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Abstract. The therapy of patients with psychotic disorders (i.e., bipolar
disorder and schizophrenia) could benefit from the constant monitoring
of their physiological and motor parameters. In this paper, we present
an innovative and advanced cloud based platform that facilitates the ef-
fective monitoring of such patients. A commodity smartwatch is used
for biosignal and motion data collection at a 24/7 basis. The paper de-
scribes the technical details of the implemented application both on the
smartwatch and the cloud server side. Technical challenges regarding the
upload, the storage and the battery constraints of the smartwatch are
also discussed, along with the initial results regarding data visualization
and processing.

Keywords: Healthcare platforms · Biosignal collection · Patient moni-
toring · Psychotic disorders · Motion analysis

1 Introduction

A key issue in the therapy of patients with psychotic disorders (i.e., bipolar
disorder and schizophrenia) is the ability to constant monitor their physiolog-
ical and mental status, even 24/7 if that is possible. In this research work, we
present an innovative and advanced computer-based platform that facilitates
the e↵ective monitoring and can support the relapse prevention in such pa-
tients. This research work is done within the e-Prevention research and develop-
ment project that is coordinated by the National Technical University of Athens
(https://eprevention.gr/) and it is co-funded by the European Commission and
Greek National funds.

The innovative key o↵erings of the envisioned system, are as follows: 1) long-
term continuous recordings of biometric signals and motion data through simple
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Fig. 1: The overall architecture of the proposed system.

wearable sensors (i.e., smartwatch), 2) a portable device (tablet) installed in
the patient’s residence, which records short-term audio-visual videos of the pa-
tient while communicating with the doctor; and by using a↵ective computing
methodologies is able to understand the emotional status of the patient, and
3) automatic and systematic storing and management of the captured data in
a Cloud Infrastructure. The stored data are then processed through machine
learning and signal processing techniques in order to detect changes and pat-
terns, to facilitate the prediction of clinical symptoms and side e↵ects of the
patient’s medication.

The final user of the platform, who is the attending physician, is able to
continuously monitor and optionally also annotate the data and receive infor-
mation about the patient’s daily mental and physiological status by observing
the data from the wearable sensors and the emotion analysis of the short videos.
Additionally, the computational intelligence algorithms incorporated in the plat-
form enable big data processing and statistical analysis and prediction of salient
events regarding the patient’s daily routine along with the corresponding vi-
sualizations. The overall architecture of the proposed e-Prevention system is
illustrated in Fig. 1.

2 Related Work

The evolution and rapid dissemination of mobile and wearable consumer tech-
nology, such as smartwatches and fitness trackers, has created unique oppor-
tunities for personalized data collection in an unobtrusive and even a↵ordable
way. Furthermore, the enormous technological advances have enabled the reliable
recording and quantification of a large number of behavioral and biometric in-
dexes through their sensors [23,25]. Such sensors usually include accelerometers,
gyroscopes and heart rate monitors among others for measuring and detecting
the user’s motion/kinetic activity, sleep patterns and autonomic function [9,26],
opening this way the possibility for non-intrusive acquisition of activity data.

Over the last years, wearable technology due to the inclusion of these sensors
has in fact become more proximal to human activity, having as an eminent result
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to become increasingly acceptable even in healthcare. As early as 2006, the Insti-
tute of Medicine recognized the potential to transform mental health services by
providing more continuous and precise information on patient-specific behavior,
symptoms, and medication side e↵ects. In order to do that, novel methods are
demanded to be developed, to transform raw data into knowledge and then use
this in turn to support personalized interventions [6] so as to transform hospital-
centered healthcare practice to proactive, individualized care. Behavioral and
biometric indexes have been already used in general medicine and sports and
nowadays the evidence shows that they could be introduced into clinical psy-
chiatry [6], as well. Specifically, psychosis is a spectrum of disorders that under-
lie di↵erent etiopathogenic mechanisms acting on the Central Nervous System
(CNS), leading to common symptoms [31]. Despite extensive research over the
last 60 years in neurobiology and neurophysiology of psychotic disorders, their
cause remains unclear and reliable biometric indexes for the diagnosis and pre-
diction of the course of the psychotic symptomatology have not yet been found.
Based on the fact that the process of psychosis is continuous and relapse is a
“biological” process that evolves over time [13, 21, 32], it would be expected to
observe changes in such indexes that are related and likely precede the onset
and/or worsening of psychotic conditions. To mention a few, some of the typical
early warning signs of mental illnesses include parkinsonian type symptoms, i.e.,
rigidity, tremor, jerking arm movements, or involuntary movements of the limps,
awkward gait, unusual gestures or postures, decreased physical activity and so-
cial interactions, abnormal sleep patterns [1, 5, 20]. The continuous monitoring
assessed through such wearables, opens the way for more precise and personalized
digital interventions, and complement by enabling detection of early signs of ill-
ness relapse, medication adherence or even treatment e�cacy and thus may help
increase the number of positive clinical outcomes in mental healthcare [10, 28].

