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ABSTRACT

In this work, we employ deep learning methods for vi-
sual onset detection. We focus on live music performances
involving bowed string instruments. In this context, we
take as a source of meaningful information the sequence
of movements of the performers’ body and especially the
bowing motion of the (right) hand. Body skeletons for each
video frame are extracted through OpenPose and are then
used as input for Temporal Convolutional Neural Networks
(TCNs). TCNs prove capable of handling such tempo-
ral information by conditioning outputs on an adequately
long history (i.e. variable receptive field), ensuring highly
parallelizable lightweight computations and a multitude of
trainable parameters that provide robustness. As another
source of information for our task, we consider the more
subtle movements of the (left) hand fingers which are re-
sponsible for pitch changes. Detections in this case rely
directly on pixel data from specifically chosen regions of
interest. Here, a 2D Convolutional Neural Network (CNN)
is applied on the input in order to learn the features to
be fed to the TCN. The models were trained and evalu-
ated on single-player string recordings from the University
of Rochester Multi-Modal Music Performance (URMP)
Dataset. We show that these two approaches provide some
complementary information.

1. INTRODUCTION

Onset times is one of the most fundamental elements of the
temporal organization of a music piece. Onsets are placed
relatively to the metrical grid of a music piece and their
positions on this grid (along with duration and velocity)
greatly determines the rhythm structure of a music perfor-
mance. Moreover, the micro-timings, i.e. small time de-
viations of the onset with respect to the ideal metrical grid
are very related to aspects of human expressivity. Conse-
quently, onset detection comprises a fundamental problem
in the field of Music Information Retrieval and it is related
to many other tasks including tempo estimation, beat track-
ing, music transcription, source association.
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Music is often experienced by humans in a visual context.
The visual perception plays a key role whether the stimulus
involves an album cover, a video clip or a live music perfor-
mance [1]. Research in psychology has documented an im-
pact of the visual information on the judgment over musi-
cal live performances [2] or even on how musical structure
is perceived [3]. During the past few years, audiovisual
analysis has drawn the attention of the music information
retrieval community. Visual information can be important
for deducing a performer’s stylistic techniques, recogniz-
ing the playing instruments, capturing the emotional vari-
ations in a piece, etc. Innovative information extraction
techniques employed in such a multimodal context have
been evolved [4]. Traditional image processing, pattern
recognition and deep learning methods have been used to
deal with tasks relevant to this emerging field.

The development of convolutional networks has been de-
cisive for the advancements in computer vision during the
last decades. Convolutional Neural Networks (CNNs),
which apply two-dimensional convolutions, play a crucial
role in machine learning because they enable learning la-
tent features from images, adaptable according to each spe-
cific task. During the last few years, convolutions have also
been employed to handle sequential data using learnable
filters to convolve over the axis of time. These types of
architectures which involve one-dimensional convolutions
are called Temporal Convolutional Networks (TCNs) and
have exhibited some advantages over the often employed
Recurrent Neural Networks (RNNs) such as Long Short-
Term Memory (LSTM) units.

For many musical instruments, the produced sounds cor-
respond to certain visible movements and specific posi-
tioning of the instrument player’s hands. More particu-
larly, with regard to the bowed string instruments, the bow-
ing motions lead to the articulations of music notes (see
Fig. 1). Such visual cues are detectable by the human eye
quite easily. Pitch change requires altering the positioning
of the fingers on the neck of the instrument. Each fingering
transition is strongly correlated to note onsets.

