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Abstract: This paper proposes a novel lightweight visual perception system with Incremental Learn-
ing (IL), tailored to child–robot interaction scenarios. Specifically, this encompasses both an action
and emotion recognition module, with the former wrapped around an IL system, allowing novel
actions to be easily added. This IL system enables the tutor aspiring to use robotic agents in interac-
tion scenarios to further customize the system according to children’s needs. We perform extensive
evaluations of the developed modules, achieving state-of-the-art results on both the children’s action
BabyRobot dataset and the children’s emotion EmoReact dataset. Finally, we demonstrate the robust-
ness and effectiveness of the IL system for action recognition by conducting a thorough experimental
analysis for various conditions and parameters.

Keywords: visual perception; visual learning; incremental learning; action recognition; emotion
recognition; child–robot interaction

1. Introduction

The robotic systems’ perception is considered fundamental for their development, espe-
cially when we refer to social robots. Apart from that, for a robot to interact with others, react
to them and socially communicate, it needs to be aware of its actions. Consequently, since
robots with social skills are incrementally employed in a great variety of applications—such as
healthcare [1,2], companionship [3], education [4], and entertainment [5]—there is a need
to design more advanced perception systems for them.

An exciting and challenging field to develop intelligent and robust recognition systems
is that of Child–Robot Interaction (CRI). Children’s behavior and natural characteristics,
for example, articulation, spontaneity, and body height differ from those of adults, and
perception systems need to be developed specifically for children in tasks such as action
and speech recognition [6,7]. This difference, along with the lack of children-related
big data for training recognition algorithms turn usual recognition tasks into a seriously
challenging problem.

Due to the great variety of robotic applications, CRI, apart from engineers, appeals also
to a broad scientific interdisciplinary sector, including therapists, psychologists, educators,
and teachers. Therapeutic purposes are among the most frequent uses of robotic agents
with children, that is, autism [8], pediatric rehabilitation [9], and diabetes management [10].
Children’s mental and cognitive development and CRI’s effects on them have been studied
extensively [11,12]. Numerous educational scenarios with different learning subjects have
been implemented, such as learning handwriting [13,14], a second language [15], and
social emotional learning [16]. Additionally, many CRI scenarios have been designed
for exploring special research goals, for example, understanding child engagement [17],
defining parameters in a long-term interaction [12], and finding appropriate ways to
adjust the curriculum on CRI [18]. This extensive range of applications and research
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results indicate the great potentials of robotic use in children’s edification. Consequently,
providing non-technical child professionals with robust robotic systems with powerful
perception systems could bring forward momentum in the exploitation of CRI [19].

Regarding robot perception, during Human–Robot Interaction (HRI), the analysis of
the human emotional state is crucial in developing empathetic robots [20]. Empathy for
robots is essential to decode human movements and expressions which carry emotional
information. Consequently, the robotic agents can adapt their behavior and actions towards
the user appropriately, aiming to establish a healthy long-term interaction relationship [21].
Additionally, a robot with the ability to perceive different body movements and actions
could create rich interaction scenarios [22].

In this work, we propose a novel visual robotic perception system for CRI scenarios.
Following the above directions, while developing our system, we are dealing with several
research questions. How can the tremendous opportunities that deep architectures offer
to the computer vision field be employed in order to create a visual perception system
for robotic applications specifically for children? Is it possible to leverage these deep
architectures to create a CRI system with the joint capability of both action and emotion
recognition and an appropriate trade-off between computational efficiency and perfor-
mance? Furthermore, can IL be used in order to allow the perception system to recognize
new actions without forgetting older ones, and which class of IL methods performs better?

To the best of our knowledge, this is the first work considering IL for action recognition
in CRI to tackle the fact that new classes have to be recognized by the system in separate
edutainment scenarios. Besides this core novelty of our work, we also examine several
parameters of the system, in order to balance performance and computational efficiency,
and propose a combined visual perception system for action and emotion recognition in
the context of CRI. In short, the main contributions of this work are threefold:

• We propose a novel system based on powerful lightweight deep neural network-based
architectures for action and affect recognition.

• We evaluate the emotion and action recognition architectures thoroughly, achieving
state-of-the-art results on two children’s databases. We also perform ablation studies
for both modules regarding the effect of the pretraining scheme and the number of
sampled segments in the resulting performance and computational efficiency.

