
Multiclass Neural Network Minimization via Tropical Newton Polytope
Approximation

Georgios Smyrnis 1 Petros Maragos 1

1School of ECE, National Technical University of Athens,
Athens, Attiki, Greece. Also: Robot Perception and Interaction
Unit, Athena Research Center, Maroussi, Greece. Correspondence
to: Georgios Smyrnis <geosmirnis@gmail.com>, Petros Maragos
<maragos@cs.ntua.gr>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Abstract
The field of tropical algebra is closely linked with
the domain of neural networks with piecewise lin-
ear activations, since their output can be described
via tropical polynomials in the max-plus semiring.
In this work, we attempt to make use of methods
stemming from a form of approximate division of
such polynomials, which relies on the approxima-
tion of their Newton Polytopes, in order to mini-
mize networks trained for multiclass classification
problems. We make theoretical contributions in
this domain, by proposing and analyzing methods
which seek to reduce the size of such networks.
In addition, we make experimental evaluations on
the MNIST and Fashion-MNIST datasets, with
our results demonstrating a significant reduction
in network size, while retaining adequate perfor-
mance.

1. Introduction
Minimax algebra (Cuninghame-Green, 1979) and tropical
geometry (Maclagan & Sturmfels, 2015) are fields of math-
ematics with various applications, such as in optimization
(Cohen et al., 2004; Akian et al., 2012), dynamical system
analysis (Butkovič, 2010; Maragos, 2017) and more. This
form of algebra corresponds to the analysis of the max-plus
semiring, which is defined as (IR∪ {−∞},max,+), mean-
ing that regular addition and multiplication are substituted
with maximum and addition, respectively. Other works also
consider the dual version of this algebra, that is, min-plus al-
gebra. In what follows, we shall consider the name “tropical
algebra” to refer to the max-plus version.

While the above field of mathematics has long been studied,

the recent advent of neural networks has provided it with an-
other application of great interest, which is the study of such
networks with piecewise linear activations. Neural networks
with ReLU activations, which fall under this category, are
closely linked with the field of tropical algebra, with recent
studies demonstrating that their output can be expressed by
the use of polynomials in the above semiring, henceforth
referred to as tropical polynomials (Charisopoulos & Mara-
gos, 2017; 2018; Zhang et al., 2018). Therefore, further
analysis of such polynomials is expected to be useful in the
goal of furthering the study of such networks.

To that end, in recent studies (Smyrnis & Maragos, 2019;
Smyrnis et al., 2020) we introduced a process called Ap-
proximate Tropical Polynomial Divsion, which attempts to
emulate the normal Euclidean division of regular polynomi-
als, when working with tropical polynomials. In that work,
we applied this process to the task of the minimization of
neural networks, trained for a binary classification problem.
This task is of interest, given that it is often the case that
neural networks require several redundant parameters dur-
ing training, which may however be eliminated afterwards
(Luo et al., 2017; Han et al., 2015).

In this work, we further this initial study on the division of
multivariate tropical polynomials via a single divisor, by
examining how the process we previously introduced can
be extended to networks trained for multiclass classification
problems, an extension which requires the simultaneous
approximation of several Newton polytopes of tropical poly-
nomials. We make theoretical contributions by analyzing
such extensions, and we also perform experiments on the
MNIST and Fashion-MNIST datasets to validate some of
our theoretical approaches, with results demonstrating ade-
quate performance for the methods studied.

The rest of this work is structured as follows. In Section 2
we perform a review of certain previous works related to
this paper. In Section 3 we further analyze some key points
from our previous work, upon which we build. In Section
4 we present extensions of this minimization process in the
case of neural networks trained for multiclass classification
problems, and in Section 5 we present an alternative, more
stable, minimization method for the single class case, to be
used in the aforementioned multiclass extensions. Finally,

Multiclass Neural Network Minimization via Tropical Newton Polytope Approximation

in Section 6 we perform certain experiments in order to
demonstrate the results of our method.

2. Related Work
2.1. Tropical Algebra and Neural Networks

The field of tropical algebra has recently been extensively
linked with that of neural networks (Charisopoulos & Mara-
gos, 2017; 2018; Zhang et al., 2018). It is known that
the functions corresponding to feedforward networks with
ReLU activations can be expressed as the difference of two
tropical polynomials. These are the result of the substitution
of addition with maximum and multiplication with addition,
in a regular polynomial. Thus, a tropical polynomial is the
following convex, piecewise linear function:

p(x) =
k

max
i=1

aT
i x + bi ,x ∈ IRd (1)

{ }
where ai are the tropical degrees (slopes) of its terms, and
bi the tropical coefficients. As such, they are the maximum
(instead of sum) of several linear terms, given that each term
ciu

ai of a regular polynomial (with positive variables and
coefficients) is converted to a term aT

i x + bi, where bi =
log ci, x = log u, since multiplication becomes addition.

The approximation as a difference of two convex functions
also leads to Log-Sum-Exp networks (Calafiore et al., 2019;
2020). These networks, which contain exponential acti-
vations in the hidden layer and logarithmic in the output,
are universal approximators, since they calculate functions
via several convex components. Moreover, their structure
is closely related to tropical algebra, given the fact that
they contain a temperature factor T which, if small enough,
makes them approach networks with ReLU activations.