Capturing such visual information content with computa-
tional methods can be challenging, that is why state-of-the-
art computer vision techniques need to be employed. Oc-
clusions and irrelevant or subtle movements are not easy
to cope with. Naturally, not all right hand movements cor-
respond to onsets, and several onsets can be produced by
legatos (i.e. left hand pitch change) without changing the
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Figure 1. Instances of a moving skeleton extracted from a violin performance. Trajectories of the right hand are displayed
with blue color and for the left hand with red.

direction of the bowing motion. Similarly, fingering transi-
tions of the left hand may not bear musical information, or
might not signal the exact time location of an onset. Such
motion can also be difficult to discriminate from vibrato.
Also, onsets of the same note can be produced simply by
new bow strokes without any change in the fingering. Dif-
ficulties arise since part of the left hand is occluded by the
neck of the instrument and occlusions might occur between
fingers, depending also on the relative position of the hand
to the camera. Additionally, discriminating between the
motion of the hand in the scene and the relative motion of
the hand on the neck of the instrument constitutes another
challenging aspect of the problem. Since these movements
can be very subtle, the stability of the camera and its dis-
tance from the hand are also crucial parameters.

The standard process to infer onset locations is by work-
ing on the audio signal. In this paper, however, we present
a method for visual onset detection. We deploy TCNs and
CNNs, and we demonstrate that the visual modality can be
a source of meaningful musical information that, handled
correctly, can help to cope with this challenge. We focus
on bowed string single-instrument performances where the
hand and body movement can provide visual information
for the onset locations.

The rest of the paper is organized as follows. Section 2
provides related work for the fields of onset detection, the
multimodal or purely visual approaches for music analysis
and generation. Section 3 describes the proposed method,
and section 4 provides the experimental results. Section 5
concludes the paper with discussion and future directions.

2. RELATED WORK

2.1 Visual-based Music Analysis and Generation

Visual-based approaches on music analysis have been ap-
plied on several different tasks during the past years.
The visual modality has played a critical role in tasks
such as audio-visual source association, fingering analy-
sis, playing/non-playing (P/NP) activity detection, vibrato
analysis, automatic music transcription and onset detec-
tion [4]. Parekh et al. [5] have engaged in audio-visual
source separation in polyphonic performances, focusing
on motion tracking of bowed string performers, using un-
supervised learning techniques like Non-negative Matrix
Factorization (NMF). Several research teams have worked
on fingering tracking focusing on instruments like guitar,
based on computer vision and statistical tools [6–9], aim-
ing as far as music transcription in symbolic forms like
tablature [10, 11]. In [8], finger tracking on the guitar
player was used to detect "key frames" (i.e. the time lo-

cations of chord changes), a notion very close to onset-
corresponding frames. In [12] a method for guitar tran-
scription is presented relying on video close-up recordings
of the vibrating strings [12]. Fingering recognition and
hand tracking systems have also been developed for piano
performances [13, 14] and violin [15].

Other teams have undertaken audio-visual analysis using
deep learning models. CNNs have been used in tasks like
instrument recognition where the visual modality is promi-
nent [16, 17]. CNNs have also been used for localization
of specific regions in video frames that correspond to dis-
tinct music signal sources and thus also make it possible
to separate the two signals [18]. Extracted skeleton poses
have also been used to extract music information from the
visual modality or to study audio-visual correspondence.
Pedersoli and Goto [19] introduced the task of Dance Beat
Tracking, where they employed TCNs to predict onset lo-
cations, having as input skeleton poses of the dancers while
performing.

Apart from the context of music analysis of the visual
content, body motion related recognition techniques have
been deployed in the context of music generation, as for
example using skeleton data from Kinect sensor for air-
guitar playing [20] or using finger motion data for rec-
ognizing gestures in order to perform on virtual instru-
ments [21]. GANs were recently been employed for vi-
sually enhanced audio inpainting based on live music per-
formances [22].

2.2 Audio and Visual Onset Detection

Traditionally, the task of onset detection has been dealt
with using information from the audio signal. The state-
of-the-art uses a Convolutional Neural Network (CNN) ar-
chitecture [23] in a similar way as CNNs have been used
for edge detection in the field of computer vision. Three
versions of 80-band log-mel features were used to rep-
resent the audio input with three different corresponding
window sizes. Hence, the input was given in the form of
three channels on which 2D convolutions were applied us-
ing two layers involving max-pooling. RNNs have also
been employed successfully to tackle the problem [24].

