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Abstract—

Estimating the engagement of children is an essential pre-
requisite for constructing natural Child-Robot Interaction.
Especially in the case of children with Autism Spectrum
Disorder, monitoring the engagement of the other party allows
robots to adjust their actions according to the educational
and therapeutic goals in hand. In this work we delve into
engagement estimation with a focus on children with autism
spectrum disorder. We propose deep convolutional architectures
for engagement estimation that outperform previous methods,
and explore their performance under variable conditions, in
four databases depicting ASD and TD children interacting with
robots or humans.

I. INTRODUCTION

Social robots have been increasingly involved in our daily

lives, while they have also been introduced in the educational

process of children [1], [2]. Besides typically developing

(TD) children, social robots have been employed to help

children with special needs acquire knowledge and skills,

especially children with Autism Spectrum Disorder (ASD)

[3], [4]. Social robots have shown many advantages in

educational and therapeutic purposes for children with ASD

[5], [6], [7]. When interacting with robots, children with ASD

have shown more interest and experienced more elevated

attention. Also they were more likely to maintain a calm

and active mood, showed themselves to be more comfortable

with emotional response modification and were less likely

to display repetitive behaviors compared to interacting with

people. These findings indicate that children with ASD might

profit significantly from their interaction with robots [8], [9].

In order to achieve qualitative interaction between children

and social robots it is highly important that robots can

adapt their behaviour to the children cognitive state [10].

Engagement is a key characteristic of human response to

an interaction, and various definitions of it can be found in

bibliography. In [11] engagement is defined as the process

by which two (or more) participants establish, maintain

and end their perceived connection during interactions they

jointly undertake. Poggi in [12] added that engagement is the

level at which a participant attributes to the goal of being

together with other participants within a social interaction

and how much they continue this interaction. Lemaignan et

al. [13] described engagement as the measure of “with-me-
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ness”,meaning the extent to which the human is “with” the

robot over the course of an interactive task.

Additionally, there are numerous challenges in estimat-

ing children engagement, as it is a complex, multi-faceted

cognitive mechanism that is only indirectly observable [13].

With engagement being an inherently internal mental state

of the human interacting with the robot, observers (human or

robot) have to resort to the analysis of external cues (vision,

speech, audio) to estimate its level [14]. Furthermore, search

results show that engagement is easier to predict for TD

children than for ASD children [15]. Cues like eye-gaze,

blinking and head-pose, which are shown to be indicative

of the engagement level in TD children, do not appear so

directly connected with it in ASD children[16].

Our main goal is estimating the engagement level for ASD

children interacting with social robots. We propose a method

that estimates at a high level children engagement so that

the robot adapts its actions to establish common ground and

shared goals with the child. We have been working with

several different deep neural network architectures and have

concluded to the ones that outperform previous methods

when they use either 3D or 2D coordinates of pose keypoints.

Moreover, in order to evaluate the generalization of our

models, we test them on four different datasets with different

situations and participants during the interaction. We have

tested our method on interaction of ASD children playing at

home with their mothers, a situation that differs significantly

than children interacting with robots in laboratory conditions.

In addition, we have also tested our method on data of TD

children, in order to check its efficacy and compare it with

previous published results [17]. Our resulting models achieve

important success in engagement estimation for children

facing autism spectrum disorders in a variety of conditions,

situations and interactions.

II. RELATED WORK

Recently, several studies proposed methods for estima-

tion of child engagement during Child-Robot Interaction

(CRI), with each method varying as far as used data, en-

gagement classes, features and machine learning algorithms

are concerned. Earlier studies focused mainly on features

such as head [18], gaze direction[19], face expression [20],

and distance from partner [21]. Hadfield et al. [17], in a

previous work of our laboratory, designed an LSTM based

network to estimate level of engagement of TD children

participating in a joint attention task with a robot. They

used children poses as well as other features like head and

body direction. Rudovic et al. [22] employ a ResNet which
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receives directly the RGB data, followed by a deep neural

network that implements reinforcement learning: the model

decides whether to estimate the engagement level or seek for

human help. Moreover, Baxter et al. [14] in order to estimate

engagement designed a network with two modules: the

convolutional module extract features from the RGB frames,

while the recurrent module uses these features to extract a

temporal feature vector, from which a fully connected layer

estimates the engagement level. Filntisis et al. [23] showed

that by using pose keypoints we can get a more accurate

estimation of children’s emotional state than by using only

the rgb information of children faces. Thus, they proposed a

model that fused two estimation scores to produce the final

estimation: a score given by a convolutional ResNet 50 fed

with the children face cropped images and a score given by

a dense neural network fed with pose information.