• We wrap the action recognition architecture around an IL system that allows novel
actions to be easily added. Specifically, the proposed perception system gives the op-
portunity to a non-technical expert to extend and adjust the action classes contextually.
This is achieved by extending the existing and well-known IL technique called iCaRL
(i.e., Incremental Classifier and Representation Learning) [23], so that it can be applied
on videos instead of frames, within the premises of the Temporal Segment Networks
(TSN) framework. We perform extensive evaluations of the IL system under various
parameters and conditions, and compare it against other IL methods, proving its
robustness, efficacy, and lightweightness.

The remainder of the paper is organized as follows: Section 2 presents previous works
in action and emotion recognition along with the IL applications in HRI scenarios. In
Section 3, we present our visual perception system and its modules extensively. Section 4
includes our experimental results and ablation studies on the EmoReact and BabyRobot
databases. Finally, in Section 5, we combine and summarize our important findings and
future directions, and Section 6 concludes the work.

2. Related Work

Recently, the research for designing intelligent perception systems for robotic agents,
especially social robots, has gained interest due to the advances in recognition techniques
like action, speech, and emotion recognition. However, as mentioned above, the human
recognition models trained on adults’ data show significantly decreased accuracy when
applied to children’s data [22]. Thus, the presented related work focuses on designed or
evaluated systems on children data, when available.
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Regarding child affect recognition, in [24], Castellano et al. present a system that
perceives affective expressions of children while playing chess with an iCat robot and mod-
ifies the robot behavior to result in a more engaging and friendly interaction. An adaptive
robot behavior based on the perceived emotional responses was also developed for a NAO
robot in [25]. Goulart et al. propose in [26] an equivalent computational system using
visual information captured from RGB and infrared thermal cameras. Filippini et al. [17],
classify children’s emotional state during interactions with Mio Amico Robot using thermal
signal analysis and managed to understand their engagement level. In [27], Lopez-Rincon
proposes a Convolutional Neural Network (CNN) to identify children’s facial expressions.
Lastly, in [28], we proposed a two-branch architecture leveraging both body posture and
facial expressions for identifying children’s emotions during CRI scenarios.

Contrary to the popularity of the human action recognition problem, child action
recognition is not among the famous computer vision problems. A notable work [29] by
Marinoiu et al. proposed a CNN architecture for action and continuous emotion recognition,
deploying 3D skeleton data of the participants focusing on children with Autism Spectrum
Disorder (ASD). To the best of our knowledge, this is the only work combining jointly
children action and emotion recognition along with our proposed perception system. Our
previous work [6] focused on exploring different feature extraction approaches, encoding
methods, and fusion techniques for proposing a multi-view system for action recognition
during CRI. Recently, Zhang et al. [30] dealt with the action recognition problem for ASD
children and proposed a Long Short-Term Memory based network fed with the extracted
children’s skeleton after a denoising filter.

Several algorithms have been proposed for IL in the computer vision literature since it
constitutes a crucial attribute for real-world deployment of any machine learning system.
Since there are not related works concerning IL for CRI, we will give a general overview of
the IL field and its most popular methods, several of which are used and evaluated in this
work. An interesting categorization of the developed neural network methods for continual
lifelong learning is presented in [31] according to how they mitigate catastrophic forgetting.
Conceptually, these approaches can be divided into (i) the regularization methods imposing
constraints on the update of the neural weights (i.e., [32–34]), (ii) the dynamic architectures
concerning those that change their architectural properties such as the number of the used
neurons (i.e., [35]), and (iii) the complementary learning systems and memory replayed
methods (i.e., [23,36–38]).

In End-to-End Incremental Learning (EEIL) [36], a combination of a memory dataset
(also called experience replay) and knowledge distillation—which was initially proposed
for transfer learning between different networks—was employed to incrementally add
new images and classes to an image classification network. iCaRL [23] proposed a similar
system for IL over long periods by decoupling the data representation and the classifier.
On the other hand, [37] proposed using generative adversarial networks to mimic data
the model has seen in the past, while [39] proposed a brain-inspired replay of the internal
representations of the model. In [40], the authors proposed the IL2M network (Incremental
Learning with Dual Memory), which rectifies the predictions using a dual memory and is
based on the saved certainty statistics of predictions of classes from previous tasks. The
Memory Aware Synapses (MAS) [34] method is based on the online computation of the
importance of neural network parameters. Finally, Learning without Forgetting (LwF) [33]
used knowledge distillation and the output of old tasks in new data to avoid forgetting old
tasks. To study the class-incremental learning on the image classification task in-depth, we
refer the reader to Masana et al. [41].