Zhang and Wang [15] engaged in audio-visual music
transcription for violin. Onset detection was a fundamen-
tal part of such a system. They presented both visual
and audio methods for detecting onset times. The audio-
based method relied on training Gaussian Mixture Models
(GMMs) on Mel-Frequency Cepstral Coefficient (MFCC)
features. The visual-based method was centered on the
analysis of two different sources of visual information pro-
vided by two cameras, one recording the bowing motion
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Figure 2. A flow diagram depicting our methodology for visual onset detection.

and the other recording the fingering transitions. Distinct
prediction functions for the two video signals were em-
ployed, in the first case relying on tracking the hand hold-
ing the bow and in the second, concentrating on recogniz-
ing the violin strings and the relative position of the hands
on them. The resulting prediction scores of each distinct
source of information were finally combined using feature
level and decision level fusion.

Audio-visual analysis focusing on onset detection for
string ensembles has also been conducted by Li et al. [25],
serving as a basis for score-informed audio-visual source
association. The onset locations were estimated by focus-
ing on bow stroke detection and more specifically, on the
zero-crossings of the principal motion velocity, computed
using the information by optical flow vectors. Audio-
visual source association has been handled using vibrato
analysis [26], too. In contrast with the aforementioned
works, in [27], the visual information was reduced, using
OpenPose [28], to keypoints representing body and fin-
ger joints. The vibrato and bow stroke approaches have
been combined and the onset detection task has been aided
by following the finger movements of the players’ left-
hand, thus also permitting the generalization of the anal-
ysis on woodwind and brass instruments. Recently, TCNs
have been used to detect onsets from the audio and visual
sources and for fusing these two modalities [29]. In our
current work, we focus on the visual modality and present
a significantly improved feature extraction procedure and
a more robust TCN model architecture to process skeleton
data. We compare this strategy to a pixel-based approach
which aims at capturing left-hand motion.

3. METHOD DESCRIPTION

3.1 Method Overview

An overview of the proposed methods is illustrated in
Fig. 2. First, the videos are cropped in order to work with

single-player performances. For each single-player per-
formance, we apply OpenPose in order to extract the per-
former’s skeleton. The extracted skeleton is smoothed and
we subsequently extract velocity and acceleration features,
while from the centroid of the left-hand keypoints we ex-
tract Regions of Interest (ROIs) in order to isolate the hand
from the rest of the image. For these ROIs, we compute
the optical flow to capture the motion of the left hand. The
extracted body skeleton features are used to train a TCN,
while the left-hand features are used to train a network that
comprises conventional CNN and TCN layers.

3.2 Video Processing

3.2.1 Preprocessing

As a first step, the videos were automatically cropped us-
ing ffmpeg command-line tool, in order to ensure that only
one person would appear in each recording. For this task,
we took advantage of the available information about the
number of the players involved in every performance and
we chose to segment the frames accordingly, in equal parts,
with respect to the x-axis. Minor corrections were required
to be done by hand in the case of only one recording. We
used OpenPose [30] for 2D pose estimation by employ-
ing the BODY_25 output format with hand keypoint de-
tection enabled using the officially suggested scale number
and scale range values (6 and 0.4 respectively) for achiev-
ing best results. We thus extracted body skeletons com-
prised of 25 points, together with 21 extra keypoints for
each hand.

3.2.2 Body Motion Information

Deriving onsets only from body movements does not re-
quire all of the predicted skeleton keypoints. In this setting,
hand joint keypoints, ears and eyes, as well as those points
corresponding to the knees and below were all ignored be-
cause they were considered redundant or in some cases
they were prone to occlusions. We were left with 11 body
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Figure 3. Skeletons and ROIs are extracted from a video
frame involving a violonist from a performance in the
URMP Dataset [28]. Optical flow is further computed for
the isolated hand ROI.

keypoints (see Fig. 3) and hence 22 coordinate values. We
followed the processing steps from [31] in order to create
continuous skeletons: we eliminated joints with confidence
score lower than 0.2 and, in order to rule out abrupt and un-
natural keypoint shifts, we discarded keypoints if distance
of a joint from one frame to the other was found larger than
the 10 percent of the nose to hip distance. In frames where
certain joints were occluded or eliminated (following the
above criteria), or even in the rare cases where OpenPose
failed to capture a skeleton, the keypoints were recreated
using linear interpolation between valid frame instances.
Centered moving average with window size 5 was used to
further smooth the skeleton motion.

