
MAXPOLYNOMIAL DIVISION WITH APPLICATION TO NEURAL NETWORK
SIMPLIFICATION

Georgios Smyrnis1,2 Petros Maragos1,2 George Retsinas1

1School of ECE, National Technical University of Athens, 15773 Athens, Greece
2Robot Perception and Interaction Unit, Athena Research Center, 15125 Maroussi, Greece

geosmirnis@gmail.com, maragos@cs.ntua.gr, gretsinas@central.ntua.gr

ABSTRACT

In this work, we further the link between neural networks with
piecewise linear activations and tropical algebra. To that end, we in-
troduce the process of Maxpolynomial Division, a geometric method
which simulates division of polynomials in the max-plus semiring,
while highlighting its key properties and noting its connection to
neural networks. Afterwards, we generalize this method and apply
it in the context of neural network minimization, for two-layer net-
works used for binary classification problems, attempting to reduce
the size of the hidden layer before the output. A tractable method
to find an appropriate divisor and perform the division is introduced
and evaluated in the IMDB Movie Review and MNIST datasets, with
preliminary experiments demonstrating a capacity of this method to
reduce the size of the network, without major loss of performance.

Index Terms— Tropical polynomials, tropical algebra, neural
network minimization

1. INTRODUCTION

The fields of minimax algebra [1] and tropical geometry [2], which
can be used to refer to the study of either the max-plus semiring
(IR ∪ {−∞},max,+) or its dual min-plus version, are fields of
mathematics with applications in a variety of domains, such as the
analysis of dynamic systems [3], [4], [5] and optimization [6], [7].
The importance of these max-plus models (which we shall refer to as
tropical, for the rest of this work) has been further demonstrated by
recent studies [8], [9], [10], [11], which link them with the building
blocks of neural networks, in particular those with piecewise linear
activations, demonstrating a profound connection between the two.

With the above context in mind, it is apparent that further study
in the max-plus nature of these networks can help obtain insight in
their workings. Such understanding may also help in furthering ef-
forts in the simplification of large networks for a given task, the size
of which is often required during their training, but might later be
safely pruned for faster and more compact networks [12], [13], [14].

Related Work. Regarding the application of ideas from tropical
geometry to the analysis of neural networks, [9] and [10] demon-
strate that the output functions of a neural network with piecewise
linear activations can be described via polynomials in the max-plus
semiring [15], henceforth referred to as tropical polynomials or max-
polynomials. This description allows them to arrive at similar re-
sults, regarding the number of linear regions of a neural network
map, as [16]. Moreover, [8] and [11] have demonstrated the use
of morphological perceptrons, which rely on max-plus operations
instead of normal inner products with the weights of the neuron,
demonstrating particular ease when pruning such a network, while

also linking these perceptrons with maxout networks [17]. Finally,
[18] and [19] demonstrate the use of Log-Sum-Exp networks, which
are linked with Geometric Programming [20], in approximating data
as a difference of convex functions, similar to how maxpolynomials
can be used to describe the output of a neural network.

Concerning the minimization of a trained neural network, the act
of pruning an already trained, fully connected network using con-
ventional methods has long been studied [21]. Recent work has ad-
vanced further, by proposing various methods by which a network
can be pruned, and by expanding it in the context of convolutional
neural networks. In particular, in [13] pruning is done by selecting
filters with the least important output, while in [14] by stochastically
removing connections between neurons, and subsequently neurons
themselves, with both of these works showing remarkable results.

Contributions. This work advances the aforementioned study
of the connection between neural networks and tropical geome-
try, while also providing theoretical contributions by geometrically
defining an approximate method for Maxpolynomial Division, pro-
viding an algorithm for its computation and demonstrating its link
with neural networks. Note that, while the problem of factoring trop-
ical polynomials has already been studied in the one-dimensional
case [15], [22], this work presents a novel method to extend it into
multiple dimensions, in order to create an approximate representa-
tion similar to that of the division of regular polynomials. So far
only the exact case, provided it is feasible, has been studied [23].
Afterwards, this method is applied to the problem of minimizing
the hidden layer of a two-layer, fully connected network with one
output neuron, trained for a binary classification problem, in order to
demonstrate one of its possible applications, while also performing
some preliminary experiments to prove its validity. This contribution
strengthens the link between tropical algebra and neural networks,
to better understand the inner workings of the latter.