Concerning continual learning in HRI, Churamani et al. [42] discuss its importance
for creating fully adaptive affective robots and how to utilize it for perception and behavior
learning with adaptation. In [43], a CNN classifier for object detection was enriched
with incremental learning capabilities to add new object classes for classification, while
in [44], adaptive incremental learning through interaction of social robots with humans
was proposed. The online incremental classification resonance network in [45] imbued the
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face identification system of the Mybot robot increasing the number of faces it can identify.
Tuyen et al. [46] also used an incremental learning model, which identified the cultural
traits of humans it interacted with. Finally, Lesort et al. [47] summarize real use cases of
continual learning for robotic applications, reasons for deploying incremental learning,
and the challenges faced in these tasks.

3. Materials and Methods

An overview of the perception system is presented in Figure 1. Considering the
constant need for introducing new action classes during new edutainment scenarios, the
action recognition module is wrapped in an IL system. On the other hand, the emotion
recognition module does not need to be constantly modified and is trained only once. While
research has shown that personalizing emotion recognition in the context of continual
learning increases performance [48,49], the same can be argued for action recognition
(personalizing) [50,51]. In this work, we focus on IL in the context of allowing the addition
of new classes to the system—personalized adaptation is out of our scope. We will first
present the action and emotion recognition modules and then the IL action system.

Action
Recognition

Module

Emotion Recognition
Module

Scenario Design

Incremental Learning

adding new classes

 
recognized child's actions

& emotional state  

Figure 1. The proposed visual perception system for child–robot interaction scenarios.

3.1. Action Recognition

The action recognition module (Figure 2) is based on the TSN system [52]. The TSN
system and practices have been initially used for large-scale action recognition. Under
this system, the modality of interest (RGB or optical flow) in the input video V is split
into K different segments {S1, S2, . . . , SK} of equal duration, and then a snippet Tk of N
consecutive frames is sampled from each segment. Subsequently, a backbone CNN is
applied to each snippet, represented as F(Tk; Wcnn), producing a feature vector Lk(V)
for each snippet, and then a fully connected layer H(Lk; Wf c) is applied on Lk(V) to
produce the class scores Sk(V) . Finally, the segmental consensus function G is used to
produce the final class scores from those of each snippet. Common choices of the segmental
consensus function include averaging, weighted averaging, or the maximum; here, we use
simple averaging.

The whole process is described by the following equation:

S = G(Sk) = G(H(F(Tk; Wcnn); Wf c)|k∈K). (1)

Traditionally, in the TSN system, both optical flow and RGB images are used to train two
different networks separately, which are then fused to produce the final output.

The random sampling of the TSN system allows long-term temporal modeling without
introducing redundant information that exists in the sequential frames of a video. In
addition, it reduces overfitting and allows for quicker training and inference, which are
both crucial in CRI, where usually a small amount of data are available, and real-time
recognition is imperative. In order to force the networks to focus on the child and its
actions, we first perform pose tracking on the input video, and then we crop the image
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around the child during temporal sampling using the detected skeleton. The same process
is applied to the flow stream as well.

RGB
Body ConvNet

Flow Body
ConvNet

sc
or

es

Fusion

temporal segment
sampling

segmental

consensus

segmental

consensus

sc
or

es

sc
or

es

Figure 2. The TSN system used for action and emotion recognition in the robotic edutainment system.

3.2. Emotion Recognition

The emotion recognition module follows the same principles as the action recognition
one, both for convenience and due to the proven efficacy of TSNs for emotion recogni-
tion [53,54]. In comparison, however, to action recognition, the input video (both RGB
and optical flow) is cropped around the child’s face by using facial landmarks detected
using OpenFace [55]. In addition, the emotion recognition module is trained for multi-label
classification by applying a sigmoid function on the output scores instead of softmax, and
training with binary cross-entropy loss (BCE). Furthermore, apart from the categorical
emotions output, we add another fully connected layer that enables predictions in the
Valence axis of the dimensional emotion model. The dimensional emotion model was
initially proposed in [56], and its Valence axis measures how “positive” an emotion is.
As a result, the network is trained concurrently with both the BCE loss of the categorical
predictions and the mean-squared error loss for the dimensional emotion predictions, as a
form of multi-task learning. The choice of training a model with both models of affect is
motivated by the fact that many recent emotion recognition databases (such as BoLD [54],
EMOTIC [57], and EmoReact [58]) include both multi-label categorical emotion annotations
and dimensional emotion annotations.