A handful of studies have proposed models for engage-

ment estimation of children with autism spectrum disorders.

Recently, Javed et al. [24] proposed a method to estimate the

engagement level of ASD children. They used pose keypoints

that correspond to eyes and lips, as well as three extra

features designated by Laban Movement Analysis [25]. They

trained a one-dimensional convolutional deep neural network

with the feature vectors. In CultureNet [16], Rudovic et al.

propose a method for ASD children engagement estimation

personalized in different culture backgrounds. Their method

uses directly the RGB data, which it feeds in a ResNet-50

network.

III. DATA AND DATA PROCESSING

A. Data Description

We have been working with four different groups of data.

Our main set of data consists of seven sessions in which

participate seven children, two girls and five boys, facing

autism spectrum disorder (mean age 10.6 years old). The

kids were recruited from the Special School for Children

with Autism in Piraeus, Greece, and were randomly assigned

in two levels of severity, mild and moderate, which were

assessed by two experienced clinical child psychologists.

During each session, which lasted approximately 20 min-

utes, one child participated and played five different games

with two robots, NAO [26] and Furhat [27]. Each child

entered in an especially adapted laboratory accompanied by

the researcher and he/she was introduced to the robots and

vice versa. The purpose of this introduction is to help the

children to assume that the robots can be regarded as a

playmate. After the introduction, while the interaction were

proceeding, the researcher didn’t interfere at all.

The games that children played were: Show me the

Gesture, Express the Feeling, Pantomime, Guess the Object

and Joint Attention. During the Express the Feeling Furhat

asks the child to imitate using their faces emotions appearing

on the touch screen. In Show me the Gesture, Furhat prompts

the child to make specific gestures (e.g. wave). During the

Pantomime game, the Nao robot asks the child to imitate

some actions appearing on the touch screen. In the Guess

the Object, Furhat describes objects that lie in the room and

asks the child to find them and place them in a specific box.

Finally, during the Joint Attention game the child interacts

with Nao and is free to move around the room as they please.

With a series of motions the robot attempts to capture the

child’s attention and prompts the child to hand over a brick,

that lies on the floor. For comparison reasons, we refer to

the first four games as ASD-GAMES DATA (Fig. 1b), and

the last game as ASD-JOINT ATTENTION (Fig. 1a).

Another dataset that is used for our experiments consists

of 25 sessions in which participate equal number of typically

developing children (mean age 8.6 years old) participating in

Joint Attention task. Once again, in each session, the child

engages with Nao robot in the joint attention activity. We

refer to these data as the TD-JOINT ATTENTION data set

as child and robot interact in a simple activity that acquires

their mutual attention.

Finally, the fourth group of data consists of three sessions

in which participate three younger children (mean age 5 years

old) with their mothers, facing autism spectrum disorder.

The interactions take place in each child’s home. Each child

participates in two sessions. In the first one child and mother

play the Explorer game, in which they explore together a

box with many different toys. In the second one the mother

pretends that she has been hurt and she cries so that the

child’s response to a situation like this can be recorded. We

refer to these data as the BABYAFFECT data set (Fig. 1c)

We use these four different data groups in order to ensure

that our models are dealing with data of significant variety.

There are TD and ASD children taking part in the same

interaction under the same conditions, ASD children taking

part in more different from each other interactions and

finally ASD children taking part in activities along with their

mothers in their home environment.

B. Data Annotation and Analysis

We regard the level of engagement as the level at which

the child is both attentive and cooperative with the robot

towards their common goal. We designate three distinct

levels of engagement: the first (class 1) signifies that the

child is disengaged, meaning that they are paying limited or

no attention to the robot and that they do not act towards

their common goal in any way; the second (class 2) refers

to a partial degree of engagement, where the child either

acts relatively to the common goal or pays attention to the

robot but not both simultaneously; the final level (class 3)

means that the child is actively cooperating with the robot

to complete their common goal. The data were annotated

by laboratory members according to a set of instructions

containing groups of visual and acoustic cues that correspond

to each engagement level provided by an expert psychologist.

For example, if the child looks at a relevant object, says

something relevant to the common goal and has a neutral

facial expression or if the child looks at the partner, manipu-

lates an irrelevant object and does not speak, they both have

medium engagement level.

