
SL-ReDu: Greek Sign Language Recognition for Educational
Applications. Project Description and Early Results

Gerasimos Potamianos
Dept. of Electrical & Computer Eng.

University of Thessaly
Volos, Greece

gpotam@ieee.org

Katerina Papadimitriou
Dept. of Electrical & Computer Eng.

University of Thessaly
Volos, Greece

aipapadimitriou@e-ce.uth.gr

Eleni Efthimiou
Inst. for Language & Speech Process.
Athena Research & Innovation Center

Marousi, Greece
eleni_e@athenarc.gr

Stavroula-Evita Fotinea
Inst. for Language & Speech Process.
Athena Research & Innovation Center

Marousi, Greece
evita@athenarc.gr

Galini Sapountzaki
Dept. of Special Education
University of Thessaly

Volos, Greece
gsapountz@sed.uth.gr

Petros Maragos
School of Electrical & Computer Eng.
National Technical Univ. of Athens

Athens, Greece
maragos@cs.ntua.gr

ABSTRACT
We present SL-ReDu, a recently commenced innovative project that
aims to exploit deep-learning progress to advance the state-of-the-
art in video-based automatic recognition of Greek Sign Language
(GSL), while focusing on the use-case of GSL education as a sec-
ond language. We first briefly overview the project goals, focal
areas, and timeline. We then present our initial deep learning-based
approach for GSL recognition that employs efficient visual track-
ing of the signer hands, convolutional neural networks for feature
extraction, and attention-based encoder-decoder sequence mod-
eling for sign prediction. Finally, we report experimental results
for small-vocabulary, isolated GSL recognition on the single-signer
“Polytropon” corpus. To our knowledge, this work constitutes the
first application of deep-learning techniques to GSL.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Human-
centered computing→ Accessibility technologies; • Applied
computing→ Computer-assisted instruction.

KEYWORDS
Greek sign language recognition, education, L2 language learn-
ing, hand tracking, convolutional neural network, encoder-decoder,
Polytropon corpus
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1 INTRODUCTION
European and national policies on inclusion and accessibility, as
well as the official recognition of national sign languages, have
led to rapidly increasing needs for sign language (SL) education as
second language (L2) among the general population [8]. Yet, non-
native SL education remains a cumbersome process, demanding
extensive and iterative tutor-to-learner feedback on a one-to-one
basis, while also suffering from a high degree of teacher subjectivity
in the evaluation of student proficiency [13, 38].

In the meantime, recent breakthroughs in the fields of computer
vision and deep learning have re-ignited interest in the automatic
recognition of SL from video [4, 5, 15, 17, 19, 21–23, 32, 33, 36, 37, 39,
43], especially given the fact that SL technology development lags
considerably that of oral speech technologies. This is also the case
for Greek SL (GSL), an under-resourced language where the so-far
employed techniques in its automatic recognition have predated
the deep-learning revolution [2, 30, 34, 40].

Motivated by the above, we have recently commenced an innova-
tive project that focuses on the video-based automatic recognition
of GSL, aiming at the education use-case. The project, referred to
as “SL-ReDu”, has as its main goal to address the need for stan-
dardized teaching and efficient self-assessment of GSL as L2, by
conducting interdisciplinary research in engineering and humani-
ties. SL-ReDu is a three-year effort, carried out in collaboration of
two Departments at the University of Thessaly (Electrical and Com-
puter Engineering, Special Education) and of the Athena Research
and Innovation Center, and it is funded by the Hellenic Foundation
for Research and Innovation.

In this paper, we present the SL-ReDu project, along with our
early GSL automatic recognition approach and results. Specifically,
in Section 2, we overview the project goals, focal areas, and timeline.
In Section 3, we describe our deep learning-based approach for
recognizing isolated signs of GSL, followed by experimental results
on the Polytropon GSL corpus [11] that are reported in Section 4.
Finally, in Section 5, we conclude the paper and discuss future plans.
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2 PROJECT DESCRIPTION
The SL-ReDu project is driven by three main goals that are detailed
in Section 2.1, with its work focusing in the areas discussed in
Section 2.2, and planned according to the timeline of Section 2.3.