3.3. Incremental Learning for Action Recognition

When a deep neural network is retrained with new classes, it suffers from catastrophic
forgetting: the knowledge for the previous classes tends to be forgotten, and its performance
decreases dramatically. A naive approach to tackle this would consider retraining the
network with an entire dataset of all new and old classes. However, it is easy to see that
this becomes computationally prohibitive, especially when new classes need to be added
continuously to the network. In order to allow the action recognition module to have
incremental learning capabilities, we wrap it around an IL system. To do this, we extend
the iCaRL method [23], allowing it to be applied to videos within the premises of the TSN
framework and CRI.

Under this system, several samples (called exemplars) are retained for each class that
the system has seen, called the memory budget B. In the literature [41], there are two methods
for defining B. The usual method involves a fixed budget size as the number of classes
varies, while the second approach involves a fixed number of exemplars-per-class, resulting
in a linear increase in the budget as the number of classes in the system increases. In this
second approach, if we defined as E the number of exemplars-per-class and C the total
number of seen classes, we have B = C · E. In our IL setup, we follow the second approach
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since in our specific use-case we do not expect the number of classes to become large-scale;
this linear increase in the budget becomes a bottleneck only in large-scale applications.

When a new phase of IL takes place for the action recognition module (i.e., when
one or more new classes need to be introduced to it), the samples of the new classes are
combined with the exemplars in the memory to form the combined dataset, which is then
used to retrain the action recognition module. During training, the network learns to
minimize both the cross-entropy loss, as well as a distillation loss for the old classes [23].
Simple random sampling is used to select the exemplars that are held out from each class.
Various works have shown [36,41] that random sampling achieves competitive results to
other approaches such as herding [59] (which uses the distance of class samples to the
mean exemplar).

In contrast to other approaches of IL, classification of new samples in iCaRL (and our
extended method) uses a representation-based classifier. For each class the system holds in
the memory a prototype vector Mi, which is the average feature vector of all exemplars
of the class, Mi =

1
E ∑E

j=1 Lj(V). Within the premises of the TSN framework, the feature
vector of each exemplar L(V) is calculated as:

L(V) = G(Lk(V)) = G(F(Tk; W)|k∈K). (2)

Then, a new sample video Vn is assigned the class label with the nearest prototype
vector arg mini=1...C‖L(V)−Mi‖.

3.4. Edutainment Scenario Example

Next, we present an example of an edutainment scenario that can be implemented
within the proposed robotic system, underlining the sequence of the child and robot actions
along with the incremental learning phase. In this scenario, the concept of angles in
mathematics is the learning subject.

ROBOT: Today, we will learn together the obtuse angles. Do you remember what an an-
gle is?
CHILD: [Points to a corner of the room]
ROBOT: [Recognizes the pointing gesture. Then responds] You are pointing at something.
Could you make an angle with your hands to show it clearly?
CHILD: Yes! [says while expressing happiness].
ROBOT: [Recognizes the emotion and the action, and says] Great, this is an acute angle! I’ve read
about the obtuse angles, but it was difficult for me. Could you show me with your hands?
TEACHER: They don’t know yet. We are going to learn it and then they’ll show to you.

[While the lesson is ending. . .]
ROBOT: I would like some of you to perform actions to depict the obtuse angles. Then,
you can examine if I learned them and if I remember the acute and the right angles that
you’ve taught me once before.

[While the children are performing their actions, the robot is collecting exemplars for the new
classes. After the incremental learning phase, the robot asks children to perform actions, both new
and old, and recognize them along with their emotional states.]

3.5. Databases and Training Methods

We will now describe the databases used for evaluating the previously described
methods and include details for the training process.