There is significant imbalance between the different en-

gagement levels in all four data groups, that we have to take
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(a) JOINT-ATTENTION DATASET (b) ASD-GAMES DATASET (c) BABYAFFECT DATASET

Fig. 1: Instances from the different data sets environments. Children interact with social robots in laboratory. In front of

them is placed a Furhat robot, Anna. On the right stands on the floor a Nao robot, Paris. Children are free to move in the

room as they please. TD Joint Attention, ASD Joint Attention and ASD Games experiments take place in this environment.

(a) A ASD-JOINT ATTENTION instance, child hands brick to Nao robot. (b)An ASD-GAMES instance, child plays ’Show

me the Gesture’ game (c) A BABYAFFECT instance, children play with their mother at home.

into consideration when designing our estimation method.

Table I shows the distribution into classes for the different

data groups. We have also included ASD-Joint Attention-

Human and ASD-Games-Human, which consist of the same

interactions (same children and games/goals) as the ASD-

Joint Attention and ASD-Games, but conducted with human

partner instead of robots and TD-BabyAffect in which par-

ticipate typically developing children in BabyAffect context.

Class discrimination in Table 1 shows that during in-

teraction with their mother in a semi-naturalistic setting,

children with ASD are approximately half time disengaged

compared to TD children (14.72% vs. 31%). This finding

seems to contradict with one of the core features of ASD, i.e.,

withdrawn. However, microanalysis of the interactions shows

that compared to the TD group mothers in the ASD group

make more intense effort to initiate interaction and impose

responses to their child more often, not allowing her to be

disengaged [28], [29]. On the contrary, in the experimental

joint attention situation with a humanoid robot, children with

ASD spent twice as long time disengaged compared to the

TD children (7.80% vs. 17.68%). This time was doubled

in the human condition (34.62%). Similarly, children with

ASD spent approximately 1.5 more time disengaged in the

Game – Human condition compared to the Game – Robot

condition (31.98% vs. 19.35%). On the other hand, children

with ASD spent approximately 1.5 less time cooperating with

their mother in a home setting, than TD children (20.22%

vs. 13.8%). Moreover, it should be noted children with ASD

spent approximately the same time cooperating with a robot

almost in all structured conditions in the laboratory. These

findings accord with studies demonstrating that in structured

situations children with ASD may devote even as much time

as TD children in certain forms of collaboration, although

qualitative differences are still observable [30].

C. Pose Estimation

As mentioned before the child’s pose can be very infor-

mative for recognizing the child’s engagement level. Pose

contains concentrated information that exists on an image

of people interacting. The problem of detecting human pose

keypoints in images is a challenging one, due to occlusions

and widely varying articulations and background conditions.

Distribution (%) Total #
Data Class1 Class2 Class3 Frames

TD-Joint Attention-Robot 7.80 83.42 8.78 108,408

ASD-Joint Attention-Robot 17.68 66.07 16.22 50,869

ASD-Games-Robot 19.35 70.09 10.56 109,381

ASD-Joint Attention-Human 34.62 50.00 15.38 4,680

ASD-Games-Human 31.98 52.69 15.33 75,150

ASD-BabyAffect 14.72 71.48 13.80 27,207

TD-BabyAffect 31.00 48.78 20.22 26,830

TABLE I: Distribution of engagement levels for the different

datasets.

Only recently has the problem been solved to a satisfactory

degree, especially with the introduction of the Open Pose

library [31]–[32] for 2D keypoint detection.

We use the Open Pose library to extract the 2D pose

keypoints. For the Joint Attention data groups we also pos-

sess depth information and multi-camera views. Using these,

we obtain 3D coordinates following the method proposed

in ”A deep learning approach for multi-view engagement

estimation of children in a child-robot joint attention task”

[17]. Afterwords, in every frame we have to decide which

of the detected poses corresponds to the child’s pose. This

need is created because Open Pose detects poses of other

people entering and exiting the camera’s view. Especially,

in the BabyAffect data this is very important because child

and mother are really close to each other in almost every

frame. To do that, we choose the child’s pose on the first

frame by comparing torso lengths of the detected poses. In

subsequent frames we choose the pose that is closest to the

previous child’s pose, while on the same time their distance is

smaller than a suitable threshold. If there is no such pose we

mark the frame as missing. If the previous frame is marked as

missing we choose the child’s pose comparing torsos length

with the child’s torso length. Again torso length must lie

between two thresholds. We also apply linear interpolation

in order to produce missing body parts values.