The rest of this work is structured as follows: In Section 2, we
shall define Maxpolynomial Division, and highlight its key prop-
erties. In Section 3, we link this method with neural networks
and demonstrate its application in minimizing a two-layer network,
trained for a binary classification problem. Finally, in Section 4, we
shall demonstrate the results of some initial experiments.

2. DIVISION OF TROPICAL POLYNOMIALS

In what follows, we shall provide a method to approximately di-

vide a tropical polynomial p(x) =
k

max
i=1

(
aT
i x+ bi

)
, x ∈ IRd,

by another tropical polynomial d(x) =
k

max
i=1

(
ãi

Tx+ b̃i
)

. Our

algorithm outputs two tropical polynomials q(x), r(x), which are

petros
Text Box
Proceedings of the 45th International Conference on Acoustics, Speech and Signal Processing (ICASSP-2020), May 2020.

(a)

0 1 2 3

Tropical Degree

−1.0

−0.5

0.0

0.5

1.0

1.5
C
o
effi

ci
en
t

ENewt

Newt

(b)

0 1 2 3

Tropical Degree

−1.0

−0.5

0.0

0.5

1.0

1.5

C
o
effi

ci
en
t

p(x)

d(x)

(c)

0 1 2 3

Tropical Degree

−1.0

−0.5

0.0

0.5

1.0

1.5

C
o
effi

ci
en
t

q(x)

(d)

0 1 2 3

Tropical Degree

−1.0

−0.5

0.0

0.5

1.0

1.5

C
o
effi

ci
en
t

p(x)

d(x)

(e)

0 1 2 3

Tropical Degree

−1.0

−0.5

0.0

0.5

1.0

1.5

C
o
effi

ci
en
t

q(x)

Fig. 1. (a): (E)Newton Polytope of max(3x,2x+1.5,x+1,0). (b),(c): Division by max(x+1,0), (d),(e): Division by max(x,0)

maximal (in a sense that will be later elaborated), for which:

p(x) ≥ max (q(x) + d(x), r(x)) , ∀x ∈ IRd (1)

Definition 1 ([8]). Let p(x) =
k

max
i=1

(
aT
i x+ bi

)
, x ∈ IRd be a

tropical polynomial. Its Newton Polytope Newt(p) is the convex
hull of the set slopes(p) = {ai : i = 1, 2, . . . k} of slope vectors
(tropical degrees of the terms), while its Extended Newton Polytope
ENewt(p) is the convex hull of {(ai, bi) : i = 1, 2, . . . k}.

An example in 1 dimension can be seen in Fig. 1a. It is well-
known [8], [9], [10] that a tropical polynomial p is defined as a func-
tion only by the terms corresponding to vertices on the upper faces of
ENewt(p). Hence, we assume that all points on the upper faces of
ENewt(p) correspond to terms of the polynomial p, an assumption
which does not change the polynomial as a function.

Maxpolynomial Division Algorithm. Let p(x), d(x) be two
tropical polynomials. The algorithm to divide p(x) by d(x) is:
1. Let C ⊆ Zd be the set of slopes c with which we can shift

Newt(d), so that Newt
(
cTx+ d(x)

)
⊆ Newt(p).

2. For every element c ∈ C, define qc ∈ IR as the largest value q for
which ENewt(p) is higher (with respect to the last dimension)
than ENewt

(
q + cTx+ d(x)

)
, or equivalently p(x) ≥ q +

cTx+ d(x), ∀x ∈ IRd.
3. Output the maxpolynomials q(x) = max

c∈C

(
qc + cTx

)
and

r(x) = max
t(x)∈T

(t(x)), where T is the set of terms aT
j x +

bj of p(x) for which there is no value c such that aj ∈
Newt

(
cTx+ d(x)

)
. As in classic polynomial division, we

shall refer to q(x) as the quotient, and r(x) as the remainder of
the division of p(x) by d(x).