Major research areas in psychiatry [7, 8, 17, 22] have suggested employing
technological advancement for accurate and continuous monitoring of patients
to reduce the impact of mental illness on a patient’s daily activities, for early
diagnosis and prevention of psychotic relapses so as to increase the e↵ectiveness
of treatments. For instance, sensor technology, has been used in order to un-
derstand patterns of daily behavior that may be indicative of trends or changes
in factors related to mental health, including sleep, mood, and stress [15, 24],
or to characterize a diverse array of psychopathology, from schizophrenia and
depression to general mental health [11]. In [30] a combination of accelerometer
and location sensors could detect relapse in depressive symptoms before patients
reported such changes. It has also been found that such sensor technology could
predict changes in a↵ect and behavior (for a review, please see [15]).

3 System Architecture

The availability of commodity consumer devices (i.e., smartwatches) has eased
motion data collection but in the context of the e-Prevention project the require-
ment to collect and transmit constantly large amounts of raw biosignal data did
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not fit the normal use of available consumer devices. We evaluated a number of
available devices and selected the Samsung Gear S3 Frontier as the user data col-
lection device. Compared to other smartwatches that were tested, the Samsung
Gear has the ability to store and send data from acceleration, angular velocity
and pulse sensors, providing also the heartbeat interval period value (R-R inter-
val), while it has a large storage capacity (4 GB) capable of storing data for a few
days and a WiFi interface removing the need for a smartphone for connectivity.

In addition, the smartwatch has the ability to run specific applications to
collect data and upload them to a server. An application was developed in the
Tizen Studio environment using technologies to implement Tizen applications
(Tizen Hybrid Application) [2]. Hybrid Application applications consist of sec-
tions implemented either with native C code to achieve e�cient operation or
with javascript code to implement interfaces with available Tizen Advanced UI
(TAU) libraries. The application implements smartwatch data collection func-
tions and transmission to a cloud infrastructure. Due to the large volume of data
produced, various compression techniques without loss of information were con-
sidered taking into account the limited computational and energy resources of
the smartwatch. Analytics were also incorporated to gather critical smartwatch
operating parameters such as power levels, free storage and network availability.

3.1 Architecture of the smartwatch application

The architecture of the smartwatch application is illustrated in Fig. 2 and con-
sists of the following modules:

1. The Sensor Service module that interacts with the smartwatch sensors to
collect data and store them temporarily on the device. Due to performance
requirements it is implemented as a Tizen native service.

2. The Data Transmission Module (Network Service) that compresses and trans-
fers the data to the server; also implemented as a Tizen native service.

3. The Control Service that coordinates the data collection and transmits units
taking into account the state of the internet connection and the smartwatch
energy status. It also aggregates the smartwatch operating parameters (an-
alytics) for sending to the server.

4. The Tizen Web App interface that provides the user with basic information
on the functionality of the application. The implementation utilizes advanced
web design technologies based on TAU wearable interface libraries.

3.2 Biosignal data collection and energy consumption of smartwatch

The sensor data are provided by the Tizen operating system in various ways
dependent on the characteristics of the measured parameters. Extensive testing
during the pilot development of the system leaded to the optimum data sampling
rate in relation to the optimum time between successive battery charges.

Table 1 shows the sampling frequencies that were selected according to the
requirements of the project’s medical team to ensure continuous recordings be-
tween charges of approximately 24 hours.
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Fig. 2: Smartwatch application architecture.

Table 1: Biosignal collection parameters.
Data Parameter/hr Sampling frequency Data volume

Linear Acceleration 20 Hz ca. 7 MB/hr
Angular Velocity 20 Hz ca. 7 MB/hr

Pulse data 5 Hz ca. 1.5 MB/hr

Step data and sleep duration are also stored as calculated by the smartwatch,
while GPS tracking was not used as it significantly increased power consumption
and reduced the time required between successive loads. The actual output data
amounts to about 300 MB/user/day, where the day of use includes approximately
22 hours of continuous recording. The data is compressed at about 100-120
MB/user/day. About 20 users require about 2.5 GB of storage per day. In total,
24 months of compressed logging require approximately 1.7 TB of storage.

