicate
irrespective to its local context. We build local context-aware classifiers employing a bidi-
rectional Gated Recurrent Unit (GRU) that encodes each relationship phrase <S,P,O>, with
fixed S and O, into a vector RS,O

P . We then use this vector as a classifier: we project the net-
work’s features F on it and measure their cosine similarity (Fig. 3). This is the score of the
predicate P for this pair of objects. We avoid adding bias to the output scores as this tends
to favor the most frequent predicates. We concatenate these scores into a single vector, scale
them by a factor C and then apply the CE loss [62]. Thus, with Pgt denoting the ground-truth
predicate and σ the softmax function, the classification loss:

LCE =−log(σ(C ∗F ∗RS,O
Pgt

)) (1)

Linguistic synonymy Classifiers of the same predicate learn suitable templates under
different local context. However, relying solely on the GRU to propose classifiers while su-
pervising the output using a CE loss does not guarantee the semantic similarity of predicates.
We design and apply a loss that transfers linguistic similarities to the classification space.

Annotating “ground-truth” similarities between predicates under different local context
requires a significant and very costly effort if applied on scale on multiple datasets. Instead,
our method is cheap and not bound to a specific dataset, based on the existing annotations
and external knowledge. We first count the frequency of concurrent annotations for the same
sample and then cluster relationships within a given local context w.r.t. spatial features to
count co-occurrences in the same clusters. However, we have no synonymy estimation for
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triplets that never appear on the dataset (∼99% of total). To tackle this, we use a language
model [38] to estimate the probability that each predicate holds in the given context. We
weight the internal and external ground-truth similarities into a single vector M = {MP,Pgt}.

We compute a vector of cosine similarities between the classifier of the target predicate
class Pgt and every other classifier for this local context. We then force Mean Square Error
(MSE) constraints between the computed and the ground-truth similarities (Fig. 3). Omitting
superscripts S,O for clarity, the linguistic synonymy (ls) loss obtains the form:

Lls =
1
|P|∑P

(sim(RP,RPgt )−MP,Pgt )
2 (2)

where sim the cosine similarity and |P| the total number of predicates.
Visual synonymy Due to the extremely imbalanced training distribution, standard cross-

entropy supervision tends to penalize the infrequent classes in favor of the most frequent.
As we show in Sec. 4, a weighted or smoothed cross-entropy ignores the classes’ semantics
and turns out distractive. Instead, we propose a local-context-wise smoothing inspired by
self-distillation approaches [64]. We force a Kullback-Leibler (KL) divergence loss between
the output scores sP = σ(C ∗F ∗RS,O

Pgt
) and the computed similarities mP,Pgt = sim(RP,RPgt ),

to obtain the visual synonymy (vs) loss:

Lvs = ∑
P

mP,Pgt log(mP,Pgt )−∑
P

sPlog(mP,Pgt ) (3)

The semantic similarities the classifiers share play the role of a teacher that distills knowl-
edge about “what a classifier could confuse”. Teacher and student are jointly trained, forcing
the classifiers to adapt to both visual and semantic synonyms. Denoting as LDS the weighted
sum of any deep supervision losses and λ the balancing hyperparameters, the total objective
is the weighted sum of the described entropy and synonymy losses:

L = λCELCE +λlsLls +λvsLvs +λDSLDS (4)

Implementation We use Faster-RCNN [39] to extract features from the subject, object
and predicate regions and each feature passes through a two-layer MLP. For spatial features
we use the same net as in [6, 9, 63]. The concatenation of these four feature vectors is
projected into a 128-dimensional classification space. The local-context-aware classifiers
are constructed by vectorizing <S,P,O> into word embeddings [31] and then feeding these
sequences into the GRU. The whole network is trained end-to-end by optimizing Eq. 4 with
the Adam optimizer [18]. We initiate the learning rate to 0.002 and multiply by 0.3 on
validation loss plateaus. During the first few epochs, we use a larger λls so that the classifier
learns early to propose synonyms, while we decrease its value over time. On the other hand,
λvs is increased over time, so that the model jointly classifies the synonyms proposed, instead
of pursuing a single ground-truth (λCE ). For further details and reproduction of our results,
we make our code publicly available1.