2.2. Network Minimization

The task of minimizing a given network has long been stud-
ied in the literature (LeCun et al., 1990; Hassibi & Stork,
1993; Castellano et al., 1997). More recent studies have
introduced various methods for the task of minimizing a
given network, either by removing unimportant neurons (He
et al., 2017; Luo et al., 2017) or by pruning connections and
neurons from the network (Han et al., 2015).

The above studies achieve great decrease in the size of the
network, while at the same time retaining high classification
accuracy. Their authors agree in the fact that, while a high
number of parameters is required to properly train a network,
most of them can be removed afterwards without loss in
performance, as demonstrated by their experimental results.

2.3. Tropical Polynomial Division

When working with polynomials over fields, it is possible to
define Euclidean division of polynomials. More precisely,

assuming that p(x) and d(x) are two polynomials over
a regular field, Euclidean division seeks to identify two
polynomials q(x) and r(x), such that:

p(x) = q(x)d(x) + r(x) (2)

with the leading term of d not dividing any term of r (with
one variable, this is equivalent to deg(d) > deg(p)). It is
possible to expand the above in the case of multiple divisor
polynomials di(x). The result of this process may vary
based on the ordering of di(x). However, in the case where
these polynomials constitute a Groebner basis, the remain-
der of the result is always zero, if p(x) can be precisely
factored by these polynomials (Buchberger, 1985).

Nevertheless, it is always possible to satisfy (2), since dur-
ing the process of division, the cancellation of terms is
permitted. However, in the case of tropical polynomials, the
corresponding property is:

p(x) = max {q(x) + d(x), r(x)} (3)

In the one dimensional case, factorization of tropical polyno-
mials is feasible, as demonstrated by Speyer and Sturmfels
(2009). In other cases however, (3) might be impossible
to fully satisfy, since there is no possibility of cancellation
of terms when performing operations on a semiring (in our
case, there is no way to properly invert the max operator).
As such, division of tropical polynomials may not always
be possible, as stated by Maclagan and Sturmfels (2015).

In this context, some works attempt to identify and analyze
cases where it is possible to completely satisfy (3) (Crowell,
2019). Another approach is to attempt an approximation of
the above condition, using a process similar to residuation,
where the best q(x) and r(x) are found, in order for (3) to
hold as tightly as possible. This is the approach we adopted
in our previous work, due to its more general nature.

3. Approximate Tropical Polynomial Division
3.1. Tropical Polynomial Division Basics{ }
Let

k
p(x) = max aTx + b ,x ∈ IRd

i i be a tropical poly-
i=1

nomial that we want to divide by another tropical polyno-{ }
mial

k T ˜d(x) = max ãi x + bi . These shall henceforth
i=1

be referred to as the dividend and the divisor, respectively,
as is the case in normal polynomial division. In previous
works we proposed a method to approximately divide such
polynomials (Smyrnis & Maragos, 2019; Smyrnis et al.,
2020). The method used in that work performs this division,
in the sense that a quotient tropical polynomial q(x) and a
remainder r(x) are found, such that:

p(x) ≥ max {q(x) + d(x), r(x)} (4)

Multiclass Neural Network Minimization via Tropical Newton Polytope Approximation

To perform this form of division, the Newton Polytope
Newt(p) and the Extended Newton Polytope ENewt(p) of
the tropical polynomial p(x) are approximated.
Definition 1. The Newton Polytope of the tropical polyno-
mial p(x) is the convex hull of the set:

{(ai1, . . . , aid)} , i = 1, . . . , k (5)

while its Extended Newton Polytope is the convex hull of:

{(ai1, . . . , aid, bi) , i = 1, . . . , k (6)}
where ai1, . . . , aid are the individual elements of the tropi-
cal degrees ai.
Theorem 1. The value of p(x) depends solely on the ver-
tices which correspond to the upper faces (with respect to
the final dimension) of ENewt(p).

We refer to Charisopoulos and Maragos (2018) for a detailed
proof of this important property.

With a goal of approximating the polytope of the dividend,
the method we used in our previous work (Smyrnis et al.,
2020) to approximately divide p(x) by d(x) is as follows:

1. Shift d(x) so that its Newton polytope lies com-
pletely in the interior of that of p(x), and mark
the necessary shift in degrees as{ () c ∈} C =
c ∈ Zd : Newt cTx + d(x) ⊆ Newt(p) .

2. Raise d(x) as much as possible, so that ENewt(d)
stays lower than ENewt(p). This increase is{ qc}=
max q ∈ R : p(x) ≥ q + cTx + d(x),∀x ∈ IRd .()

3. Set qc = max qc + cTx . The terms which are not
c∈C

covered by any possible shift of Newt(d) make up the
remainder polynomial r(x).

An example of this procedure can be seen in Figure 1. Note
that this approximation is maximal (Smyrnis & Maragos,
2019; Smyrnis et al., 2020).

3.2. Application to Network Minimization for Binary
Classification Problems

The ideas discussed in the above can be applied to the mini-
mization of networks trained for binary classification prob-
lems. With a single hidden layer and one output neuron, if
W 1, b1 and w2, b2 are the corresponding weights, then the
output is:

o =

n1∑
i=1

w2
+,i max d∑

j=1

w1
ijxj + b1i , 0

−
n1∑
i=1

w2
−,i max

 d∑
j=1

w1
ijxj + b1i , 0

+ b2

(7)

 

0 1 2 3

Tropical Degree

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

T
ro
p
ic
al

C
o
effi

ci
en
t

ENewt(p(x))

ENewt(d(x))

(a) Dividend and Divisor. (b) Result of division.