Remark 1. The above algorithm is equivalent to the morphological
opening of the upper hull of ENewt(p), which is equivalent to a
function np : Zd → IR ∪ {−∞} mapping tropical degrees to their
coefficients, by the upper hull of ENewt(d) (similarly nd : Zd →
IR ∪ {−∞}). This operation [24], [25] is the composition of an
erosion, and a dilation using the same element. This process can
be seen in Fig. 1b-1e, where the divisor is shifted and heightened
as much as possible, to match the dividend, which is exactly how
our algorithm operates. Due to this equivalence, we can process the
elements of C in parallel, since there is no cancellation of terms
caused by the order of calculations.

Theorem 1. For any tropical polynomials p(x), d(x), the outputs
q(x), r(x) of our algorithm satisfy (1).

Indeed, the upper hull of ENewt (q(x) + d(x)) lies strictly be-
low that of ENewt(p), and since the maximum of two tropical poly-
nomials has an Extended Newton Polytope that is the convex hull of
the union of the respective polytopes [9], its upper faces will be ex-
actly those of ENewt(p), thus max (q(x) + d(x), p(x)) = p(x).
A similar result can be obtained for the remainder.

Theorem 2. The tropical polynomials q(x), r(x) are maximal, in
the sense that for any other two tropical polynomials q̃(x), r̃(x),
for which (1) holds, containing terms of the same degree as q(x) and
r(x), respectively, the value max (q(x) + d(x), r(x)) is maximum
among max (q̃(x) + d(x), r̃(x)).

This is derived by the fact that qc ≥ q̃c, for any given degree of
the polynomials, along with the fact that r(x) contains only terms
of p(x), so there can be no larger remainder satisfying (1).

The above algorithm can also be extended, in the case of multi-
ple divisor polynomials, by simply performing the division on each
of these separately, again due to there being no cancellation of terms.
Theoretical details on all of the above subjects can be seen in [26].

Examples. Let p(x) = max (3x, 2x+ 1.5, x+ 1, 0) and
d(x) = max (x+ 1, 0). The valid set of degrees for the quotient is
C = {0, 1, 2}. For c = 1, we see that for q1 + x+max (x+ 1, 0),
the optimum can be found for q1 = 0.5, when the right ver-
tex of the divisor coincides with the third vertex of the dividend.
Similarly we find q0 = 0, q2 = −1. Thus we get q(x) =
max (2x− 1, x+ 0.5, 0). We can verify that p(x) = q(x) + d(x),
as in Fig. 1c. However, if d(x) = max (x, 0), then for c = 1 we
have q1 + x + max (x, 0). Thus q1 = 1, leading to one of the
vertices of the dividend being higher than the result (Fig. 1e).

Formulation via GGP. If the coefficients of p(x) are positive
(which can always be done by adding a large enough value to the
dividend, and subtracting it from the result), maxpolynomial divi-
sion can also be formulated as a Generalized Geometric Program-
ming (GGP) problem [20]. Indeed, the quotient of maxpolynomial
division can also be found by solving the following GGP, over the
coefficients qc of q(x), and the auxiliary variables lc > 0, ∀c ∈ C:

min
qc,lc

∑
c∈C

{
l−1
c

}
, s.t. lcq

−1
c ≤ 1, ∀c ∈ C

(q ⊕ d)jp
−1
j ≤ 1, ∀j ∈ slopes(p)

(2)
where slopes(p) is the set of slope vectors j of p(x), and pj its co-
efficients. We also define (q⊕ d)j = max

c∈C
(qc + dj−c) as the max-

plus convolution of the coefficients di of d(x) and qc of q(x), sim-
ilar to how the coefficients of regular polynomial products are com-
puted. The above problem is a GGP, as the goal and both types of
inequality constraints are generalized posynomials [20] of the vari-
ables lc and qc. It can be proven [26] that the solution to (2) is the
same as that of our algorithm, since the lower bounds lc push the
shifted versions of d(x) as close as possible to p(x).

3. APPLICATION IN NEURAL NETWORKS

Let us now consider networks containing one hidden layer with
ReLU activations, and an output layer with one neuron, with sig-
moid activation, used to solve a binary classification problem. As
seen in [10], the network as a function, without the sigmoid acti-
vation, is equivalent to the difference of two tropical polynomials,

corresponding to the positive and negative weights of the output
neuron, each with a zonotope as its Extended Newton Polytope (also
seen in [9]). The bias of the output neuron can be ignored during the
division algorithm, simply by being added to the result.