4 Experiments
Our aim is to increase zero-shot generalization with the minimum sacrifice of full set perfor-
mance. We train our models on VRD but also test them on sVG [6] and UnRel [32]. We do

1https://github.com/deeplab-ai/zs-vrd-bmvc20
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Model VRD VRD zs VRD to UnRel VRD to sVG
top-1 merged top-1 merged top-1 top-3 top-1 top-2 top-3

V 52.59 77.00 24.57 36.47 16.17 30.4 - - -
L 54.28 79.55 17.12 28.77 10.13 15.17 - - -
S 47.58 70.49 25.51 36.82 10.67 29.33 - - -
LS 57.56 82.06 26.37 39.55 10.00 21.41 - - -
ATR-Net 58.48 82.76 27.10 40.50 10.67 24.70 - - -
UVTransE 57.25 81.50 27.48 40.58 15.77 31.74 - - -
RelDN 54.47 78.90 25.26 37.41 17.11 30.94 - - -

VS 54.55 78.79 26.63 39.38 17.52 34.23 - - -
VSA 56.68 81.43 26.11 39.13 14.36 26.44 - - -
VS-LoC 57.65 82.07 28.00 41.52 18.05 32.89 52.76 64.00 71.41
VS-LoC-ls-smth 50.81 78.17 24.23 36.39 12.95 26.24 38.51 56.28 65.34
VS-LoC-ls-wght 28.71 61.7 8.48 15.67 17.92 31.48 45.11 59.32 66.61
LS-LoC-ls-vs 57.02 81.77 25.34 38.7 14.90 24.70 41.52 54.05 62.57
VS-LoC-ls-vs 57.02 81.30 26.8 39.90 18.12 34.68 50.30 64.78 72.43
VSA-LoC-ls-vs 57.78 82.15 28.77 42.20 14.43 29.26 48.50 60.05 67.95

Table 2: Results of all examined models on the different setups used in our evaluation. VS(A)-
LoC-ls-vs, the two visual-spatial(-attention) models employing local context, language syn-
onymy and visual synonymy, show clear gain and state-of-the-art results on zero-shot tasks.

not train on VG, as testing on different partitions could blend already seen training images
into the evaluation. While past approaches have adopted recall variants [3, 28, 48], accuracy
[62] and mean average precision [32], as suitable metrics to their setup, we insist on accuracy
as it assesses the recognition of each sample equally and separately. We present results for
both original and merged annotations.

We first examine if fusion with language is beneficial for a visual-spatial network (VS
versus VSA) and then we question the importance of the proposed components and losses:
LoC denotes the local-context-aware classifier, ls the linguistic and vs the visual synonymy
loss. We compare vs with other smoothed (smth) [40] and weighted (wght) [5] cross-entropy.
The results for both baselines and ablative models are summarized in Table 2, where the
advantages of the less biased visual-spatial models are obvious, especially on UnRel/sVG.

Ablation on VRD/VRD-zs: While VS performs far worse than LS on VRD full set, they
perform on par on zero-shot. VSA largely improves over VS, with a slight decrease though on
zero-shot accuracy: language pushes VSA to classify, and get biased by, the objects’ labels.

Adding LoC boosts VS’ performance by an absolute 3.1%, on par with with LS on the
full set, but with more than 1.5% higher zero-shot accuracy. Intuitively, local-context-aware
classifiers adapt to the objects’ categories and can alleviate the high intra-class variance
of predicates in different context, but, they rely on language and therefore suffer from the
bias problem. The two synonymy losses are used to regularize the use of language on the
classifier level; VS-LoC-ls-vs performs worse than VS-LoC, but, as we discuss later, it out-
performs other ablative models on the harder evaluation tasks. Interestingly, VSA-LoC-ls-vs
only slightly improves over VS-LoC-ls-vs, despite the margin between VS and VSA, further
validating that significant portion of LoC’s is due to language. Still, VSA-LoC-ls-vs achieves
a new state-of-the-art on zero-shot VRD over UVTransE and a second-best on the full set.