In BabyAffect data we also produce mother’s poses in

the same way. In interactions where the partner is the Nao

robot (and not Furhat which is stable) we locate Nao’s head

in every frame. Due to the fact that children in all data

sets interact with partners, we are not interested in their

independent poses, but in their poses regarding the partner.

Therefore, we subtract the coordinates of partner’s head from
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the child’s pose keypoints coordinates.

Afterwards we subtract from each pose’s point coordinates

the left hip coordinates. We have produced the missing

hip values by applying linear interpolation. In this way the

vector’s values are relative to each other, they reflect the

relation between pose parts. Finally, we normalize values in

space [0,1].

IV. METHOD

A. Network Architectures

Engagement significantly depends on temporal informa-

tion, on the progress of the ongoing interaction. Simulta-

neously, pose features resemble images and therefore could

be successfully processed by convolutional networks. We

have to combine the ability of original two dimensional

convolutions to extract patterns from images with the need to

exploit temporal data information in engagement estimation.

Inspired by ’2D/3D Pose Estimation and Action Recogni-

tion using Multitask Deep Learning’ [33], we rearrange the

pose keypoints vectors to structures that resemble images

as follows: Vertical axis represents time, horizontal axis

represents skeleton parts, while the coordinates of each part

represent the images channels. For example, for 3D coordi-

nates of pose keypoints, the x, y, z coordinates correspond

to r, g, b channels. Respectively, for 2D coordinates of pose

keypoints, the x, y coordinates correspond to two channels.

This rearrangement is shown in Fig. 2. In this way, we

can exploit the rich information of pose data and the time

continuity with convolutions.

Fig. 2: Rearrange pose keypoints vectors to structures that

resemble images.Vertical axis represents time, horizontal axis

represents skeleton parts, while the coordinates of each part

represent the images channels.

Therefore, we design two convolutional networks that

receive data in the form described above. The first one, is

a convolutional network that resembles the classic AlexNet

architecture [34]. It consists of convolutional layers with

suitable characteristics to suit and process our inputs.

In order to achieve greater computational efficiency, both

in terms of training time and space required, we also de-

signed a simpler 2D CNN that consists of three convolutional

layers (one with kernel size 5 and two with kernel size 3)

with ReLU activation and max-pooling, an adaptive average

pooling layer, a fully connected layer with dropout and ReLU

activation and a final fully connected layer, with a softmax

function, applied to the output as before. Number of channels

of the first convolutional layer equals the data dimensionality.

The network’s architecture can be seen in Fig.3.

We compared the results of our network architectures with

recurrent neural networks based on LSTM layers that had

been used before in the TD-Joint Attention data set[17].

Long Short-Term Memory networks are a special kind of

RNN, capable of learning long-term dependencies and are

well-suited to classifying based on time series data. The

network consists of three fully connected layers with dropout

and ReLU activation, one or two Long Short-Term Memory

(LSTM) layers and a final fully connected layer, with a soft-

max function, applied to the output to produce a probability

score for each class.

Furthermore, we compared our results with an one-

dimensional multi-channel convolutional network inspired by

the network in [24] with the addition of pooling layers.

Specifically, the network consists of two one-dimensional

convolutional layers with ReLU activation, max-pooling and

dropout layers, an average pooling layer, two fully connected

layers with dropout and ReLU activation, and a final fully

connected layer with a softmax function, applied to the

output as before.

B. Implementation

We use PyTorch library [35] to implement all networks

described in the previous section. We divide the data used

to training and validation set leaving in each experiment

videos of some children for validation set. Deep neural

networks generally require a large amount of data to train

successfully and avoid overfitting. Thus, we use two ways of

data augmentation. We flip vertically the feature vector with

a 0.3 probability and we add a small amount of Gaussian

noise to the feature vector with 0.5 probability.

We used a batch size of 128 and a learning rate of

3∗10
−4 after we experimented with different values. We also

used a sequence length of 200 frames. The sequence length

corresponds to the time window that the neural network

”sees” every time. With a frame rate of 30fps 200 frames

correspond to 6 to 7 seconds.

To update network weights we employ as optimization

algorithm the Adam Optimizer [36]. We also choose Re-

duceLROnPlateau scheduler in order to decrease learning

rate when running loss has stopped decreasing by a factor

of 2-10 once learning stagnates.

Fig. 3: 2D CNN network for engagement estimation. Net-

work receives as input a sequence of child’s poses in form

of an image and estimates the child’s engagement level.
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Fig. 4: Change of evaluation metrics for different sequence

lengths given to the convolutional AlexNet network to esti-

mate engagement. Sequences larger than 100 frames (approx-

imately 3 seconds) allow the network to train and estimate

engagement. Sequences of 200 frames (approximately 6 to

7 seconds) lead to the best results.