3.5.1. Action Recognition

We evaluate the action recognition module on the BabyRobot action database [6]. The
BabyRobot database contains 25 children, aged six to ten years old, performing various
actions collected while playing a game with multiple robotic agents. The dataset features a
total of 13 actions: painting a wall, cleaning a window, driving a bus, swimming, dancing,
working out, playing the guitar, digging a hole, wiping the floor, ironing a shirt, hammering
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a nail, reading a book, and background movement. The BabyRobot database is multi-view,
featuring different Kinect cameras placed around the room. For our single-view action
evaluation, we use only camera Kinect #1, located at the top right corner regarding the
child, as shown in Figure 2, providing a full-body view of the child.

For the backbone CNN of the action recognition module, we use a Batch Normalization
Inception (BNInception) [60] architecture for the RGB and Flow streams and consider two
different pretraining schemes: pretraining on the Kinetics [61] action recognition dataset,
or alternatively pretraining on the ImageNet database. The BNInception architecture
was selected because the weights of the pretrained model in both of these databases are
publicly available. To have a direct comparison with the best-published result in [6], we
perform leave-one-child-out cross-validation. The training and scheduling parameters
are empirically selected as follows: we train each network for 60 epochs with stochastic
gradient descent (SGD), starting with a learning rate of 1× 10−4 and decreasing it by a
factor of 10 at 20 and 40 epochs. We use the default TSN values of one frame length for the
RGB segments and five frames for the Flow segments.

3.5.2. Emotion Recognition

The emotion recognition module is evaluated on the EmoReact [58] dataset. This
contains 1102 videos of 63 children, aged between 4 and 14, expressing emotions while
discussing different topics. The dataset is collected from the YouTube channel React
and features multi-label annotations on eight different categorical emotions: Curiosity,
Uncertainty, Excitement, Happiness, Surprise, Disgust, Fear, Frustration. Furthermore,
in each video the valence is annotated on a scale of 1 to 7, with 1 corresponding to a
completely negative emotion and 7 to a completely positive emotion.

The CNN architecture we use for both modalities is a standard residual network
with 50 layers (ResNet50) [62]. The networks are trained using binary cross-entropy loss
for the categorical emotions and mean squared error for the valence. We perform the
same ablation studies as with the action recognition module. We report results on the
test set of EmoReact (the dataset includes a standard train-validation-test split) using
the balanced (per-class) and unbalanced area under the receiver operating characteristic
(ROC AUC) for the categorical predictions, and mean-squared error for the dimensional
emotion prediction.

3.5.3. Incremental Learning

To evaluate the IL method, we create an augmented and more challenging setup. We
merge the BabyRobot action dataset with the additional BabyRobot gesture dataset [22],
which includes seven gestures (make a circle with hands, tell someone to come closer,
greet someone, nod, point at something, tell someone to sit down, and make a stop sign)
performed by the same children included in the action dataset and captured by the same
camera. After merging, the augmented dataset now comprises a total of 20 classes. To speed
up the training and evaluation process, we create a training/testing split with 20 children in
the training set and 5 children in the test set (instead of leave-one-child-out cross-validation
which would geometrically increase the number of models needed to train). We use the
same training scheme as before (i.e., adding novel classes to the action recognition module)
during each IL phase (60 epochs with learning rate reduction at 20 and 40 epochs). We
repeat all experiments 10 times to account for different seeds (averaging to get the final
results). The order of the classes in each run is selected randomly.

4. Results

We will now present the results of the action and emotion recognition modules
individually and of the IL system under various conditions. The source code for all models
and experiments can be found at https://github.com/filby89/incremental-learning-CRI
(accessed on 1 November 2021).

https://github.com/filby89/incremental-learning-CRI
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4.1. Action Recognition
4.1.1. Number of Segments

In our first ablation study, we explore the effect of the number of sampled segments
for the RGB and optical flow (Table 1), as a function of both the final performance of each
modality and the computational complexity of the system (in terms of elapsed seconds
per train and inference epoch). We can see that the system’s performance increases as we
increase the number of segments used in the TSN framework for both modalities. However,
after a threshold, the increased computational burden does not reflect equal performance
gains. Accordingly, we select five segments for both the RGB and the optical flow for the
rest of the experiments on the action recognition module.

Table 1. Performance and elapsed time per training and validation epoch of the action recognition
module for varying numbers of sampled segments.