Table 2 also indicates that entropy weighting VS-LoC-ls-wght fails on VRD. The exam-
ples per class on VRD range from over 7000 to fewer than 10; even worse, rare classes are
mostly synonyms of more frequent classes. Thus, penalizing misclassification of the tail
forces the classifier to drastically (and incorrectly) adapt its weights to avoid predicting a
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Figure 4: Results on UnRel: (a) VS-LoC-ls-vs is able to detect rare predicates, while LS-LoC-
ls-vs perfectly predicts the most frequent classes “on” and “has”. (b) VS-LoC-ls-vs’s predic-
tions are still relevant in failure cases. (c) Classification spaces created by LS-LoC-ls-vs (up)
and VS-LoC-ls-vs (down) for ’person - chair’ and projected feature vector F (red-cross) for
the respective failure case of (b). Biased by linguistic features, LS-LoC-ls-vs projects F near
“sit on”, while VS-LoC-ls-vs projects it on the correct synonym cluster (“hold”, “carry”).

frequent synonym. On the other hand, VS-LoC-ls-smth distills information about all classes
uniformly and it is inferior to vs that learns to propose synonyms.

Lastly, our analysis proves that VRD zero-shot annotations also suffer from problems
related to synonyms and that proper learning of a rare predicate does not mean it will be
selected over a much more frequent synonym. Instead, our models tend to predict frequent
visually-grounded predicates. As qualitatively explained (Fig. 4), the on par with state-of-
the-art performance of the image-agnostic baseline is due to memorizing the dataset’s bias,
making its predictions irrelevant for data drawn from different distributions. In contrast, our
models tend to predict the correct cluster of synonyms, even if they do not rank the expected
ground-truth predicate above other valid ones.

Zero-shot evaluation on UnRel: UnRel contains of samples of very unusual triplets that
never appear on VRD and cannot be inferred using common-sense. VS-LoC-ls-vs clearly out-
performs all other variants, including the previous state-of-the-art UVTransE [14], stretching
the importance of regularizing using the synonymy losses. Note the latent inverse relation
between results on VRD and UnRel: RelDN [63] and VS-LoC-ls-wght, although significantly
outperformed by other approaches on VRD, are able to generalize on UnRel. In contrast, the
zero-shot transferability of VSA-LoC-ls-vs is not consistent on UnRel (Table 2).

We qualitatively compare VS-LoC-ls-vs to the improved LS baseline LS-LoC-ls-vs in
Fig. 4a. Not only it achieves fairly higher accuracy, but even for classes that both models fail
to predict, VS-LoC-ls-vs’s predictions are still relevant (Fig. 4b). For example, we counted
how many times a model confuses “person holding chair” with “person sitting on chair”, two
non-synonym relations, to find an error rate of approximately 14% for VS-LoC-ls-vs versus
76% for LS-LoC-ls-vs, proving that VS-LoC-ls-vs can more efficiently learn synonyms and
mitigate confusion between non-synonyms (Fig. 4c). Accuracy is still low since VRD and
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Figure 5: (a) The test distribution of sVG is similar to that of VRD, yet the classes are
different. (b) LS-LoC-ls-vs mostly detects samples of classes respecting the VRD biases
(“on”, “next to”, “behind”), while VS-LoC-ls-vs predicts both more classes and with higher
accuracy. (c) VS-LoC-ls-vs’s classification space respects the semantic similarities of pred-
icates (e.g.“on” lies closest to “hang on” and “above”, while “with”, “hold” and “have” are
neighbors), despite “woman” not being in the vocabulary of VRD.

UnRel have a different test distribution. In fact, most failure cases regard predicate synonyms
that appear more times in the training set.

Zero-shot transfer on sVG: Our context-aware classifiers are not restricted on specific
classes; we can insert new class names in the GRU to estimate a classifier on demand. We test
on sVG models trained on VRD, despite the different classes and distribution, benchmarking
a novel large-scale zero-shot scenario that extends from unseen triplets to novel object and
predicate classes as well; from 399 objects on sVG, only 90 exist on VRD.