Figure 1. Division of p(x) = max(3x+1.5, 2x+1.3, x+0.75, 0)
by d(x) = max(x−1, 0). Quotient is q(x) = max(2x+1.3, x+
0.75, 0).

0 1 2 3

Tropical Degree

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

T
ro
p
ic
al

C
o
effi

ci
en
t

ENewt(q(x)+d(x))

where w2 = w2
+−w2

− the splitting of the output vector into
the parts with positive and negative weights. Each tropical
polynomial has its own Newton polytope, and by approxi-
mating both it is possible to create a neural network which,
while smaller than the original, is still capable of performing
adequately in the classification task for which it was trained.
The algorithm which we previously used for this task, and
upon which we shall build, is Algorithm 1. Algorithm 1
attempts to create a divisor polynomial (for each of the two
polynomials of the network), whose polytope contains the
most activated vertices of the original. This is due to the
fact that, as we will see later on, the vertices of the network
polytopes can be expressed as the sum of a subset of its
neurons. Thus, by ensuring that the chosen vertices are one
such sum, we provide a heuristic via which we attempt to re-
tain the vertices of the original polytope. Moreover, the final
step attempts to better approximate the missing vertices, by
altering the bias of the output layer in an optimal fashion, in
order to minimize the mean squared error of the output (this
forms the quotient, if (4) is lifted and instead the difference
in outputs is minimized with the given divisor).

3.3. Example of Algorithm 1

Here we can see the application of Algorithm 1 for the
minimization of a given neural network. Let us assume that
we have a neural network with the following weights:

W 1 =


1 2
2 1
1 0
0 1

 b1 =


1
1
0
0


w2 =

[
1 1 2 2

]
b2 = 0

(8)

   

and ReLU activation in the hidden layer, as well as the
following dataset:

D =
[1, 1]T , [1, 2]T , [2, 1]T ,

[1,−0.5]T , [1,−0.75]T , [−0.5, 1]T
(9)

{ }

Multiclass Neural Network Minimization via Tropical Newton Polytope Approximation

Algorithm 1 Heuristic Minimization Algorithm (Smyrnis
et al., 2020)

1. Select the neurons of the hidden layer (with their
weights and bias), corresponding to positive weights
in the output layer.

2. For each set of these neurons (vertex of the Newton
Polytope), calculate how many samples activate it.

3. Sort the above vertices in descending order.

4. Set the first vertex v1 as the neuron w1, and for each
vk, set wk = vk−wj , where wj a random previously
added neuron (so that their sum is included in the new
polytope).

5. Repeat for the negative weights of the output layer,
and set output weights equal to ±1 (for positive and
negative part, respectively).

6. Calculate the mean difference of outputs (disregarding
the output activation and bias), and add this difference
to the bias of the output layer (plus any original output
bias).

Since the weights of the output neuron are positive, we can
integrate them in the hidden layer. Thus, the above network
has a polytope whose vertices are subset sums of the vectors
containing the weights and biases of the hidden layer:

p1 = [1, 2, 1]
T
, p2 = [2, 1, 1]

T
,

p3 = [2, 0, 0]
T
, p4 = [0, 2, 0]

T (10)

By calculating the outputs of the elements of D, we see
that the first three samples activate all neurons, the next two
samples activate the first three neurons, and the final sample
all the neurons but the third. These correspond to three
activations of the vertex p1 + p2 + p3 + p4 = [5, 5, 2]T ,
two of the vertex p + p + p = [5, 3, 2]T1 2 3 and one of
p1 + p2 + p4 = [3, 5, 2]T . Thus, performing the algorithm,
the first neuron added is the first vertex, so w1 = [5, 5, 2]T .
The second neuron is the difference of the second vertex
with w1, so w2 = [5, 3, 2]T − [5, 5, 2]T = [0,−2, 0]T . For
the third neuron, we subtract the first one (randomly chosen)
from the third vertex, so w3 = [3, 5, 2]T − [5, 5, 2]T =
[2, 0, 0]T . Thus, the new hidden layer is:

5 5 2
1

W ′ =  0 −2 , b′
1

= 0 (11)
−2 0 0

−    

In this case, the outputs of the network for D can be found to
be the same, before and after the minimization, so there is no
output bias. Thus, we have constructed a smaller network,
which has the same output as the original for the dataset.

4. Multiclass Minimization
In the previous section, we saw how tropical polynomial
division, and the corresponding approximation of Newton
polytopes, can be used to minimize a network with a single
output neuron, hinting to their use in more complicated,
multiclass settings. However, in the case of multiclass prob-
lems, the number of output neurons, and thus that of tropical
rational functions corresponding to the network, increases.
The main difficulty of this extension is the fact that we want
to approximate several, interconnected, tropical polynomi-
als and tropical Newton polytopes. As such, minimizing the
network becomes more difficult, since this approximation
must be simultaneous, and the network does not offer, by it-
self, enough degrees of freedom to do so immediately. Note
that the multiclass extension is a necessary step, in order
to move on to deep architectures (possibly via sequential
examination of each layer).

In this section, we shall examine how this minimization task
can be performed. The methods we provide shall attempt
to approximate several polytopes at once, corresponding
to the output neurons of the network. We shall study the
case of two-layer feedforward networks with ReLU activa-
tions, since their simple structure serves to easily introduce
our methods. In this case, it is possible to see the follow-
ing points, regarding the structure of the polytopes of the
network in this simple case:

• Each vertex of the polytope corresponds to the sum of
a combination of neurons. The samples which activate
this combination correspond to this vertex.