Divisibility of Neural Network Polynomials. For the networks
studied, the following holds:

Theorem 3. Each of the two tropical polynomials which construct
the function of our neural network can be divided exactly by the
tropical polynomial corresponding to any of the line segments from
which it is constructed.

This follows immediately from the formulation of the neural net-
work, as the sum of small tropical polynomials, and the maximal
nature of the algorithm’s results. This indicates the link of the oper-
ation we introduced, with the building blocks of a neural network.

Approximation with Loss Minimization. A network as de-
scribed above, assuming that it was properly trained, will have
weights which correspond to a local optimum of the loss function
L(u), where u is the output of the network, without the final ac-
tivation. A change in these weights will lead to a different u′ for
this particular input, which is expected to strictly increase the loss
function, when computed over the whole dataset. Thus, this increase
is minimized, when u′ ≈ u. In other works [12], [13], this mini-
mization of the difference of feature maps is among a list of criteria
by which irrelevant neurons are pruned. Given that these terms
correspond to vertices of the related polytopes, it is also possible to
regard this criterion, in the context of tropical polynomial division.

In particular, we seek to adapt the division algorithm, so that it
minimizes the aforementioned difference. This can be formulated as
the below optimization problem, where p(x) is the polynomial of
the positive or the negative part of the network, and D a dataset:

min
qc,c∈C

∑
x∈D

|q(x) + d(x)− p(x)|2 (3)

This optimization problem is a max-linear fitting problem [27],
where the function to approximate is p(x) − d(x). Thus, given
a divisor d(x), the algorithm described in that work can be used
(where the data points are alternatively assigned to terms of q(x),
and then each term is fit via least-squares), to calculate its solution.
Note that here we attempt to approximate the output of the network,
using a given structure provided by the polynomial d(x), instead of
direct optimization of a given feature map as in [12].

An alternative optimization goal, more in line with the process
of tropical division described, would be the difference between the
coefficients of the same degrees of the original polynomial and its
approximation, that is, to minimize

∑
i∈slopes(p) |(q ⊕ d)i − pi|2.

This is examined in [26], with similar results.
Practical Application. To avoid solving the above, possibly

difficult, optimization problems (with output variables scaling expo-
nentially with d), we propose the following tractable method, to find
a suboptimal solution to the optimization problem (3), to approxi-
mate a given network of the above form. We disregard whether the
weights are integers or real numbers, since, given a finite represen-
tation of the latter, the difference is minimal [9], [10].

Neural Network Approximation. Let p+, p− be the positive
and negative parts of the network we want to approximate with a
smaller one consisting of f% neurons of the original in the hidden
layer, where f a desired percentage. The algorithm used consists of
two phases.

In the first phase:
1. Randomly sample a subset X of the training set.

2. For each xi ∈ X calculate the corresponding vertex ui
+, ui

−
in ENewt(p+) and ENewt(p−), activated by this input, that is,
(ui

+)
Txi = p+(xi), similarly for ui

−.
3. Sort each set of vertices in decreasing number of appearances.
4. For the set of ui

+, set the first neuron weight w1 equal to the first
vertex in the sorted list.

5. For the jth vertex uj
+ in the list, up to f% of the neurons in the

positive part, randomly pick one of the previous weights wk, and
set wj ← uj

+ −wk.
6. Repeat steps 4. and 5. for the negative part of the network.
7. Keep the weights created (f% of the original) as the first layer of

the network, and assign weights ±1 in the output layer, for the
positive and negative parts, respectively.
In the second phase:

8. For each sample in X , calculate the activation of the output neu-
ron in the original network, minus the same activation in the ap-
proximation network.

9. Set a bias in the output neuron, equal to the mean of these values,
plus the original bias of the output neuron.
Phase 1 creates a network which attempts to match the most im-

portant vertices of the polytope, and does so perfectly if they remain
on its upper faces. It also seeks to identify correlated neurons, which
tend to fire together, intuitively leading to some level of regulariza-
tion of the network. As for the idea behind phase 2, we show that:

Theorem 4. If d(x) matches the degrees of the terms of p(x), then
q(x) = q0, and the goal in (3) can be minimized if we set:

q0 =
1

|X|
∑
x∈X

(p(x)− d(x)) (4)

Indeed, if the quotient polynomial becomes a constant, then the
goal in (3) becomes a sum of squared distances from given points,
which is minimized by setting their mean as that constant. Thus,
phase 2 adds a bias to account for the rest of the vertices.