Segments Accuracy (%) Time/Training Epoch (s) Time/Validation Epoch (s)

RGB

1 36.74 5.2 0.4
3 40.95 6.0 0.8
5 47.43 8.8 1.0

10 49.56 14.6 1.4

Flow

1 58.75 5.4 0.6
3 71.77 10.3 1.2
5 75.96 16.3 1.8

10 76.82 31.3 3.2

4.1.2. Pretraining

For our second ablation study in Table 2, we present varying pretraining schemes. We
can see the intuitive fact that pretraining on the Kinetics action databases results in much
higher performance than ImageNet pretraining for both modalities. In the same table, we
also present the final fusion result obtained with an empirical weighted average scheme
(assigning 0.8 weight to optical flow and 0.2 to RGB), as well as the previous state-of-the-art
method of Dense Trajectory Ensemble features and the C3D convolutional network of [6].
We see that the optical flow modality outperforms the previous results, and combination
with the RGB modality results in an additional, albeit small, performance improvement.

Table 2. Results of the action recognition module on the BabyRobot action dataset using leave-one-
child-out cross-validation.

Model Accuracy (%)

RGB-Kinetics 47.43
RGB-ImageNet 42.46

Flow-Kinetics 75.96
Flow-ImageNet 65.26

RGB-Kinetics + Flow-Kinetics 76.55
RGB-ImageNet + Flow-ImageNet 64.37

Dense Traj. Ensemble [6] 74.15
C3D [6] 59.38

4.2. Emotion Recognition
4.2.1. Number of Segments

Like in the action recognition module, while generally increasing the number of
segments increases the performance (the only exception being five RGB segments where the
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balanced ROC AUC is lower than in three segments), we have diminishing gains (Table 3).
We find that an appropriate trade-off between performance and the computational burden
is to select in the rest of our experiments three segments for the RGB modality and five
segments for the Optical Flow. Note that results in the unbalanced case are higher, because
the network learns to classify better more frequent emotions in the dataset (an example
being Happiness).

Table 3. Performance and elapsed time per training and validation epoch of the emotion recognition
module for varying numbers of sampled segments.

Segments
ROC AUC

MSE
Time/Training Time/Validation

Balanced Unbalanced Epoch (s) Epoch (s)

RGB

1 0.683 0.773 0.032 8 6
3 0.713 0.786 0.030 26 16
5 0.703 0.785 0.030 39 27

10 0.716 0.789 0.029 73 53

Flow

1 0.580 0.739 0.038 36 22
3 0.583 0.737 0.036 102 73
5 0.615 0.756 0.036 170 123

10 0.636 0.754 0.036 351 256

4.2.2. Pretraining

We compare pretraining our networks on the ImageNet dataset against pretraining
them on the largest facial expression dataset, AffectNet [63]. We have trained a ResNet50
on AffectNet, achieving 59.49% accuracy on the validation set (test set is not available).
The effect of pretraining can be seen in Table 4. We observe that the AffectNet RGB
pretrained model achieves higher performance than the ImageNet one. Compared to the
RGB ones, the Flow network achieves a lower ROC AUC, and pretraining on AffectNet
results in higher unbalanced ROC AUC and lower mean-squared error. Average fusion
increases the final ROC AUC, but not the mean squared error (MSE) of the predicted
valence. In the same Table, we also list the previous state-of-the-art result on the EmoReact
dataset [58], which used features from the OpenFace [55] framework along with a support
vector machine (SVM), showing that our method achieves significantly better emotion
recognition performance.

Table 4. Results of the emotion recognition module on the categorical and continuous emotions of the
EmoReact dataset.

Model
ROC AUC

MSE
Balanced Unbalanced

RGB-AffectNet 0.713 0.786 0.030
RGB-ImageNet 0.657 0.735 0.044

Flow-AffectNet 0.615 0.756 0.036
Flow-ImageNet 0.643 0.752 0.039

RGB-ImageNet + Flow-ImageNet 0.682 0.765 0.039
RGB-AffectNet + Flow-AffectNet 0.725 0.789 0.031
RGB-AffectNet + Flow-ImageNet 0.724 0.791 0.032

OpenFace with SVM [58] 0.62 - -

4.3. Incremental Action Learning

As we also saw during the evaluation of the Action Recognition module in Table 2, the
RGB modality offers a minuscule increase in accuracy but takes a considerable amount of
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time to train. As a result, we opt to remove the RGB modality in the final action recognition
system and use only the optical flow for the IL experiments.