3.3 Data collection module

The requirements for collecting large volumes of data from smartwatch sensors
require an appropriate software architecture based on e�cient event-driven sen-
sor management. Tizen uses an asynchronous programming interface (API) for
sensors based on function callbacks that allow data transfer when available. The
data collection module initializes the sensors required and attaches appropriate
management routines to transfer the data and store it along with a timestamp
in the smartwatch storage.

Data are organized into separate folders that contain files depending on the
sensor type as well as timing information. Each data structure corresponds to a
smartwatch usage period between two charging events. The above organization
allows smartwatch data to be cached if there is no network connection or data
upload problems on the server. Also independent storage in separate structures
reduces the risk of data loss.
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Fig. 3: Flowchart of data collection and transmission.

3.4 Data transmission module

The watch has advanced connectivity to local wireless WiFi networks but the
volume of data requires e�cient management of the data upload. The upload
process is demanding on watch resources especially concerning energy, so it only
takes place when the smartwatch is in the charging state.

Due to the high volume, the data collection module ensures e�cient storage
with minimal processing (Fig. 3). The data are stored in the smartwatch’s stor-
age in chronological order and are organized into groups corresponding to the
intervals between device charging events. The available smartwatch storage ca-
pacity (approx. 4 GB) allows continuous recording and storage of measurements
corresponding to 8 days. If the smartwatch is connected to a network, then as
described below the data are transferred to the cloud and this time is renewed.

Transmission is organized into packets and compressed with the DEFLATE
algorithm as implemented by the zlib library [3]. This library is a reliable solu-
tion with e�cient use of the limited smartwatch computing resources and it is
supported by a middleware on the node.js server platform. Running the decom-
pression processes on the server concurrently allows data to be received from
multiple smartwatches simultaneously.

3.5 Architecture of the biosignal collection server

The server uses the ‘⇠ okeanos’ national public infrastructure-as-a-service (IaaS),
see Fig. 4 for the server architecture. The application is implemented with node.js
technologies and uses the NoSQL MongoDB database. The application runs in
an isolated Docker container and is structured as follows:

1. Authentication Controller that implements system resources access policies
according to user roles.
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Fig. 4: Biosignal Collection server architecture.

2. Device Controller that implements the process of registering new devices
in the system and gathering watch information on the functionality of the
connected devices.

3. Biosignals Controller that manages the e�cient transfer of biosignal data.
4. Admin Controller that implements the system management and monitoring.
5. The WEB UI module that constitutes the interface of the administrators

with the application described in Sec. 4.1.
6. Web REST interface (REST interface) that routes REST calls from the

devices and Web UI application to the appropriate module.

4 The system in practice

4.1 Web UI for system administrators

The Administrator Web UI interface (Fig. 5) allows devices to monitor and access
downloaded data. It consists of a client subsystem implemented with front-end
responsive frameworks such as Bootstrap and Vue.js and a server subsystem
implemented with node.js. The portal features are: i) access to user log data, ii)
new device registration, iii) e-mail notification system to administrators when a
device has not uploaded data for more than 1 day, and iv) watch analytics.

The alert system uses information from the Device Controller module con-
cerning device connectivity to generate alerts to administrators. The admin-
istrator interface allows access to functionality concerning activity alerts, user
data and smartwatch analytics. It also provides access to data collected from
the accompanying Android application used to collect activity data, which are
manually annotated by the users.

4.2 Data management

As mentioned above, for e�cient use of limited smartwatch computing resources,
data is stored as provided by the available sensors. Motion and pulse tracking
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Fig. 5: Administrator Web UI.

sensors produce data at regular intervals depending on the sampling rate, while
step and sleep data are provided by the smartwatch operating system comprising
a very small amount of data compared to the original sensor data.

Various methodologies for storing the original sensor data were tested, but
prior to the development of the system, priority was given to recording all avail-
able information in a way that allowed for thorough processing to eliminate
errors caused by sensor operating problems and smartwatch software. In addi-
tion, in the pilot phase, the storage of the .csv format was chosen to save the
processing time so as not to limit the processing capabilities.

The sheer volume of data produced and the requirement for flexible ways of
securely accessing data create high storage requirements; thus was mitigated by
the use of proven data compression techniques. Structuring the application of the
server as a set of “micro services” for data transfer, without loss of information,
entails the transfer of biosignals from the e�cient processing and storage process.
As part of the pilot process, the data is stored either uncompressed in the form
of .csv files for immediate local processing or as compressed packets for a specific
data collection time period ready for o↵-server transfer.