After having computed the centroid of the skeletons for
each frame and the corresponding standard deviation of the
keypoints, we have applied z-score normalization in 2D
space using the mean values of the two magnitudes along
time. This procedure was applied separately for each per-
formance. In this manner, we have first of all imposed a
new center of axis which enabled us to rule out the differ-
ences among the positioning of the performer in relation
to the edges of the video frames for each distinct record-
ing. Secondly, we eliminated the variation of skeleton sizes
among the performances which is introduced especially
due to the different distances of the performer from the
camera. Finally, keypoint velocities and accelerations were
used as additional features, leading to a 66-dimensional in-
put.

3.2.3 Pixel Data

In order to get information from the hand responsible for
the pitch changes, one should focus on the finger move-
ments and positioning. The OpenPose keypoints corre-
sponding to the performers’ hands are highly inaccurate
in this particular setting since they are often occluded by
the neck of the instrument and involve jitter. The rela-
tively long distance of the hand from the camera makes
things even worse. This raises the need for extracting fea-
tures directly from the images. For this task we chose to

employ Convolutional Neural Networks (CNNs). In or-
der to eliminate redundant visual information and focus on
the (left) hand movements we took advantage of the pre-
dicted hand keypoints to isolate specific regions of interest
(ROIs). To achieve this, we computed the centroids of the
left hand joint for each consecutive frame as in [27], but we
used only the average centroid across time. This point in
2D space serves as the center of a steady square ROI. We
avoided the use of moving ROIs following the hand cen-
troid as in [27] because we observed a strong effect of the
changing background patterns to our recognition system.
The size of the ROIs in the case of violin and viola perfor-
mances was 100x100 pixels while for the violoncellos and
the double basses 200x200 frames in order to capture all
the range of vertical hand movement on the instrument’s
neck. These last larger ROIs were rescaled to 100x100 im-
ages in order to ensure same input sizes for the onset detec-
tor. When dealing with ROIs that extend out of the frame
(on the right side to be specific), we employ zero-padding
to ensure proper image sizes.

3.3 Temporal Convolutional Networks

Temporal Convolutional Neural Networks (TCNs) consti-
tute a family of architectures designed to grasp dependen-
cies among sequential data. Dilated one-dimensional con-
volutions enable control of the network’s receptive field,
that is the considered length of dependencies among tem-
poral data. Every added layer increases the temporal scope
of the network exponentially. Consequently, with few
added trainable parameters one can ensure adequate source
of information. Another hyper-parameter that is pertinent
to the temporal dependencies that one intends to grasp is
the size of the convolutional filters across the time axis.
A good combination of these two values permits handling
of complex data associations. As in the case of two-
dimensional convolutions, the computations can be effi-
ciently parallelized using GPUs. That is a limit that Recur-
rent Neural Networks (RNNs) are confronted with since
each new forward pass shall wait for the output of the pre-
vious step to be produced. Various versions of TCNs have
recently been introduced in [32–34], for generative or clas-
sification purposes.

Henceforth, TCNs definitely fit our needs for the problem
of visual onset detection which requires handling sequen-
tial data. TCNs proved to lead to exceptional results with
strong generalization abilities. Using a stack of TCNs, in-
stead of only one, was found to lead to over-fitting in our
setting which involves relatively few data. The architecture
that was tested in this work is inspired by Wavenet [32]
and the TCN proposed in [34]. We do not however stick
to the proposed causal setting where each prediction relies
on past observations. Our non-causal configuration visu-
alized in Fig. 4 involves 9 layers (𝑙 ∈ [1, 9]) where two
distinct sets of one-dimensional convolutional filters 𝑊1,𝑙

and 𝑊2,𝑙 are learned. Weight normalization is applied in
both arrays. Hyperbolic tangent is used in the first case and
sigmoid activation function in the other. The two outputs
are then combined using element-wise multiplication.