4.3.1. Ablation Study–Number of Exemplars per Class

Our first evaluation study for IL compares the iCaRL method for TSNs with other
methods that use experience replay (modified for the TSN framework as well): EEIL [36],
IL2M [40], and simple fine tuning (i.e., using only training with the combined dataset).
Results for various numbers of exemplars-per-class (E = 2, 5, and 10) and two different
numbers of total phases (T = 5, 10) can be seen in Figure 3. Note that depending on the
total number of phases, different number of classes are added per phase (the total number
of classes 20 divided by the number of phases). For five total phases, four new classes are
added per phase, and the accuracy x-axis starts at x = 4 while the forgetting x-axis one
phase later at x = 8. Similarly, for T = 10 the number new classes added per phase are 2,
the accuracy x-axis starts at x = 2 and the forgetting one at x = 4.

Figure 3. Comparison of the proposed extended iCaRL for videos against alternatives that use experience replay with
varying number of exemplars-per-class (E). The left column shows results for a total of T = 5 IL phases and the right
column for T = 10 IL phases. Note that for T = 5 the new classes added per phase are 20/5 = 4 and the accuracy x-axis
starts at x = 4 while the forgetting x-axis one phase later at x = 8. Similarly, for T = 10 the number of new classes added
per phase are 2, the accuracy x-axis starts at x = 2 and the forgetting one at x = 4.

We can observe that the extended iCaRL for TSNs exhibits the least percentage of
forgetting across all different setups and the higher accuracy in most cases. Interestingly,
as we increase the number of exemplars, all IL methods present competitive results on
accuracy; however, EEIL and fine tuning suffer significantly from catastrophic forgetting.
This implies that iCaRL (and IL2M to an extent) in these cases have an inherent trade-off,
trying to balance performance in the newly introduced classes against the old classes. On
the other hand, EEIL and fine tuning highly disregard old knowledge and only achieve
high performance on new classes. We believe that the iCaRL for TSNs, although it employs
random video segments to build the video representation, draws its power from the
representation-learning based classifier.
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4.3.2. Ablation Study–Evaluation against Regularization Methods

In Figure 4, we also compare the extended iCaRL method for TSNs against regulariza-
tion-based methods which do not use experience replay: LwF [33], elastic weight consolida-
tion (EWC) [32], and MAS [34]. In the same figure, we also show the result of training every
phase with the full dataset (i.e., not performing IL–referred as “Joint”). Note that iCaRL
with E = 5 and 10 exemplars presents comparative forgetting percentage to “Joint”, which
further strengthens our conjecture about the superiority of the representation-learning
based classifier. The other methods suffer significantly from catastrophic forgetting, and as
the number of classes increases, they exhibit poor performance.

Figure 4. Evaluation of iCaRL for videos against regularization methods (T = 10).

4.3.3. Ablation Study–Training Time and Total Accuracy

Finally, Table 5 presents the aggregated results of the considered methods, including
the average accuracy and forgetting across all phases, as well as the average time taken to
train one phase. We can see that iCaRL achieves the highest average accuracy and least
forgetting while having similar computational burden compared to the other methods that
use exemplars. On the other hand, while the regularization methods are computationally
efficient, they achieve poor performance. Finally, when comparing the “Joint” method
(i.e., no IL) against iCaRL with 10 exemplars, we observe a 39% relative reduction in time
per phase, but only a 16% relative reduction in accuracy and similar forgetting scores,
validating our reasoning for creating an IL setup for action recognition.

Table 5. Average accuracy, forgetting, and time taken for one IL phase for the extended iCaRL for
TSNs and other IL methods (T = 10).

Method # Exemplars Accuracy (%) Forgetting (%) Time (s)

EEIL [36] 2 45.06 62.09 443
5 58.44 39.47 600

10 65.05 28.73 845

Fine tuning 2 41.16 67.34 289
5 54.98 45.77 365

10 63.18 32.78 503

iCaRL [23] 2 52.11 28.00 305
5 61.55 15.17 387

10 66.06 9.04 533

IL2M [40] 2 46.37 41.41 292
5 58.92 27.09 370

10 64.03 20.59 507

EWC [32] 0 30.72 56.51 252

LwF [33] 0 31.62 46.50 253

MAS [34] 0 29.66 62.22 252

Joint − 79.06 9.32 873
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5. Discussion

This section combines and summarizes our most important findings on all three as-
pects of the proposed visual perception system and pinpoints factors influencing
its performance.