2.1 Goals
The first goal of SL-ReDu is the development of innovative computer
vision and machine learning algorithms for video-based automatic
recognition of SL, considerably advancing the current state-of-the-
art in the field. To date, the task remains challenging, due to the
number of articulators involved in SL production with complex
and fine motion, the scarcity of data resources covering large sign-
ing vocabularies and signer variability, and the noisy nature of
visual environments in practical scenarios. Further, few only deep-
learning techniques have been considered in the SL recognition
literature [4, 5, 15, 17, 22, 32, 33, 36, 37, 39, 43], while all GSL recog-
nition systems follow the traditional separate hand-crafted feature
and classifier design paradigm [2, 30, 34, 40]. SL-ReDu aims to ad-
dress this lag by exploiting recent deep-learning breakthroughs to
the problem of GSL recognition based on 2D and 3D video data, ex-
ploiting suitable annotated corpora [11, 25] and language model, as
well as collecting new data, while also expanding its recognition tar-
get to a large set of both isolated signs and continuous GSL phrases,
in excess of 500 in each case, as well as to GSL finger-spelling.

The second project goal concerns the integration of the devel-
oped GSL recognizer into a prototype demonstrator system, fo-
cusing on the education use-case, namely that of L2 learning of
GSL. Specifically, the system will support the educational process
in two distinct pillars: (a) self-monitoring of productive learning
by individual learners, and (b) objective evaluation of learning per-
formance across multiple learners by a GSL tutor (see also Fig. 1).
Concerning the former, the demonstrator is envisaged to provide
the learner with a tireless observer and self-monitoring feedback
until specific learning objectives are achieved, thus overcoming the
bottleneck of requiring frequent SL tutor physical presence.

Concerning the latter, the developed SL-ReDu system will be
used in evaluating student GSL performance at the Department of
Special Education of the University of Thessaly in the context of
learning and testing for the compulsory course “Introduction to
Greek Sign Language” of the curriculum, thus constituting the third
goal of the project. SL-ReDu aspires to greatly improve testing cred-
ibility and consistency, while significantly reducing the tutor’s load.
It should be noted that the application of SL recognition to educa-
tion has previously involved only experimentation with a restricted
number of SL articulators for a limited set of lexemes [27], while
SL-ReDu is planned to address complete productions of linguistic
units.

2.2 Main Focus Areas
The first area of SL-ReDu research activities concerns visual track-
ing and feature extraction, aiming at the detection and tracking of
the visual articulators in SL video (both manual and non-manual),
as well as the extraction of corresponding visual features, thus
providing necessary input to the SL recognizer. Specifically for the
former, both light-weight schemes and more computationally de-
manding approaches will be explored for tracking the signer hands,

Figure 1: Schematic illustrating the SL-ReDu envisaged ben-
efits to self-monitoring and objective evaluation for non-
native GSL learning over the conventional approach.

arms, upper body, face, and facial features (primarily, the mouth,
cheeks, eyes, and eyebrows). Then, traditional shape-based and/or
appearance representations of the articulators will be investigated,
as well as deep-learning representations employing convolutional
neural networks (CNNs) and deep autoencoders.

Based on the above, appropriate classifiers for GSL recognition
will be explored, both at the lower level of articulators and GSL sub-
units, as well as at a higher level based on the lower-level results and
a language model. Articulatory actions (e.g. specific handshapes,
mouthing patterns, etc.) will be recognized and the results fused,
thus being able to recognize complex signs both in isolated and
continuous signing. Various approaches will be investigated for
this purpose, including hidden Markov models and deep learning-
based techniques. GSL recognition results will be accompanied by
confidence scores to assist in the education use-case, while signer
adaptation techniques will also be considered.