• Each vertex also has a natural binary labeling, via the
combination of neurons from which it is constructed.

To illustrate these points, let us think of an example, where:

W 1 = 1 0
0 1
1 1

 , b1 = 1
1
1

 ,W 2 =

[
1 1 1
2 1 1

]
(12)

   

and there is no bias in the output layer. In this case, we
have a single Newton polytope per output neuron (due to
all the weights being positive). In this example, assuming
i.e. an input x = [1,−1.5]T , the hidden layer corresponds
to W 1x + b1 = [2,−0.5, 0.5]T . Given that only the first
and the third neurons of the hidden layer are activated, we
can state that this sample activates the output vertex of the
polytope with index 101, corresponding to this combination
of neurons. Note that this index is shared among the poly-
topes of the two output neurons, since it depends solely on
the common hidden layer. This is also shown in Figure 2,
where the polytopes of both output neurons are visible.

Multiclass Neural Network Minimization via Tropical Newton Polytope Approximation

Tropical Deg
ree 1

0 1 2 3

T
ropical

D
egree

2

0

1

2

3

C
o
effi

cien
t

0

1

2

3

4

Vertex 101

(a) First output neuron. (b) Second output neuron.

Figure 2. Upper hulls of polytopes of output neurons from the
example in Section 4.1. The common vertex is also shown.

Tropical Deg
ree 1

0 1 2 3

T
ropical

D
egree

2

0

1

2

3

C
o
effi

cien
t

0

1

2

3

4

Vertex 101

4.1. Minimization via Vertex Transformation

In order to address the problem of multiclass minimization
via tropical Newton polytope approximation in a simple
fashion, we can attempt to approximate a single Newton
polytope, and then modify the result in order to approximate
all polytopes corresponding to the network at once. Let:

W 1 = w1
ij ,W 2 = w2

ij (13)
[] []

be the n1×d, n2×n1 matrices, corresponding to the neuron
weights in each layer, with n1, n2 being the number of
neurons in the hidden and the output layer, respectively.
For the following, we shall assume that the matrix W 2

contains only positive entries (we shall afterwards describe
a way to get around this limitation). This way, we want to
approximate one polytope per output neuron. Let us focus
on a single output neuron, namely the one with weights w2

l .
Its polytope is constructed by the following vectors:

w2
lj w1

j1, w
1
j2, . . . , w

1
jd, b

1
j

T
, j = 1, . . . , n1 (14)

[]
each corresponding to a neuron of the hidden layer. At this
point, we can make use of the aforementioned binary in-
dices, which stem from the hidden layer of the network.
Algorithm 1 implicitly takes into account these indices,
when calculating the corresponding vertex of the output
polytope. Indeed, given the aforementioned observations
regarding the vertices of the polytope of the original net-
works, any of them, let v, can be described via the vertices[]T
vj = w1 1

j1, wj2, . . . , w
1
jd, b

1
j of the hidden layer neurons:

v =
j∈I

w2
ljvj = W̄ 1 T

diag w2
l 1I (15)

∑ () ()
where:

• I is the set of activated vertices of the hidden layer,
corresponding to the index of this vertex,

• 1I is the binary column vector with 1 in the rows
corresponding to the neurons of this set,

• W̄ 1 is an extended form of the weight matrix of the
hidden layer, whose final column contains the biases
of the neurons.

This representation is the same across the operations per-
formed during Algorithm 1, with the only difference being
that the binary vector is instead replaced with an arbitrary
integer vector t (due to the differences calculated by the
algorithm), as seen in the following:

v = W̄ 1 T
diag w2

l t (16)
() ()

Let us assume that first, the above algorithm is applied to
our network, albeit considering only one output neuron,
with all of its weights equal to 1, and that the result is a
hidden layer with a corresponding matrix ¯ 1

W ′ . We want
to approximate the above vertices, using those of ¯ 1

W ′ , as
well as the weights of the output neurons. For the thl output
neuron, we want to solve:

v′
jw

2
lj = W̄ 1 T

diag w2
l tj , j = 1, . . . , n′1 (17)

() ()
where v′

j is the thj column of ¯ 1
W ′ . An approximate solu-

tion can easily be found, using the pseudoinverse of v′j :

w2
lj =

1

‖vj‖22
v′T
j W̄ 1 T

diag w2
l tj , j = 1, . . . , n′1

(18)

() ()
Using the above idea, we can approximate multiple outputs
from all neurons at once, using the following method:

• First perform the algorithm to approximate a neural
network with only a single output neuron, assuming
that all of its weights are equal to 1. This approxima-
tion results in a weight matrix ¯ 1

W ′ , for the hidden
layer of the network. While doing so, also keep note of
the vectors tj , corresponding to each of these neurons.

• For each output neuron l of the network, calculate its
weights w2

lj , using (18).

This way, we first create a baseline Newton polytope. We
then transform its vertices, in an attempt to approximate
their representation in the space of the original polytope
(that is, the points which would have resulted by adding the
vertices in the same sequence in each separate polytope).