Regarding the time complexity of the algorithm, the number of
steps for phase 1 scales as |X| log |X|+N (where N the number of
remaining neurons), since there will be |X| vertices to sort at most.
The number of steps required for phase 2 scales linearly in |X|. As-
suming a reasonable amount of time necessary for the calculation
of the network outputs for these samples, the method is tractable.
It might also be faster than training a new network, which requires
updates scaling as |D| per epoch, for each of the N neurons.

This process may be applied to DNNs, possibly via iterating over
the layers. This, however, is beyond the scope of this work.

4. EXPERIMENTS

We will now test our method, first in the IMDB Movie Review
dataset [28], with the preprocessing proposed, while also truncating
or padding each sequence to a length of 200, and then in the MNIST
dataset [29], where only the pairs 3-5 and 4-9 are considered (even
in a highly accurate model like [30], these can still be confused).
We made use of the Python library Keras [31], to create and test our
models. The accuracies for our method are averages for five runs.

IMDB Movie Review Dataset. In this experiment, we ex-
amined 3 different models, trained using an 80%-20% training-
validation split, with early stopping based on the validation loss
with a patience of 2 epochs. The learning rate was set to 5 · 10−4.
All three models learned a word embedding in a 50-dimensional
space. After this, the first model contained a simple fully connected
network, with one hidden layer containing 1024 neurons. The sec-
ond and the third model employed a bidirectional LSTM with 32

Percentage of
Neurons Kept

FC (1024) LSTM + FC (256) 1D CNN + FC (256)

100% (Original) 84.056±0.750 85.006±0.353 83.927±0.378
Reduced Baseline Reduced Baseline Reduced Baseline

75% 84.263±0.348 83.852 85.108±0.220 85.033 84.059±0.374 84.354
50% 84.314±0.322 84.232 85.029±0.374 85.166 84.006±0.378 83.882
25% 84.366±0.344 83.970 85.092±0.295 85.214 83.930±0.323 84.400
10% 84.333±0.396 85.021 85.126±0.204 85.042 84.042±0.412 83.964
2% 84.314±0.413 85.254 84.878±0.447 83.254 83.922±0.363 82.428
1% 84.206±0.418 85.346 85.017±0.350 82.947 83.915±0.359 78.758

Table 1. Average accuracy on test set (IMDB). Baseline is discarding original model and training new one from scratch.

units and a one-dimensional CNN (two layers of 8 and 4 units,
ReLU activations, kernels of 3 pixels and max-pooling of 5 pixels),
respectively, creating a smaller representation as input for the fully
connected part, with 256 neurons in the hidden layer.

Our algorithm was applied using 2000 points from the training
set. This number was chosen to demonstrate that, in this simple case,
only a few samples are required for good results. Various percent-
ages of the neurons of the hidden fully connected layer were kept,
and the relevant results are shown in Table 1, which also contains re-
sults for freshly trained networks, for each number of neurons (this
is a relatively strict baseline, since the network is allowed to adapt
itself freely). The drop in performance is less than 0.5%, a negli-
gible cost for reducing the size of the fully connected part of the
network by a factor of up to 100. Thus, minimization via tropical
polynomial division methods appears capable of producing a neural
network with similar performance, but significantly fewer terms.

Furthermore, the baseline seems better for the first model, for a
small number of neurons, possibly due to the large input in the fully
connected part making the problem easy, no matter the number of
neurons. However, for the other two models, the accuracy of a new
network is lower when only a few neurons are kept (note that for the
last two rows of these models, to help them converge, early stopping
patience and learning rate were set to 5 and 10−4, respectively). This
may be due to the small input of the fully connected part, making the
classes entangled. Thus, our method seems useful if there is a small
number of features, benefiting from a higher dimensional projection,
before minimization. Moreover, Table 2 shows that our method is
faster than training all different models, thus making it preferable
over training and fine-tuning them, to attain similar performance.