The aforementioned activities will be supported by training data
and a language model. In particular, existing GSL data resources will
be harvested, as for example in this paper, where the Polytropon
corpus [11] is used. Further, a new GSL dataset will be collected
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Figure 2: General architecture of the proposed three-stage system for isolated sign recognition from GSL video data.

including multiple signers, a large number of lemmas and continu-
ous phrases (in excess of 500 in each case), as well as finger-spelled
signing, relevant to the SL-ReDu use-case. The effort will be accom-
panied by the organization of the relevant evaluation GSL material
and providing the corresponding language model.

In addition, an appropriate human-computer interface will be
designed, integrating multimodal and embodied communication
elements that are suitable for the L2 GSL learning task of the project.
All developed components will be integrated into the SL-ReDu pro-
totype demonstrator system, adopting a properly designed system
architecture. The system will be subsequently evaluated according
to the use-case scenarios of Section 2.1.

2.3 Timeline
SL-ReDu is a three-year project, commenced in January 2020. Its
implementation plan foresees two phases of prototype system
development and evaluation. Specifically, Phase-A of the project
will produce a demonstrator for GSL recognition of isolated signs,
finger-spelling, and numerals, adopting a relatively simple human-
computer interface to support the education use-case, and it will be
evaluated in a short one-month pilot by the end of the Summer of
2021. Phase-B of the project will incorporate lessons learned from
Phase-A, and it will involve a more advanced human-computer
interface and GSL recognition algorithms that will also allow recog-
nition of GSL continuous phrases on top of the Phase-A recognition
vocabulary. This will be finalized by late Summer of 2022 and eval-
uated in a longer, four-month evaluation campaign, allowing for
system refinement and fine-tuning.

3 SIGN LANGUAGE RECOGNITION METHOD
We next describe the proposed system for isolated sign recognition
from GSL video data, developed so far as part of our SL-ReDu
project activities. Our approach employs deep-learning techniques
and consists of three stages, namely: (i) a pre-processing pipeline
for extracting the signer hands and classifying them into left and
right; (ii) an image feature extractor for each hand that is based on
CNNs; and (iii) an attention-based encoder-decoder for the sign
prediction task. These components are schematically depicted in
Fig. 2 and are detailed next.

3.1 Hand Extraction and Type Classification
The first stage of the system adopts the pipeline of our earlier
work [28] to extract the signer hands that are visible, as well as to
classify them into left and right types (as viewed by the camera). The
approach is hybrid, utilizing both traditional techniques for efficient

detection and tracking, as well as deep learning for hand type
classification, and it is based on the assumption that the signer’s
face is visible at frontal head pose, as is the case in SL videos.

The pipeline commences with face detection by means of the
Viola-Jones algorithm [42], as well as nose region detection. The
latter is used to estimate the signer’s skin color range in the YCbCr
color space [35], driving skin-tone based segmentation to allow
detection of candidate hand regions. To address possible hand and
face overlap, motion-based Kalman filtering is employed [18]. This
step allows detection and tracking of the hands, as such are ex-
pected to be the only skin-tone moving objects in the SL video.
As a last step, the returned object bounding boxes are fed to an
AlexNet CNN [24] for final hand detection and type classification,
considering three classes of interest: left, right, and no hand. An
example of this process applied to GSL data is depicted in Fig. 3.

3.2 Handshape Feature Extraction
In order to extract features from the detected left and right hands,
the second stage of the system applies multi-layer 2D-CNNs to their
size-normalized, 224 × 224-pixel images, separately. Specifically, a
ResNet-18 network architecture with 3 × 3 convolutional kernels
and stride 2 is used [14], pre-trained on the ImageNet dataset [9]
with the mean squared error loss function. The output of the fully-
connected layer is used to yield 512-dimensional (dim) features
for each hand. These are then concatenated for the two hands,
resulting to 1,024-dim feature vectors (one per video frame), which

(a) (b) (c) (d)
Figure 3: Example of the hand detection and type classifi-
cation pipeline of [28] (first stage of the proposed system),
applied on data of the Polytropon corpus. Depicted are, left
to right: (a) video frame marked with a rectangular box en-
closing the detected face, as well as the central square of the
detected face region; (b) segmented skin region; (c) tracked
hands byKalmanfiltering (yellow rectangles depict detected
objects, red stars the predicted object positions, and blue
stars their corrected positions); (d) frame marked with rect-
angular boxes illustrating the signer’s left and right hands.
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Figure 4: Duration histograms (in video frames) of signed
numerals and other words in the Polytropon GSL corpus.

are subsequently fed to the attention-based encoder-decoder of the
third stage for sign prediction. Note that in the case of missing hand
detections, the corresponding features are set to zeros.