In the above, we made the assumption that the weights of
the output layer are strictly positive. This assumption can
be lifted, by splitting the weight matrix of the output layer
(and thus, the output layer itself) into two parts, each with
positive weights, as follows:

W 2 = W 2
+ −W 2

− (19)

Multiclass Neural Network Minimization via Tropical Newton Polytope Approximation

Note that this is always possible, regardless of the actual
weights of the output layer. As such, we can treat each part
as a separate output layer (with a common hidden layer),
and recombine them after we approximate them individually,
by setting the final weight matrix as their difference.

4.2. Minimization as a One-Versus-All Problem

The above method to approximate the vertices of the poly-
tope via a transformation allows us to perform an arbitrary
minimization on the hidden layer of the network. However,
when calculating the importance of each vertex, it treats the
samples the same way, regardless of their class. This might
not be ideal, given that, intuitively, the ability to handle
samples belonging to separate classes differently appears to
be of great importance. As such, we elect to regard the mul-
ticlass minimization problem as a one-versus-all variation,
rather than a complete, single problem.

More precisely, let us examine a network with one hidden
layer, with weights and biases W 1, b1 and W 2, b2 for the
first and the second layer, respectively. It is possible to
create an equivalent network, by adding more neurons in
the hidden layer, so that the weight matrix of the output
layer becomes block diagonal. In particular, we can use the
following matrices for the two layers:

W 1 . ˜ 1W =  . .

b1

˜1  . b =  . .

˜ 2W

W 1 
2w . . . 01 . . . =  . .

b1

b̃2 = b2

(20)

20 . . . wC

   

where w2
i is the thi row of W 2 and C the number of classes

to be distinguished, which is also equal to the number of
output neurons of the network. The resulting network has
C times the neurons of the original in its hidden layer, but
corresponds to the same function as the original.

The process used for the one-versus-all minimization can
be seen in Algorithm 2. The resulting network contains the
desired number of neurons, given that C copies of the hidden
layer are created, for each output neuron to be independent
of the others. This way, we approximate the polytopes of
each output neuron as separate entities from the rest.

Of note is the second step of Algorithm 2. Assuming that the
original dataset is balanced, if the one-versus-all procedure
is applied as is, then for each output neuron there will be
C − 1 negative samples (other classes) for each positive
sample (class of this output neuron). Dynamically weighting
the appearances of each sample allows us to artificially
rebalance this dataset, in order for both the positive and
negative samples of each class to influence the result.

Algorithm 2 One-Versus-All Multiclass Minimization
Goal: Create a new network with an arbitrary percentage f
of the original hidden layer.

1. Perform the single output minimization algorithm, sep-
arately for each output neuron (considering only its
corresponding copy of the matrix W 1), while keeping
only f/C neurons for each part.

2. During the previous step, when minimizing the poly-
tope corresponding to the thi output neuron, add C − 1
appearances for each sample with label i, and only 1
for each other sample.

3. Accumulate the results for both layers, and create a
single matrix for all classes (either by stacking them
vertically for the hidden layer, as before, or by creating
a block diagonal matrix for the output layer).

4. Set the bias for the output layer via a weighted average
difference of activations (calculated as in Algorithm 1),
with samples belonging to the same class as the output
neuron having a weight of C − 1 as before.

It is also important to notice that, given the nature of Algo-
rithm 1, at least one neuron is given as output for the posi-
tive and the negative polytope corresponding to the network.
This provides a lower limit to the number of neurons in
the hidden layer of the network constructed by our method,
given that there will be, at the very least, 2 neurons for each
of the C classes. This limit is supported by the theoretical
fact that, with only one neuron with a ReLU activation, we
cannot approximate a general, non-convex function.

5. Stable Single Output Minimization
Algorithm

5.1. Algorithm Definition

Due to the increased complexity in the multiclass minimiza-
tion tasks we examine in this work, Algorithm 1 might be
inadequate in this case, since it adds vertices outside of the
original polytope might be added in the new network, which
might lead to high difference in outputs. In this context, we
propose an alternative method by which to select a divisor
polynomial for each of the classes. This alternative method
is also applicable in the case of binary classification net-
works, however we expect its value to be demonstrated in
our, more complicated, task.

Let us first assume that we analyze a single output neuron
of the network, and the vertices of the polytope are assigned
weights and sorted as previously described. We require our
result to contain neurons which can be constructed via com-

Multiclass Neural Network Minimization via Tropical Newton Polytope Approximation

Algorithm 3 Stable Divisor Picking Algorithm

1. Pick the part of the network corresponding to posi-
tive (or negative) output weights, and rank the impor-
tance of vertices (weights and bias of hidden layer
neurons, multiplied by output weight) as before, con-
verting them to their binary representation.

2. Add the first vertex v1 as a neuron, and initialize an
accumulator a = v1. Let k = 1 be the number of
neurons already inserted.

3. For each new vertex vi:

• If it has no common neurons with any of the previ-
ous ones (a∧v1 = 0 . . . 0), set wk+1 ← vi, a←
a ∨ vi.

• Otherwise, c = a ∧ vi. For each wj inserted,
split it into two neurons:

wj ← wj ∧ ¬c, wk+1 ← wj ∧ c

if both are nonzero. After checking all neurons,
add one more, wk+1 ← vi ∧ ¬c, if nonzero.

In any case, increment k as neurons are added, and set
a← a ∨ vi.