This parallel configuration imposes non-linear filtering
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tanh (𝑊1,𝑙 * 𝑥) and a learnable mask 𝜎(𝑊2,𝑙 * 𝑥) applied
in each layer. In every layer, 256 convolutional filters com-
prise each of the two convolutional blocks. Residual con-
nections appear in each layer involving 1x1 convolutions
to upsample the input and fit it to the size of each layer’s
output when needed. The use of 9 layers with a variable di-
lation factor 2𝑙 (assuming videos with standard frame rate
(29.97 fps) as in our case) entails a receptive field of about
17 𝑠𝑒𝑐, centered around the timestamp for which a pre-
diction is to be made. Small kernels of size 3 across the
time axis are used and symmetrical zero-padding (increas-
ing from layer to layer in accordance to the dilation factor)
is applied at the beginning and at the end of each perfor-
mance to ensure non-causality. Dropout with probability
0.25 is applied to avoid over-fitting, as well as gradient
clipping with a corresponding coefficient of value 0.2. A
linear fully connected layer followed by a softmax func-
tion is used to output 2-dimensional vectors for each input
frame, with each coordinate representing the probability of
an occurring and a non-occurring onset respectively.

3.4 Convolutional Neural Networks

However suitable TCNs may be when fed with features
such as sequences of post-processed skeleton coordinates,
they cannot efficiently extract information directly from
pixel data as in the case of left-hand ROIs. Proper features
should be extracted first in this case. An end-to-end config-
uration where latent features are learned has been proven
an effective strategy since it can be directly adaptable to
specific tasks. CNNs constitute a standard for image han-
dling. In our case, a 3-layer CNN is employed with 5x5
kernel size as displayed in Fig. 4. The number of filters
increases from one layer 𝑙 to the next, by 4 · 𝑙. ReLU is
used as activation function after batch normalization. Max
pooling with kernel size 3x3 and stride 3 is applied in or-
der to downsample each layer’s output. In the network’s
output, 16 feature arrays of size 4x4 are produced and are
then fed to the TCN after having been flattened, ending up
with vectors of 256 dimensions.

4. EXPERIMENTS AND RESULTS

4.1 Datasets

We trained and evaluated the proposed models on video
recordings from the University of Rochester Multi-Modal
Music Performance (URMP) Dataset [28]. This dataset
provides videos of multi-instrument performances that
were created by assembling audio-visual recordings of in-
dividual music players performing separately, yet coordi-
nated. The audio recordings of individual instrumental per-
formances are also provided in the dataset, thus enabling
the matching of each separate track with the correspond-
ing cropped video (i.e. individual performances). Among
these videos only the string instrument performances were
used in our experiments. So, in total 61 single-instrument
performances comprise our data. The duration of these
performances vary strongly from 35 𝑠𝑒𝑐 to 3.8 𝑚𝑖𝑛.

Figure 4. On the left side a 9-layer TCN is displayed, re-
ceiving as input skeleton features. A linear fully connected
layer is applied on the output with a softmax activation
function. On the right side a CNN-TCN model is depicted.
The 3-layer CNN learns features from consecutive images
and feeds them as input to a TCN.

4.2 Training and Evaluation Procedure

For the purpose of our models’ evaluation we undertake
8-fold cross-validation using pytorch python library. The
code can be found in [35]. The data were shuffled before-
hand. All string instruments were involved in the train-
ing procedure. While training, a window of 3 frames
around the annotated timestamps was considered to corre-
spond to valid onset instances and, hence, we assigned as
ground-truth for the 2D softmax output the probability vec-
tor 𝑦 = (1, 0) in the case of occurring onset and 𝑦 = (0, 1)
when no onset occurs. Trainable parameters are consid-
ered to be all the 1D and 2D convolutional filters involved,
plus the fully-connected linear layer in the output. Cross-
entropy loss function was employed. The value 0.001 was
opted for the initial learning rate, together with Adam op-
timizer. The average F measure is computed separately for
the training, validation and test set. A maximum of 250
training epochs were run for each fold and the best model
parameters were stored using as a criterion F measure val-
ues calculated for the validation set. After training, the best
performing model versions in the validation set were then
reloaded for the final testing. Two experiments were run:

• a TCN was applied on the extracted skeleton features

• a CNN-TCN was applied on the left-hand ROIs

An estimated note onset was considered to be correct if it
was found ±50 ms around the annotated timestamp. This
is an adequately small range in the case of visual onset
(also proposed in [4]), used instead of the ± 25 ms tight cri-
terion, since the distance between subsequent video frames
(∼33 ms) exceeds this value. Local maxima of the activa-
tion function were computed. The peaks were found us-
ing a centered moving maximum with a window size of 3
consecutive frames. We used a threshold of 0.5 to derive
predictions. For each individual recording, either audio or
video, precision, recall and F measure were computed.
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4.3 Results

4.3.1 Skeletons and Hand ROIs

As a first step, we investigated the ability to detect on-
sets by focusing on body movements. Sequences of post-
processed 11-keypoint skeletons were given as input to the
TCN model (TCN-Sk). Next, we applied the CNN-TCN
(CNN-TCN-ROI) on the isolated ROIs capturing the left
performers’ hand. We compared the two results quantita-
tively and qualitatively. The model trained on the skeleton
poses outperformed the pixel model by 17% in the overall
accuracy as presented in Table 1. This fact leads us to the
conclusion that the explicit movements of the body and es-
pecially the bowing motions of the right hand (see Fig. 1)
can provide very clear information concerning the time of
each note articulation, even on the relatively small train-
ing set we used. One can notice that Precision exceeds
Recall for TCN-Sk. On the other hand, CNN-TCN-ROI
yields slightly greater Recall than Precision. This signifies
that TCN-Sk behaves in a more "reluctant" way as com-
pared with CNN-TCN-ROI which takes more "risky" deci-
sions, thus being prone to more false positive predictions.
This can be interpreted by the fact that vibrato induces a
lot of irrelevant motion which can be quite challenging for
the corresponding classifier to discriminate from fingering
transitions.

We also present the average results for each different in-
strument. Both models performed best in the case of vio-
lins where TCN-Sk reached the F measure value of 0.846.
Both models exhibited their worst performance in the case
of cellos. Each distinct model yields quite average results
for double bass and viola. The relatively low results given
by CNN-TCN-ROI in the case of cello performances can
again be explained by the extensive use of vibrato by the
cellist and the small area that the left hand occupies in the
downscaled 100x100 frames. This in not the case for the
double bass even if the same downscaling was forced on
the extracted ROIs because, in all the three videos that this
instrument appears, the position of the performer in each
recording is closer to the camera than usual. Finally, the
aforementioned pattern with regard to Precision and Recall
holds true for both models in three out of four instruments.

4.3.2 Comparison with Previous Works

The above results can be compared with the performance
of models presented in previous works. Bastas et al. [29]
have deployed another TCN variant (with 6 layers) on post-
processed upsampled skeleton data (93.75 fps). This frame
rate was chosen to match the audio spectral representations
which were themselves fed to a 4-layer TCN dedicated to
the aural modality.

The current method outperforms the previous visual ap-
proach by 13.9% (see Table 2). There are various reasons
for this. In the current setting we avoid standardization of
the input vectors across time since it can lead to a loss of in-
formation with regard to the (relative) position of each key-
point. This is because the values of features corresponding
to different coordinates of distinct body joints are forced
to acquire a zero mean value across time. By avoiding

Instrument Precision Recall F measure
Skeletons (TCN-Sk)

Violin 0.867 0.833 0.846
Viola 0.785 0.722 0.746
Cello 0.655 0.596 0.620
Double Bass 0.730 0.734 0.732
Total 0.806 0.762 0.779

Hand ROIs (CNN-TCN-ROI)
Violin 0.685 0.737 0.705
Viola 0.581 0.587 0.574
Cello 0.390 0.324 0.349
Double Bass 0.544 0.598 0.567
Total 0.604 0.622 0.606

Table 1. Precision, Recall and F measure results for the two
proposed models (TCN-Sk and CNN-TCN-ROI). Separate
average measurements for each instrument and total results
after 8-fold cross-validation.