3.3 Sequence learning model
The task of isolated sign recognition from SL videos can be viewed
as a sequence learning problem that can be addressed by an attention-
based encoder-decoder [3]. In the typical form of such model, the
encoder receives latent-representation sequential data and outputs
a sequence of hidden states, while the decoder maps the latter to the
desired output (sign IDs). The attention mechanism performs align-
ment between the input and output, attending to the most relevant
information in the source sequence. There exist a variety of such
models in the literature, mostly recurrent neural network (RNN)
based ones. In this paper, four models are investigated, namely the:

• Attentional LSTM encoder-decoder, where a long short-term
memory (LSTM) [16] is employed as the RNN. Specifically,
a one-layer LSTM encoder-decoder is used with hidden di-
mensionality equal to 256.
• Attentional GRU encoder-decoder, where gated recurrent units
(GRUs) [6] are used. In particular, a one-layer GRU encoder-
decoder with 128 hidden units is employed.
• Attentional CNN encoder-decoder, which has the advantage
over RNNs of allowing parallelization, as CNNs do not de-
pend on previous time computations. Specifically, a multi-
step attention-based, 3-layer CNN encoder-decoder is used
with kernel width 5 and 128 hidden units, as in [29].
• Transformer encoder-decoder, a more recently introduced se-
quence learning model [41] that differs from the above by
substituting recurrent layers with multi-head attention ones,
incorporating position encoding, and applying layer nor-
malization. Here, a 4-layer transformer is employed, with 8
heads for transformer self-attention, 2048-dimension hidden
transformer feed-forward, and 512 hidden units.
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Figure 5: Sign classification error (%) of the proposed system
on the Polytropon subset of highly-occurring “other words”,
using various numbers of layers in the four sequence learn-
ing models of Section 3.3.

3.4 Implementation details
All aforementioned models were implemented in PyTorch [31], and
their training was carried out exploiting GPU acceleration.

Further, for fine-tuning the hand-type classification model of
Section 3.1, the hand dataset of [26] was employed. During its
training, stochastic gradient descent with momentum was used,
with an initial learning rate of 0.004 decayed by a factor of 0.5 and
a mini-batch of 128 images.

For fine-tuning the handshape feature extractor of Section 3.2,
the corpus of Section 4.1 was employed. For this purpose, stochastic
gradient descent with momentum was used, with an initial learning
rate of 0.001 decayed by a factor of 5 every 20 epochs. Dropout with
a rate of 0.5 was added.

For attentional RNN training, the Adam optimizer [20] was em-
ployed with initial learning rate of 0.001 decayed by a factor of 0.3.
Beam searchwas used for decodingwith beam-width 5, and dropout
was added at a rate of 0.3. The attentional CNN encoder-decoder
training was conducted using the Adagrad optimizer [10] with an
initial learning rate of 0.003, which was decreased by a factor of 0.3.
Dropout of 0.8 and beam search of width 5 were employed. Finally,
for the Transformer encoder-decoder training, the Adam optimizer
was used with an initial learning rate of 0.001 decreased by a factor
of 2.0 and dropout 0.8. Parameter initialization was carried out by
the Xavier process [12].

4 GSL RECOGNITION EXPERIMENTS
4.1 Dataset and Experimental Framework
Our experiments are conducted on the Polytropon GSL corpus [11].
This contains three repetitions of 3,600 sentences performed by a
single signer, recorded by two frontal-view cameras, a Kinect and
an RGB one. Here, the video data of the RGB camera are used, which
are available at a 25 Hz frame-rate and 848 × 480-pixel resolution.
Corpus annotations are based on ELAN [1, 7] and are provided at
both the signed sentence and signed word levels, containing labels
and time-stamps for proper nouns, verbs, adverbs, and numerals.
The corpus signed vocabulary consists of 39 unique numerals and
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Figure 6: Confusion matrix of ten “other words” for the at-
tentional CNN encoder-decoder. The horizontal axis depicts
predicted words, while the vertical one the ground truth.