4. Repeat until a given k, and replace all new neurons
with their actual weights (sums of the original neurons
which construct them).

binations of neurons in the original network, which leads to
the polytope of the divisor being inside of that of the original
network. What this means is that we want to choose distinct
subsets of the neurons, each with a score based on the num-
ber of corresponding samples. This problem is similar to
Set Packing (Karp, 1972), but here the score of a subset is
defined by all the sets that we choose (since, for example,
picking any two vertices causes us to implicitly pick their
sum). In order to approximately maximize the number of
samples covered by the chosen divisor, we propose an alter-
native algorithm to picking a divisor, namely Algorithm 3.
This algorithm is, once again, performed separately for the
positive and negative parts of the network with output bias
being added as before.

Our algorithm adds neurons so that unions of some of their
subsets gives us the binary labels of the chosen vertices.
These are matched exactly, as seen in Figure 3. Of note
is the splitting process in step 3, where, for example, to
add vertices with labels 1110, 0111, we add the neurons
1000, 0110, 0001, to retain the vertices as subset sums.

Theorem 2. The resulting polytope of the divisor contains
only vertices inside of the original network polytope.

Tropical Deg
ree 1

0.0 0.5 1.0 1.5 2.0 2.5

T
ropical

D
egree

2

0.0
0.5
1.0
1.5
2.0
2.5

C
o
effi

cien
t

0

1

2

3

Vertices Kept

(a) Original Polytope. (b) Approximated Polytope.

Figure 3. Creation of divisor by the use of Algorithm 3. Left is the
upper hull of the polytope of a network with three neurons. On
the right is the approximated network with two neurons, using the
marked vertices.

Tropical Deg
ree 1

0.0 0.5 1.0 1.5 2.0 2.5

T
ropical

D
egree

2
0.0
0.5
1.0
1.5
2.0
2.5

C
o
effi

cien
t

0

1

2

3

Vertices Kept

Proof. This is due to the fact that, in each step, the previous
neurons are modified, setting them as w∧¬c, removing bits
from their binary labels so that each neuron of the original
hidden layer is contained at most once. Since the vertices of
the divisor polytope are subset sums of the new neurons, all
of them will also correspond to sums of the original neurons,
that is, points of the original polytope. As such, the Newton
polytope of the divisor is inside the original one.

Theorem 3. The samples corresponding to the chosen ver-
tices have the same output in the new divisor, as they did in
the original network (if the output bias is ignored).

Proof. This is due to the entire polytope of the divisor being
contained inside of the original, and the chosen vertices
matching exactly. Thus, the corresponding samples need to
retain their output (there are no points outside of the original
polytope, to influence the result).

Theorem 4. If n1 is the number of neurons in the original
hidden layer (corresponding to either positive or negative
output weights), N the total number of samples, and n′ the
number of desired neurons, then the samples which certainly
correspond to the chosen vertices are at least:

N∑d
j=0

(
n1

j

)O (log n′) (21)

Proof. The maximum length of(the)list of counts of acti-∑ n
vated vertices is equal to d 1

j=0 , the number of linear
j

regions in the polynomial of the network (Zhang et al.,
2018). Since the ordering is descending,/the sum(of the)∑ n
counts of the chosen vertices is at least d

NK 1
j=0 ,

j
if the N samples are evenly distributed across the list. Fi-
nally, K, the number of polytope vertices which are cer-
tainly picked, is at least O (log n′), since if all previous

Multiclass Neural Network Minimization via Tropical Newton Polytope Approximation

Tropical Deg
ree 1

0 2 4

T
ropical

D
egree

2

0

2

4

C
o
effi

cien
t

0

1

2

3

Tropical Deg
ree 1

−2 0 2 4

T
ropical

D
egree

2

−2

0
2
4

C
o
effi

cien
t

0

1

2

3

Tropical Deg
ree 1

0 2 4

T
ropical

D
egree

2

0

2

4

C
o
effi

cien
t

0

1

2

3

(a) Original Polytope. (b) Algorithm 1. (c) Algorithm 3.

Figure 4. Network approximation example, the polytope created by Algorithm 3 is closer to the original.

neurons change when adding a vertex, then their number is
doubled. All of the above lead to the desired limit (the limit
holds separately for the positive and negative parts).

The above lower bound might be significantly lower than
the actual value, since it does not consider the additional
vertices covered by the extra neurons added in each step,
whose number depends on the actual neurons.

Note that Algorithm 3, while rigorous, is quadratic to the
number of neurons n′ in the final hidden layer. As such,
Algorithm 1 is faster, but also likely less stable when used in
the multiclass case. Thus, we shall make use of both in the
one-versus-all format discussed in the previous section, in
order to minimize a network with multiple output neurons.

5.2. Example for Algorithm 3

To compare this new algorithm with Algorithm 1, we can
examine the same example presented in Section 3.3. If
we perform Algorithm 3 this time, the activated vertices
are labeled as 1111, 1110 and 1101. First we set w1 =
[5, 5, 2]T as before, but to add vertex 1110 we split it:

w1 = v1111∧¬1110 = v0001 = p4 = [0, 2, 0]
T

w2 = v1111∧1110 = v1110 = p1 + p2 + p3 = [5, 3, 2]
T

(22)
Similarly, we then add vertex 1101. Note that in this case,
the first neuron, currently 0001, would give us an empty
neuron: 0001 ∧ ¬1101 = 0000, so we do not split it. For
the second neuron, we set:

w2 = v1110∧¬1101 = v0010 = p3 = [2, 0, 0]
T

w3 = v1110∧1101 = v1100 = p1 + p2 = [3, 3, 2]
T

(23)

As such, the new hidden layer is:

W ′1 = 0 2
2 0
3 3

 , b′
1

= 0
0
2

 (24)

   

It can be seen that, in this case as well, the outputs of the
network over the dataset are the same in the new network.
However, in Figure 4, we can see the polytopes constructed
by the two algorithms. Algorithm 3 creates a polytope which
is closer to the one of the original, as was expected.