• The choice of the database on which the visual perception models are pretrained
greatly affects the recognition accuracy. The system’s effectiveness is boosted signif-
icantly by employing pretrained models on datasets that are directly related to our
desired recognition tasks. More specifically, for action recognition, pretraining on
the Kinetics dataset (which includes human actions) results in better action recog-
nition performance compared to pretraining on the ImageNet dataset (for object
recognition). Similarly, for the emotion recognition task, pretraining on the AffectNet
dataset of facial expressions significantly boosts the system’s performance, compared
to ImageNet pretraining.

• The number of the sampled segments for the TSN is highly correlated to the recogni-
tion task. For action recognition, we note that there is a considerable (yet diminishing)
improvement in accuracy by increasing the number of the segments. At the same
time, while increasing of the number of segments for the emotion task does translate
in an improved performance trend, the results do fluctuate a lot. The mean duration
of the videos in the action dataset is 4.23 s and the emotion dataset is 5.06 s. Thus, as
both databases have videos with comparable duration, we should look for the cause
of this difference in the coded information. Indeed, more sampled segments of an
action video imply a more comprehensive understanding of the presented action,
since typically an action consists of many different movements. On the other hand,
there are cases where emotion is depicted only with a single movement in a short
time, for example, smiling for expressing happiness.

• Concerning the information streams, we experimented with a spatial stream that takes
as input RGB video frames and a temporal one that takes the optical flow derived from
the video as input. The experimental results demonstrate that the primary stream of
information for action recognition is the temporal one, with the spatial stream offering
a small only performance boost. The opposite is observed in the emotion recognition
task, where the spatial stream achieves the best performance, and the temporal one
has a small impact.

• Regarding incremental learning, we compare various methods that use experience
replay (such as the proposed extended iCaRL for TSNs) and others that impose
constraints on the update of the networks. We note that catastrophic forgetting is
greater on regularization methods, while memory-replay methods tend to do better.
The proposed extended iCaRL for TSNs achieved the best forgetting score across
all setups and the higher accuracy in most cases. Furthermore, we also conducted
ablation studies on the size of the memory and its impact on accuracy, forgetting,
and time to train, proving the efficiency of the proposed system. Methods using
dynamic architectures have not been explored yet, as they were considered more
computationally demanding, and we aim to explore them in the future.

In the future, regarding the desired application for the proposed CRI system, we aim to
evaluate our system in real-world data where both the action and the emotion recognition
system will be deployed simultaneously. Due to the ongoing COVID-19 pandemic, we
could not conduct experiments with children, which would be more challenging than the
separate datasets. Additionally, we aim to integrate the proposed advanced perception
system with the robotic edutainment system proposed in [64] (where we partially presented
some of the above results). Finally, having feedback on the use by non-technical experts
will help highlight and overcome other difficulties that they may face.

6. Conclusions

The proposed lightweight visual perception system for Child–Robot Interaction sce-
narios employs deep architectures consisting of two perception modules for action and
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emotion recognition. According to our extensive experiments and ablation studies, the best
trade-off between efficiency and performance for the action recognition module is to use
only the Optical Flow modality and five sampled segments yielding about 76% accuracy.
For the emotion recognition module, again based on extensive experimentation, we opt
to use only the RGB modality in the final system with three sampled temporal segments,
which results in 0.79 unbalanced ROC AUC score. Thus, the selection of parameters, such
as the information stream and the number of the sampled segments, depends on the recog-
nition task, that is, developing a robust recognition system for children should use both
modalities, RGB for emotion recognition and Optical Flow for action recognition. We also
note that both perception modules have achieved state-of-the-art results on the EmoReact
and BabyRobot action datasets while considering the computational costs. Finally, the
proposed extended iCaRL for videos with E = 5 exemplars per class achieved an appropri-
ate trade-off between accuracy/forgetting and time to train a new phase. In general, we
see that the memory-replay methods perform better than regularization methods on both
accuracy and forgetting.

In conclusion, to evaluate the whole system, one has to consider accuracy, computa-
tional costs, and inference time. Keeping the time between the child’s action and the robot’s
reaction short is essential in a robotic application that targets children. Otherwise, the
child’s interest could diminish, and the interaction could stop. Our proposed visual percep-
tion system considers all of the above to carry out its purpose and efficiently accommodate
CRI scenarios.
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