The need to store a large volume of data led to the creation of a new virtual
machine in the ⇠okeanos infrastructure for the ultimate storage of the com-
pressed data, and it is available for further processing through an appropriate
sftp interface.

5 Initial data processing and results

5.1 Qualitative Analysis

We performed an exploratory data analysis (i.e., kinetic and heart rate data),
employing both traditional signal processing techniques, such as short-time anal-
ysis, as well as more sophisticated non-linear methods; i.e., multi-scale fractal
and non-linear dynamics analysis, in order to extract descriptors that e�ciently
convey behavioral and biometric information. Such non-linear descriptors have
been shown to be of importance for the modeling of a series of other 1D sig-
nals, see as for instance [16,19,27,33]). Our first preliminary results validate the
e�ciency of the features, thus they could be employed for building tools that
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Fig. 6: Visualization of user movement and heart rate data, i.e., accelaration data
(top row), gyroscope data (middle row) for all three axis (x, y, z-axis) and data
collected by the heart rate motitor (i.e., heart rate and RR-interval data).

Fig. 7: Short Time Energy of the acc and gyr signals (x-axis) for two di↵erent
states (walking and other, e.g., resting, standing), using a 10 sec sliding window.

can be used for more complex pattern extraction, i.e., behavioral changes, that
can be correlated with mental health issues or relapses. Figure 6 shows examples
of the raw data from the accelererometer (acc), gyroscope (gyr) and heart rate
monitor (hrm) collected form a control user. All data is shown for a 24 Hour
interval (where the horizontal blue line indicates when the user was asleep), so
obvious di↵erences can be observed.

Short-time energy analysis: We extracted the short-time energy, to ex-
plore di↵erences when the user is walking, sleeping, or doing other activities.
Figure 7 presents the calculated short-time energy, on the acc and gyr signals
(x-axis), showing two 10-min. intervals corresponding to the di↵erent states of
walking vs. other activity. The short-time energy is computed using a 400-sample
window applied on the signal and provides insights for the signal content. We
can observe that the short-time energy presents a multitude of peaks in the
acc and gyr data during walking, and fewer peaks with higher values of energy
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Fig. 8: Raw signals and mean and std (error bars) of the multiscale fractal di-
mension distribution of the acc (x-axis) and the hrm data for walking, other and
sleep (the MFDs are shown for 60-sec analysis windows, updated every 30 sec).

(a) Walking De = 4,
Td = 5, D2 = 1.94,
SE = 0.94

(b) Sleeping De = 8,
Td = 3, D2 =⇠ 7,
SE = 1

(c) Other De = 8,
Td = 44, D2 = 0.44,
SE = 0.01

Fig. 9: Reconstructed attractors for the three states. Each additional dimension
above 3 and up to 6 is shown using di↵erent colors. D2 is the correlation dimen-
sion, and SE the sample entropy.

when doing other activities. On the contrary, during sleep, the energy was very
low, mainly including the energy of the noise produced by the sensors, thus we
omitted showing the respective figures. Concluding, the results are intuitive, and
show good discriminative abilities for the di↵erent states.



Cloud-based platform for monitoring of patients with psychotic disorders 11

Multi-scale fractals: Regarding non-linear analysis, we explored an e�-
cient algorithm [18] that measures the short-time fractal dimension, based on
the Minkowski-Bouligand dimension [12]. Fractal dimension D is between 1 and
2 for 1D signals; and the larger the D is, the larger the amount of geometrical
fragmentation of the signal. We conducted our analysis at multiple time scales,
since real-world signals do not have the same structure over all scales [18], and
we measured the multiscale fractal dimension (MFD) profile as a descriptor for
10-min. intervals of continuous data. Figure 8 shows MFD profiles measured for
the three di↵erent states, i.e., walking, other and sleeping for the acc and the
hrm data. The various profiles show quite distinctive patterns for every state and
each type of data. Specifically, we note high fractal dimension up to D = 1.2 and
D = 1.4 for the acc data during walking and other, while it gets up to D = 1.6
for the acc-sleep data. Regarding the hrm data, the higher fractal dimension is
noticed for sleeping (up to D = 1.4), while walking is around D = 1 getting
higher and up to D = 1.3 for larger scales s.