6. Experiments
We now perform certain experiments for the methods dis-
cussed above. In particular, we shall test the one-versus-all
formulation of multiclass minimization, both with the sim-
ple minimization procedure described in Algorithm 1, as
well as that proposed in Algorithm 3, which we shall refer
to as Heuristic and Stable Minimization, respectively. For
our experiments we made use of Keras for writing our code
(Chollet et al., 2015). The experiments were performed
on a Core i5-7200U CPU clocked at 2.5GHz, with 8GB
of RAM and 8GB of swap space. The code used is pro-
vided as supplementary material, and can also be found
here: https://github.com/GeorgiosSmyrnis/
multiclass_minimization_icml2020.

We made use of the MNIST dataset of handwritten
digits (Lecun et al., 1998), as well as Fashion-MNIST
(Xiao et al., 2017), to evaluate our methods (avail-
able at http://yann.lecun.com/exdb/mnist/
and https://github.com/zalandoresearch/
fashion-mnist, respectively). Five runs were per-
formed in total, each beginning by training a simple network
over the dataset. In particular, for the MNIST dataset, the
network consisted of two convolutional layers, each with 16
units, 5× 5 kernels, ReLU activations and maxpooling with
a factor of 3. The output of these layers was then fed to a
two-layer feedforward network, with ReLU activations and
500 neurons in the hidden layer. For the Fashion-MNIST
dataset, the structure was similar, except the convolutional
layers contained 32 units and the hidden layer in the end
1000 neurons. These hyperparameters where not optimally
chosen via cross-validation, but serve well in demonstrating
the results of the minimization task at hand.

https://github.com/GeorgiosSmyrnis/multiclass_minimization_icml2020
https://github.com/GeorgiosSmyrnis/multiclass_minimization_icml2020
http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist

Multiclass Neural Network Minimization via Tropical Newton Polytope Approximation

Table 1. MNIST Accuracy, Heuristic Minimization (Algorithm 1).

PERCENTAGE OF NEURONS
KEPT MEAN ACC. ST. DEV.

100% (ORIGINAL) 98.604 0.027
90% 95.714 1.342
75% 95.048 1.552
50% 95.522 3.003
25% 91.040 5.882
10% 92.790 3.530
5% 92.928 2.589

Table 2. MNIST Accuracy, Stable Minimization (Algorithm 3).

PERCENTAGE OF NEURONS
KEPT MEAN ACC. ST. DEV.

100% (ORIGINAL) 98.604 0.027
90% 96.604 1.297
75% 96.560 1.245
50% 96.392 1.177
25% 95.154 2.356
10% 93.478 2.572
5% 92.928 2.589

After training the network for each run, the hidden layer of
the feedforward part was minimized. Results are shown in
the relevant tables, which record the mean accuracy over the
test set and its standard deviation over the five runs. Note
that, since our one-versus-all algorithm assigns the same
number of neurons for each class, ratios which do not lead
to an even distribution of neurons round their number down,
so that the final network stays within limits.

6.1. One-Versus-All, Heuristic Minimization (MNIST)

In our first experiment, we evaluate the results of Heuristic
Minimization, over the MNIST dataset. The experiments
were performed as described previously, with results appear-
ing in Table 1. We see that our method appears to preserve
a significant amount of information across all classes. As
such, the average accuracy achieved in the test set is close
enough to the original. However, there is indeed a high
amount of variance from this method, which is to be ex-
pected given its random nature.

6.2. One-Versus-All, Stable Minimization (MNIST)

In the next experiment, we test the one-versus-all version of
our problem, where instead we use the Stable Minimization,
outlined in Section 5. This method makes use of Algorithm
3 in order to find a better divisor polynomial, with the rest
of the process being the same as before. The results are
summarized in Table 2.

We see that the average accuracy of this method is, in gen-

Table 3. Fashion-MNIST Accuracy, Stable Minimization.

PERCENTAGE OF NEURONS
KEPT MEAN ACC. ST. DEV.

100% (ORIGINAL) 88.658 0.538
90% 83.634 2.894
75% 83.556 2.885
50% 83.300 2.799
25% 82.224 2.845
10% 80.430 3.267

eral, higher than that of the previous one. This is likely due
to the more accurate approximation of the polytope, in com-
parison to Heuristic Minimization. Moreover, the variation
induced by our method is, in general, comparable or smaller
than that of Table 1. This is as expected, especially in the
case of a smaller amount of neurons kept, where the random
nature of the first method likely induces more variation.

Note that the final line of both of these tables is the same.
This is due to the fact that, as previously described, this level
of minimization approaches a lower limit (two neurons per
class). Both of these methods keep the same first neuron,
and here they only keep one each time they are applied, so
their behavior is the same.

6.3. One-Versus-All, Fashion-MNIST

Finally, we test our method in the Fashion-MNIST dataset,
using the network previously described. More specifically,
we examine the Stable Minimization method, with results in
Table 3. We see that the accuracy drop in this case is higher,
however the final network is still capable of adequate results
in the dataset. This decrease is likely due to the increased
difficulty of the dataset, when compared to MNIST. Never-
theless, this result demonstrates the ability of our method to
minimize networks trained for similar, multiclass problems.