2,664 other words, with their signing duration statistics varying
significantly, as also depicted in Fig. 4. Among those, words with
a sufficient number of occurrences are selected for recognition, to
allow enough data for deep-learning model training. Specifically,
two isolated small-vocabulary sign recognition tasks are built, the
first concerning ten unique numerals that appear between 20 and
140 times in the corpus (45.2 times on average) and the second 103
unique “other words” (i.e., non-numerals) that appear between 30 to
110 times (52.6 on average). These yield 422 and 5,414 video snippets
of numerals and other words, respectively, which are obtained
by “cutting” the longer video database files based on the ELAN
annotation time-stamps of the words of interest. All experiments
on the two resulting datasets of numerals and “other words” are
conducted using ten-fold cross-validation, where 80% of each fold
is allocated to training, 10% to validation, and 10% to testing.

4.2 Results
The performance of our proposed approach to GSL recognition is re-
ported in Table 1. There, the sign classification error (%) achieved by
all four sequencemodels of Section 3.3 is shown on both constructed
Polytropon subsets of Section 4.1, namely that of highly-occurring
numerals and that of “other words”. It is apparent that the best
results are achieved by the attention-based CNN encoder-decoder,
while the worst by the attentional GRU encoder-decoder. It is also

Table 1: Sign classification error (%) of the proposed isolated
GSL recognition system on the Polytropon corpus subsets of
highly-occurring numerals and otherwords (see Section 4.1),
using the four sequence learning models of Section 3.3.

Encoder-decoder model numerals other words
Attentional LSTM 11.47 11.88
Attentional GRU 18.14 17.82
Attentional CNN 11.06 10.90
Transformer 14.45 14.32

(a) (b)

Figure 7: Examples of a frame of signed words (a) “sum-
mer” and (b) “water” in Polytropon. These are frequently
confused by our model due to their similar handshapes.

interesting to note that performance is comparable for both recog-
nition tasks and consistent across the four models. Bearing in mind
that the vocabulary size of the “other words” task is an order of
magnitude larger than that of numerals (103 vs. 10), the similar
performance attained may be due to the fact that numerals have
consistently shorter durations, as shown in Fig 4.

Next, in Fig. 5, we investigate the performance of the four se-
quence models for different numbers of encoder-decoder layers. It
can be observed that the lowest errors for attentional RNNs are
achieved for one layer, which may be due to the limited data size of
Polytropon. On the contrary, the attentional CNN and transformer
methods prove less sensitive to the number of layers.

Finally, in Fig. 6, we visualize the confusion matrix for a subset
of ten “other words” selected at random. The bright yellow diag-
onal demonstrates the successful classification achieved. Among
the confusable pairs of this matrix, we depict in Fig. 7 one video
frame example of signed words in GSL for “summer” and “water”.
Obviously the signing handshapes look very similar, although their
positioning (and track), as well as their non-manual articulation dif-
fer. Since however our proposed system only encodes handshapes,
it faces difficulties in discriminating between the two signs.

5 SUMMARY AND FUTUREWORK
In this paper, we provided a summary of the SL-ReDu project that
aims to advance the automatic recognition of GSL and exploit such
in its teaching as a second language. Further, we introduced a deep
learning-based approach for isolated sign recognition of GSL, which
we successfully evaluated on small-vocabulary, single-signer data.

Moving forward, we plan to commence a large-scale data collec-
tion effort for GSL, including multiple signers, a large number of
lemmas (in excess of 500), as well as finger-spelled signing, relevant
to the curriculum of the introductory GSL class at the Department
of Special Education of the University of Thessaly. Further, we
plan to extend our proposed deep-learning GSL recognition sys-
tem, by incorporating information concerning manual articulation
positioning, as well as non-manual articulation.
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