As loss function for training our networks we use a

weighted Cross Entropy Loss Function, so that our networks

take into consideration the significantly unequal distribution

of frames into classes in our data sets and attach greater

importance to the less common classes. We produce a vector

containing the weights for each class, by dividing the number

of frames belonging to the majority class with the number

of frames belonging to each class. We pass the weight

vector as an argument to the Cross Entropy Loss Function.

Because Cross Entropy Loss implementation in PyTorch also

embodies the softmax function, we remove the final softmax

layer from all networks.

To evaluate our models besides standard accuracy, we use

two more metrics to account for the great class imbalance.

The first one is weighted F-score, which take high values

only when both precision and recall of each class are high,

while the second one is weighted precision (w.precision),

which is the weighted mean value of all classes precision.

V. RESULTS & DISCUSSION

In Table II we present estimation results for the TD-Joint

Attention data set. We use the tag ’majority class’ to refer

to the a network that would always produce as output the

most common class. Besides the four networks described

above we also include an LSTM network as in [17], an one

dimensional CNN network as in [24] (here as input features

we use our features and not the features proposed in [24])

and a network based on ResNet-50 as in [22]. The estimation

results, especially these produced by the AlexNet model, are

truly satisfying. Our network achieves accuracy, F-score and

precision higher than 80% , which are significantly higher

than scores of other networks.

In Table III we present estimation results for the ASD-

Joint Attention data set. We train for a few epochs the

pretrained on TD-Joint Attention data set models using the

ASD-Joint Attention data. If we estimate ASD children

engagement level directly using the TD- Joint Attention

pretrained networks we get relatively poor results with high-

est accuracy not outreaching 60%. However, using the TD

pretrained networks in a fast training with small amount of

data we obtain networks that succeed in estimating ASD

engagement. This, is important as ASD data are fewer and

more difficult to collect. Although the metrics values are

not so high as for the TD children, our models manage

to estimate ASD children engagement to a large extent.

As we mentioned above, ASD children do not express

themselves in so direct ways as TD children, making it

more challenging to estimate their engagement. Therefore,

the fact that the convolutional AlexNet achieves nearly

80% accuracy (78.73%), with relatively high F-score and

precision, is truly encouraging. The convolutional AlexNet

performs considerably better than all other networks.

Network Accuracy F-score W. Precision

majority class 74.32 63.38 55.25

1D CNN 72.98 60.15 56.32

ResNet50 74.52 64.52 63.285

LSTM (one layer) 76.23 74.15 74.35

1D CNN 77.44 75.15 76.30

2D CNN 78.93 76.46 77.43

LSTM 79.47 76.88 78.04

AlexNet 80.36 80.48 80.71

TABLE II: Engagement estimation results of different net-

work architectures for the TD-Joint Attention data set.

Network Accuracy F-score W. Precision

majority class 57.44 41.15 32.26

1D CNN 67.91 67.98 68.10

2D CNN 70.88 71.32 73.63

LSTM 71.76 71.55 71.49

AlexNet 78.73 73.39 82.38

TABLE III: Engagement estimation results of different net-

work architectures for the ASD-Joint Attention data set.

Network Accuracy F-score W. Precision

majority class 57.44 41.15 32.26

2D CNN (2D coordinates) 75.82 75.39 76.96

2D CNN (3D coordinates) 70.88 71.32 73.63

LSTM (2D coordinates) 61.53 60.48 62.05

LSTM (3D coordinates) 71.76 71.55 71.49

AlexNet (2D coordinates) 67.18 64.26 67.83

AlexNet (3D coordinates) 78.73 73.39 82.38

TABLE IV: Engagement estimation results for ASD-Joint

Attention data set using three dimensional (3D) and two

dimensional (2D - without depth) keypoint coordinates.

For the TD and ASD-Joint Attention data sets we worked

with the 3D coordinates of pose parts. This was possible

because all sessions were recorded with three RGB-D cam-

eras, enabling the 3D coordinates extraction. However, not all

children engagement observation experiments are intended

for computational utilization from the beginning. Therefore,

they may be recorded with a simple conventional camera,

not allowing depth extraction. ASD-Games and BabyAffect

data sets consist of two dimensional data. Therefore, in Table

IV we present a comparison between training with 2D and
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3D data the ASD-Joint Attention data set. 3D models are

provided with more essential information, as the depth co-

ordinate reveal information about the different image layers,

the relative positions of people and objects in the image.