As seen in Table 2, VS-LoC-ls-vs vastly outperforms VSA-LoC-ls-vs and LS-LoC-ls-vs
and improves over VS-LoC on higher accuracy thresholds. A qualitative analysis is also
included in Fig. 5, as well as a comparison to the image-agnostic baseline, where it is obvious
that the visual-spatial model can detect a wider variety of predicates. The supervised state-
of-the-art for sVG is ∼77% [9], indicating a significant gap, but our error-analysis attributes
many errors to VRD using “on” to describe “partOf” relations for which sVG uses “of”.

5 Related Work

Visual Relationship Detection [28] is usually approached as a two-step task of first detect-
ing objects and then classifying the predicate of each pair [9, 14, 25, 28, 54, 58, 62, 63, 67].
On a similar fashion, Scene Graph Generation [48] works, extract object proposals and
jointly classify relationships on a graph [2, 3, 4, 10, 24, 29, 37, 41, 44, 47, 48, 51, 57]. Even
when assuming a perfect object detector, such methods struggle to outperform an image-
agnostic baseline knowing only of the objects’ names and locations. Our work steps further
on predicate classification, aiming to demystify the saturation of the results.

Local context: Conditioning on object classes has been widely adopted by previous
works [3, 6, 9, 14, 25, 28, 34, 36, 55, 57, 58, 63, 65, 67]. While [9, 19, 67] construct
local-context-aware classifiers, they still learn a fixed number of predicates, contrary to our
recurrent classifiers that are created on demand for an infinite number of classes, allowing
training and testing on different datasets. On the other hand, [62] employs similarity learning
to handle a large, possibly open vocabulary, but ignores local context. The closest to ours are
[23, 33, 35] that use local-context to project relationship embeddings in a multimodal space.
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Nonetheless, they apply no similarity constraints to explicitly model synonym predicates.

Zero/Few-Shot detection [28] has emerged due to the quadratic number of relationships
with respect to the examined objects. While prior methods often provide such results [25,
26, 28, 52, 55, 58, 60, 66, 67], only a few explicitly examine zero- or few-shot solutions
[4, 7, 14, 32, 33, 45]. We extend the common zero-shot setup from unseen triplets to totally
unseen object and predicates via testing on a different dataset and distribution. A concurrent
stream of works attribute the long-tail distribution to “biased” annotations and attempt to
increase recall of tail-classes [1, 3, 42, 46]. These approaches, however, do not explain the
cause of such biases, i.e. predicate synonymy, instead they tend to overfit introduced metrics,
resulting to a large drop on standard recall/accuracy metrics [56]. Lastly, [11] also identifies
the problem of co-existing predicates, but does not propose a learnable solution.

Unbalanced classification: Our synonymy losses draw inspiration from different ar-
eas. First, to obstruct uncontrollable increase for more frequent classes, [14, 17] penalize
classifiers’ weights’ norms; instead, we apply cosine similarity learning between generated
classifiers and projected features [23, 33, 35, 62]. Next, class weighting [5, 56] and smooth-
ing [40] are commonly applied to mitigate overfitting to most frequent classes, ignoring,
however, predicate synonymy; in contrary, our proposed loss uses synonyms to smooth en-
tropy. Lastly, visual synonymy can be seen as a teacher-student imitation loss [12, 34, 55],
where the teacher proposes alternative predicates to describe a relation using internal and
external knowledge [10, 25, 34, 55, 58]. Related approaches rely on not local-context-aware
rule distillation [13], while our scheme is more reminiscent of self-distillation [64], using
learned language synonymy to guide visual classification.

6 Conclusions

Penalizing co-existing synonym predicates renders visual relationship detection on existing
datasets an ill-posed and non-causal problem. Models that employ language on the feature
level are cursed to mimic the dataset’s distribution, leading to saturated performance. We
propose local-context-aware classifiers and synonymy losses, to adaptively classify predi-
cates under different object context while respecting the semantic similarity of predicates.
Our losses can effectively regularize the output space and amplify zero-shot generalization
on extreme setups, such as transferring predictions between different datasets, achieving
state-of-the-art results with minimal decrease on full set performance. Lastly, our analysis
showcases the remaining margin for improvement on current datasets, refocusing generation
of structured image representations around a new direction.
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