Model Runtime of Training time for
our method (sec) all baseline nets. (sec)

FC 82.6±4.6 97.2
LSTM+FC 113.4±0.1 630.2
CNN+FC 17.8±0.8 142.3

Table 2. Runtime comparison.

Finally, we create an iterative version of our algorithm. In each
step, the amount of neurons in the hidden layer is halved, using
our method, but the two fully connected layers are retrained for 10
epochs (with early stopping with patience 2) after each step, to com-
pensate for any drops in accuracy. Results can be seen in Table 3, for
the first and the third model (the second one seems to have little mar-
gin for improvement). This is, in general, a slight improvement over
Table 1, since retraining the network alleviates mistakes made in its
approximation, with a more detailed retraining phase possibly lead-
ing to better results. Furthermore, the same observations as before

Neurons Kept FC (1024) CNN+FC (256)
100% 84.056±0.750 83.927±0.378

50% - Iter. 1 84.334±0.376 84.080±0.459
25% - Iter. 2 84.379±0.273 84.094±0.484
3.1% - Iter. 5 84.235±0.311 84.049±0.558
1.6% - Iter. 6 84.299±0.262 84.054±0.579

Table 3. Average accuracy, iterative method with retraining.

can be made, regarding the comparison with the baseline networks.
MNIST Dataset - Pairs 3-5, 4-9. Here, our model consists of

the two convolutional layers (this time, with max-pooling of 3) and
two fully connected layers, with a hidden layer of 1000 neurons.
This way, we can again learn a small representation for our data.
The results are in Table 4, along with those of training a fresh net-
work. It can be seen that the performance drop caused by our method

Perc. 3-5, 3-5, 4-9, 4-9,
Kept Reduced Basel. Reduced Basel.
100% 99.180±0.269 - 99.046±0.264 -
50% 99.106±0.438 99.127 99.046±0.282 99.056
25% 99.117±0.370 99.138 98.985±0.337 98.905
10% 99.106±0.375 99.190 99.005±0.309 99.166
1% 99.180±0.325 99.138 98.805±0.371 98.945

Table 4. Average accuracy on test set (MNIST).

is again negligible, in experiments for both pairs. Even if the same
results can be obtained by training a smaller network, our method
has the same benefits as before, given that it allows us to begin with
a bigger network, which is more likely to converge, and obtain ade-
quate results, without the cost of training several networks.

5. CONCLUSIONS AND FUTURE WORK

In this work, we made theoretical contributions in the link between
tropical geometry and neural networks, by constructing a framework
for maxpolynomial division, and making use of the intuition it pro-
vides in order to simplify two-layer fully connected networks trained
for binary classification problems, with preliminary results being fa-
vorable for its potential application. The application of this method
in problems with multiple classes is an ongoing work, along with
using the theoretical aspects of this work to define similar methods
for more general networks, such as deep or convolutional models.
Moreover, further study of the division of polynomials in the max-
plus semiring, using the concept introduced in this work, must be
done, in order to identify more of its properties.

6. REFERENCES

[1] R. Cuninghame-Green, Minimax Algebra, Springer-Verlag,
1979.

[2] D. Maclagan and B. Sturmfels, Introduction to Tropical Ge-
ometry, Amer. Math. Soc., 2015.

[3] P. Butkovič, Max-linear Systems: Theory and Algorithms,
Springer, 2010.

[4] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat, Synchro-
nization and Linearity: An Algebra for Discrete Event Systems,
J. Wiley & Sons, 1992, web ed. 2001.

[5] P. Maragos, “Dynamical systems on weighted lattices: General
theory,” Math. Control Signals Syst., vol. 29, no. 21, 2017.

[6] G. Cohen, S. Gaubert, and J.P. Quadrat, “Duality and sepa-
ration theorems in idempotent semimodules,” Linear Alegbra
and its Applications, vol. 379, pp. 395–422, 2004.

[7] M. Akian, S. Gaubert, and A. Guterman, “Tropical Polyhedra
Are Equivalent To Mean Payoff Games,” Int’l J. Algebra and
Computation, vol. 22, no. 1, 2012.

[8] V. Charisopoulos and P. Maragos, “Morphological Percep-
trons: Geometry and Training Algorithms,” in Proc. Int’l
Symp. Mathematical Morphology (ISMM). 2017, vol. 10225
of LNCS, pp. 3–15, Springer, Cham.