Thus, as it was expected models learn more accurately when

3D coordinates are available. The 1D CNN model could not

be trained at all being provided only with 2D coordinates. On

only one occasion (2D CNN) the 2D model achieved better

estimation than the 3D one. This may be due to overfitting,

but more probably our convolutional neural network (shown

in Fig. 3) fitted with the two dimensional input vectors. This

network achieves relatively high estimation results for the

two remaining data sets which are two dimensional.

In Table V we present estimation results for the ASD-

Games data set. We fine-tuned our models and have managed

to produce satisfying engagement estimations for these inter-

actions too. Even though, the estimation is less accurate than

the estimation on the Joint Attention data sets, the results

still are relatively good. Specifically, convolutional AlexNet

network achieves accuracy and F-score that approach 70%

(68.34% and 67.57% respectively). These results show that

our method can successfully be used for ASD children

engagement estimation in CRI interactions for a variety of

such interactions during which children are asked to talk,

gesture, move around the room or play before a screen.

The reason for the accuracy difference between ASD Games

and ASD Joint Attention data set is that in ASD Games

we estimate ASD children engagement level in much more

varying interactions than the simple joint attention interaction

with the robot asking for a toy.

Finally, in Table VI we present estimation results for

the BabyAffect data set. Once again, we achieve satisfying

engagement estimation scores, in different and difficult con-

ditions. Here, ASD children play with their mothers in their

home environment, meaning that they feel entirely free and at

ease. Both convolutional networks achieve high engagement

estimation accuracy results. The 2D CNN convolutional

network achieves accuracy that once again approaches 80%

(77.59%), with over 70% F-score and weighted precision

respectively. The results for both convolutional networks

are significantly high, given the difficulty of the task’s

conditions, proving that our method can successfully esti-

mate engagement in a totally different environment and for

children-adult interactions too.

It is important to emphasize that all above results have

been achieved by training the networks (regardless of net-

work architecture) with sequence length of 6 seconds. This

time interval proves to be both necessary and sufficient in

order to allow the network to learn to identify a child’s

level of engagement. We have experimented with a variety

of lengths before choosing 6 seconds. In all different kind

of networks, we came into the conclusion that the network

needs to see an interval of at least three seconds in order

to estimate the engagement level successfully. There is an

improvement from 3 to 7 seconds, but beyond this sequence

length the network does not further improve, while the

training becomes much slower. Fig. 4 shows the change

of values of the evaluating metrics for different sequence

lengths for the convolutional AlexNet network for the ASD-

Joint Attention data set. It can be seen that the network is

trained and estimates satisfactory the engagement when the

sequences are larger than 100 frames, i.e. approximately 3

seconds, while sequences of 200 frames, i.e. approximately

6 to 7seconds, lead to the best results. The above results

confirm the effectiveness of the network on estimating the

engagement and are also in accordance with corresponding

psychologists conclusions. Human beings are endowed with

the ability to express feelings and intentions in a shared

social space through movements organized in a time frame

ranged 0.3 to 7 seconds. Especially the time frame 3 to

6 seconds is considered fundamental to human motoric

and perceptual functions, such as early mother – infant

interactions, language, and music [37], [38], [39].

Network Accuracy F-score W. Precision

majority class 62.28 47.81 38.80

LSTM 64.77 55.55 62.80

2D CNN 67.28 56.09 51.65

AlexNet 68.34 67.57 65.07

TABLE V: Engagement estimation results of different net-

work architectures for the ASD-Games data set.

Network Accuracy F-score W. Precision

majority class 71.48 59.79 51.10

LSTM 70.55 62.68 56.20

2D CNN 77.59 71.73 74.67

AlexNet 74.24 69.51 68.03

TABLE VI: Engagement estimation results of different net-

work architectures for the BabyAffect data set.

VI. CONCLUSION

In this paper we focused on engagement estimation for

children with autism during interaction with robots. We

proposed deep convolutional architectures trained with pose

features for the task at hand and our extensive experiments

showed the superiority of our method to previous ones. The

greater challenge is to create a model that can relatively

easily adapt from its training conditions to different ones and

continue to successfully estimate ASD children engagement.

An important direction for future work will be to test and

generalize our method to different kind of interactions, such

as interactions during which children are sited and therefore

their pose presents much less variety, as well as enrich

our approach with more input characteristics, such as facial

expressions and speech.
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