Model F measure
TCN-Sk 0.779±0.079
CNN-TCN-ROI 0.606±0.092
TCN on Skeletons (Bastas et. al [29]) 0.640±0.058
TCN on Audio (Bastas et. al [29]) 0.921±0.018
CNN on Audio (Schlüter and Böck [23]) 0.886±0.012

Table 2. Mean value and standard deviation of the F mea-
sure results for different tested methods on URMP [28].

standardization across time we also ensure intact ranges
of motion of each keypoint, since we avoid the enforce-
ment of a common standard deviation (i.e. 𝜎 = 1). What
proved to be important is also the size of the receptive field
which, in the previous method, is quite small (only 0.68
sec). Finally, we should also consider as a boosting fac-
tor the current configuration of the TCN-Sk which is more
similar to the Wavenet architecture since it involves gated
activation units. The results obtained by the pixel data are
very promising as well. Even though the onset detection
from fingers is more difficult, CNN-TCN-ROI yields re-
sults less than 4% worse than the results obtained from the
skeletons with the previous method.

To obtain a more comprehensive view on the onset de-
tection task, we compared our method to state-of-the-art
methods applied on audio. The CNN model presented
in [23] is trained on spectral representations from vari-
ous audio excerpts. It is packaged in the madmom library
and so it can be easily tested on the URMP Dataset. The
TCN used in [29] is trained and tested using 8-fold cross-
validation on the URMP Dataset. The results of TCN-Sk
are less than 11% lower than the ones obtained by the CNN
and 14.2% lower than the TCN that uses the aural modal-
ity as input. Finally, we notice a slightly greater standard
deviation for the two newly introduced methods, which in-
dicates better adaptation on a certain subset of the data,
naturally on different instruments.
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Model Recall
TCN-Sk 0.762
CNN-TCN-ROI 0.622
Combined True Positives 0.837

Table 3. Recall results of the separate models and of their
combined yielded true positives.

4.3.3 Complementary Outputs

The question arises about whether these two methods cap-
ture complementary information or not. For this purpose,
we assigned for each annotated onset a True label if it was
indeed detected and False if it was not. We did this for all
the string performances, for both the skeleton and the pixel
model. The union of the Boolean labels outputed by the
two models for each performance yields the combined true
positive predictions. If the number of true positives or their
proportionate occurrence (i.e. the Recall) would remain
the same as the one of the best performing model, then
there would not be any complementary information cap-
tured by the two approaches. However, the Recall value
that results from the previous procedure is found to be
higher by 7.5% than the Recall of TCN-Sk as depicted in
Table 3. This finding is in agreement with the fact that
note articulation might involve only fingering transitions
(i.e. legatos) or only bow strokes (i.e. same note played).
It also brings to light the distinct value and possibilities of
each separate approach.

5. CONCLUSION

Both visual onset detection approaches (i.e. the one rely-
ing on skeleton features and the one relying on pixel data)
proved successful in capturing information pertinent to this
task. The subtlety of the fingering transitions on the in-
strument’s neck is shown to pose greater difficulties for a
model to grasp. However, the complementary information
that can be captured with this method should be consid-
ered of great value for an enhancement of the overall per-
formance on the task. Hence, as future work, one prior-
ity would be the development of a fusion method which
would be able to efficiently combine the information cap-
tured from the two different information sources. Our pre-
liminary experiments [29] on fusioning skeleton data with
audio, pave the way for advancing new fusion methods.
Multi-modal fusion involving trainable models was proved
beneficial also in tasks like speech recognition [36]. One
interesting direction would also be to study the possibility
of an approach independent of a skeleton extraction phase.
One reason for this is to reduce the time spent in the infer-
ence procedure by making predictions relying directly on
the pixel data.
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