[9] V. Charisopoulos and P. Maragos, “A tropical approach to neu-
ral networks with piecewise linear activations,” arXiv preprint
arXiv:1805.08749, 2018.

[10] L. Zhang, G. Naitzat, and L.-H. Lim, “Tropical geometry of
deep neural networks,” in Proc. Int’l Conf. on Machine Learn-
ing. 2018, vol. 80, pp. 5824–5832, PMLR.

[11] Y. Zhang, S. Blusseau, S. Velasco-Forero, I. Bloch, and
J. Angulo, “Max-Plus Operators Applied to Filter Selec-
tion and Model Pruning in Neural Networks,” in Proc. Int’l
Symp. Mathematical Morphology (ISMM). 2019, vol. 11564 of
LNCS, pp. 310–322, Springer Nature.

[12] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerat-
ing very deep neural networks,” in Proc. ICCV ’17, 2017, pp.
1389–1397.

[13] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning
method for deep neural network compression,” in Proc. ICCV
’17, Oct 2017.

[14] Song Han, Jeff Pool, John Tran, and William Dally, “Learning
both weights and connections for efficient neural network,” in
Proc. NIPS ’15, pp. 1135–1143. 2015.

[15] D. Speyer and B. Sturmfels, “Tropical mathematics,” Math.
Mag., vol. 82, 09 2004.

[16] G.F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, “On the
number of linear regions of deep neural networks,” in Proc.
NIPS ’14, pp. 2924–2932. 2014.

[17] I. Goodfellow, D. Warde-Farley, M. Mirza, Aaron. Courville,
and Y. Bengio, “Maxout networks,” in Proc. ICML ’13. 2013,
vol. 28, pp. 1319–1327, PMLR.

[18] G. C. Calafiore, S. Gaubert, and C. Possieri, “Log-sum-exp
neural networks and posynomial models for convex and log-
log-convex data,” IEEE Trans. NNLS, 2018.

[19] G. C. Calafiore, S. Gaubert, and C. Possieri, “A universal ap-
proximation result for difference of log-sum-exp neural net-
works,” CoRR, vol. abs/1905.08503, 2019.

[20] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, “A tuto-
rial on geometric programming,” Optimization and Engineer-
ing, vol. 8, pp. 67–127, 05 2007.

[21] G. Castellano, A. Fanelli, and M. Pelillo, “An iterative pruning
algorithm for feedforward neural networks,” IEEE Trans. NN,
vol. 8, pp. 519–31, 02 1997.

[22] R. A. Cuninghame-Green and P. F. J. Meijer, “An algebra for
piecewise-linear minimax problems,” Discrete Applied Math-
ematics, vol. 2, no. 4, pp. 267 – 294, 1980.

[23] R. A. Crowell, “The tropical division problem and the
Minkowski factorization of generalized permutahedra,” arXiv
preprint arXiv:1908.00241, 2019.

[24] C. Ronse and H.J.A.M. Heijmans, “The Algebraic Basis of
Mathematical Morphology. Part II: Openings and Closings,”
Computer Vision, Graphics, and Image Processing: Image Un-
derstanding, vol. 54, pp. 74–97, 1991.

[25] P. Maragos, “Morphological signal and image processing,” in
Digital Signal Processing Handbook. CRC Press, 1998.

[26] G. Smyrnis and P. Maragos, “Tropical polynomial division and
neural networks,” arXiv preprint arXiv:1911.12922, 2019.

[27] A. Magnani and S. P. Boyd, “Convex piecewise-linear fitting,”
Optim. Eng., vol. 10, pp. 1–17, 2009.

[28] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and
C. Potts, “Learning word vectors for sentiment analysis,” in
Proc. ACL ’11. June 2011, pp. 142–150, ACL.

[29] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, Nov 1998.

[30] O. K. Oyedotun, A. E. R. Shabayek, D. Aouada, and B. Ot-
tersten, “Improving the capacity of very deep networks with
maxout units,” in Proc. ICASSP ’18, April 2018, pp. 2971–
2975.

[31] F. Chollet et al., “Keras,” https://keras.io, 2015.