7. Conclusions and Future Work
In this work, we presented methods to approximate the New-
ton polytopes of tropical polynomials, in order to minimize
networks trained for multiclass classification problems, by
expanding and proposing alternatives to our previous work.
We also performed experimental evaluations, with results
demonstrating an ability to retain high levels of accuracy,
despite the lower number of neurons.

In order to advance these subjects, it is important to apply
such methods for the approximation of tropical Newton
polytopes in more complicated architectures, such as deep
and convolutional neural networks. In doing so, it will
be possible to compare their results with more traditional
network pruning techniques, on well-known architectures
and more realistic datasets.

Multiclass Neural Network Minimization via Tropical Newton Polytope Approximation

Acknowledgements
The authors would like to thank George Retsinas for the
very useful discussions on the topics of this paper. The
authors also thank the anonymous reviewers for their very
helpful and constructive comments on this paper.

References
Akian, M., Gaubert, S., and Guterman, A. Tropical Poly-

hedra Are Equivalent To Mean Payoff Games. Int’l J.
Algebra and Computation, 22(1), 2012.

Buchberger, B. Grobner¨ Bases: An Algorithmic Method
in Polynomial Ideal Theory, pp. 184–232. D. Reidel
Publishing Company, 1985.

Butkovic,ˇ P. Max-linear Systems: Theory and Algorithms.
Springer, 2010.

Calafiore, G. C., Gaubert, S., and Possieri, C. Log-Sum-Exp
Neural Networks and Posynomial Models for Convex and
Log-Log-Convex Data. IEEE Trans. Neural Networks
and Learning Systems, 30(5):1–12, May 2019.

Calafiore, G. C., Gaubert, S., and Possieri, C. A Universal
Approximation Result for Difference of Log-Sum-Exp
Neural Networks. IEEE Trans. Neural Networks and
Learning Systems, 2020.

Castellano, G., Fanelli, A. M., and Pelillo, M. An Iterative
Pruning Algorithm for Feedforward Neural Networks.
IEEE Trans. Neural Networks, 8(3):519–531, 1997.

Charisopoulos, V. and Maragos, P. Morphological Percep-
trons: Geometry and Training Algorithms. In Proc. Int’l
Symp. Mathematical Morphology (ISMM), volume 10225
of LNCS, pp. 3–15. Springer, Cham, 2017.

Charisopoulos, V. and Maragos, P. A Tropical Approach
to Neural Networks with Piecewise Linear Activations.
arXiv preprint arXiv:1805.08749, 2018.

Chollet, F. et al. Keras. https://keras.io, 2015.

Cohen, G., Gaubert, S., and Quadrat, J. Duality and Sep-
aration Theorems in Idempotent Semimodules. Linear
Alegbra and its Applications, 379:395–422, 2004.

Crowell, R. A. The Tropical Division Problem and the
Minkowski Factorization of Generalized Permutahedra.
arXiv preprint arXiv:1908.00241, 2019.

Cuninghame-Green, R. Minimax Algebra. Springer-Verlag,
1979.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
Weights and Connections for Efficient Neural Network.
In Advances in Neural Information Processing Systems,
pp. 1135–1143, 2015.

Hassibi, B. and Stork, D. G. Second order derivatives for
network pruning: Optimal Brain Surgeon. In Advances
in Neural Information Processing Systems, pp. 164–171,
1993.

He, Y., Zhang, X., and Sun, J. Channel Pruning For Accel-
erating Very Deep Neural Networks. In Proc. Int’l Conf.
on Computer Vision, pp. 1389–1397, 2017.

Karp, R. M. Reducibility among Combinatorial Problems.
In Complexity of computer computations, pp. 85–103.
Springer, 1972.

LeCun, Y., Denker, J. S., and Solla, S. A. Optimal Brain
Damage. In Advances in Neural Information Processing
Systems, pp. 598–605, 1990.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
Based Learning Applied to Document Recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, Nov 1998.

Luo, J.-H., Wu, J., and Lin, W. ThiNet: A Filter Level
Pruning Method for Deep Neural Network Compression.
In Proc. Int’l Conf. on Computer Vision, Oct 2017.

Maclagan, D. and Sturmfels, B. Introduction to Tropical
Geometry. Amer. Math. Soc., 2015.

Maragos, P. Dynamical Systems on Weighted Lattices:
General Theory. Math. Control Signals Syst., 29(21),
2017.

Smyrnis, G. and Maragos, P. Tropical Polynomial Division
and Neural Networks. arXiv preprint arXiv:1911.12922,
2019.

Smyrnis, G., Maragos, P., and Retsinas, G. Maxpolynomial
Division with Application To Neural Network Simplifi-
cation. In Proc. IEEE ICASSP, pp. 4192–4196. IEEE,
2020.

Speyer, D. and Sturmfels, B. Tropical Mathematics. Mathe-
matics Magazine, 82(3):163–173, 2009.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-MNIST: a
Novel Image Dataset for Benchmarking Machine Learn-
ing Algorithms. arXiv preprint arXiv:1708.07747, 2017.

Zhang, L., Naitzat, G., and Lim, L.-H. Tropical Geometry of
Deep Neural Networks. In Proc. Int’l Conf. on Machine
Learning, volume 80, pp. 5824–5832. PMLR, 2018.

https://keras.io