Nonlinear dynamics and attractor reconstruction: Next, we con-
sidered that the human movements, as well as the human heart rate system,
constitute separate nonlinear dynamics systems. The two variables that must
be calculated in order to unfold the attractor is the time delay Td and the di-
mension De. The most common methods for calculating the lag Td constitute
of either selecting the first local minimum of the mutual information between
the original signal s(n) and its time-delayed version s(n + Td) or the first zero
of the autocorrelation function. The dimension De is increased until the false
neighbours vanish, in which case we consider the attractor has unfolded [4].

Figure 9 shows the reconstructed attractors for short 1-min. intervals. During
walking we observe that the reconstructed phase space exhibits a quite clear
topology, due to the fact the user performs specific movements. During sleeping,
due to the low amount of movement, the sensor noise is prevalent, with few
random movements, while during other activities the phase space is dominated
by seemingly random movements without a pattern. We generally notice that a
nonlinear dynamical systems approach could be proven to be useful for deducing
activities and other behavior throughout everyday life. The reconstruction of
the attractor is a necessary step towards computing the nonlinear dynamics
of the system. Such values are for example the correlation dimension of the
reconstructed attractor [14], and the sample entropy [29]. In Figure 9 we also
show those values; D2 is the correlation dimension and SE the sample entropy.

5.2 Quantitative Analysis

Database Description: In order to perform the quantitative analysis, we cre-
ated a small dataset by randomly sampling 10 volunteers. We then selected from
each volunteer 120 time intervals of 10-min. length, i.e., 40 intervals during which
the subject was sleeping, 40 intervals during walking/running, and 40 intervals
during other activities (rest, standing, working). The selected intervals were ran-
dom, and we only made sure that the data collected during these intervals were
valid, since in some cases, sensor malfunctions resulted in data loss, or the heart
rate monitor was unable to accurately detect the heart rate. The analysis that
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Table 2: Results on the collected data for various linear and non-linear features.
Features Acc(%) Features Acc(%)

STE 72.17 STE+CH 74.58
MFD-G 72.08 STE+MFD-G 76.92
MFD-A 74.16 STE+MFD-GA 77.66

MFD-H 60.50 STE + MFD-GAH 77.33
CH 65.30 STE + MFD-GAH+CH 77.58

follows use this dataset and attempts to identify useful cues/features, that can
be used for accurately detecting the state of a person (sleeping, walking, run-
ning), so that later on can generalize to other physiological states. It should be
finally mentioned that according to the the act for data protection a written
consent was collected for all participating users providing the motion data that
are describe and analyzed in Sec. 5.

Experimental Evaluation: In order to validate the performance of the
features explored in Sec. 5.1, we employed a Support Vector Machine (SVM)
with an RBF kernel, using 5-fold cross validation. Table 2 presents the results
for di↵erent subset combinations.

With STE we denote the statistics (mean and std) of short-time energy
analysis performed on the: 3 accelerometer (x,y,z-axis), 3 gyroscope (x,y,z-axis),
and 1 heart rate signals. By taking the mean and std of the short-time energy
calculated over each interval we have a total of 14 features for each interval.
CH denotes the correlation dimension and the sample entropy calculated by
performing delay embedding with De = 4 for the kinetic data and De = 2 for the
heart rate data. MFD-G, MFD-A, and MFD-H denote features from the multi-
scale fractal analysis of the gyroscope (x-axis), the accelerometer (x-axis), and
the heart rate, respectively. In order to reduce the number of features extracted
by the MFD analysis (900 dimensions for kinetic data and 300 for heart rate),
we perform linear sampling, picking a total of 30 points for the heart rate and
32 points for the accelerometer and gyroscope MFD analysis.

As we can see from the accuracy (%) results in Table 2, both the traditional
speech processing methods, such as the STE analysis, as well as the multi-scale
fractal analysis can be used in order to discriminate between the di↵erent states.
The same can be observed using the CH features which combined with STE,
increase the accuracy of the system. Our results show that the extracted de-
scriptors examined in this paper can provide useful insights and can be used in
order to build a tool able to assess the state of the user.

6 Conclusions

Concluding, the novelty of this work is the implementation of a cloud based
platform for the extraction of key markers and indicators that can possibly assist
the medical personnel in monitoring patients with mental disorders and predict
psychotic symptom’s relapses and adverse medicine side e↵ects. This is done
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initially by long-term recordings of biosignal and motion related indexes and
further processing. As this project evolves the collected data will be combined
with the short-time videos and their a↵ective analysis as well as with responses
of patients to standard questionnaires. Nevertheless, the results so far prove the
feasibility of our research e↵ort in the continuous collection of biometric and
motion data along with their prognostic value.
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