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Abstract— In this work we tackle the task of video-based
visual emotion recognition in the wild. Standard methodolo-
gies that rely solely on the extraction of bodily and facial
features often fall short of accurate emotion prediction in
cases where the aforementioned sources of affective information
are inaccessible due to head/body orientation, low resolution
and poor illumination. We aspire to alleviate this problem by
leveraging visual context in the form of scene characteristics and
attributes, as part of a broader emotion recognition framework.
Temporal Segment Networks (TSN) constitute the backbone of
our proposed model. Apart from the RGB input modality, we
make use of dense Optical Flow, following an intuitive multi-
stream approach for a more effective encoding of motion.
Furthermore, we shift our attention towards skeleton-based
learning and leverage action-centric data as means of pre-
training a Spatial-Temporal Graph Convolutional Network
(ST-GCN) for the task of emotion recognition. Our extensive
experiments on the challenging Body Language Dataset (BoLD)
verify the superiority of our methods over existing approaches,
while by properly incorporating all of the aforementioned
modules in a network ensemble, we manage to surpass the
previous best published recognition scores, by a large margin.

I. INTRODUCTION
The interpretation, perception and recognition of human

affect has been the subject of rigorous studies and analyses
across several scientific disciplines such as biology, psychol-
ogy, sociology, neurology and last but not least, computer sci-
ence. While the aforementioned cognitive sciences focus on
the extraction of the available affective information, the fields
of computer vision and machine learning aim at automating
the recognition process through the development of novel
techniques and algorithms which are capable of producing
effective and robust encodings of such information.

The majority of past efforts in visual emotion recognition
have been mostly limited to the analysis of facial expressions
[37], [11], [14], [25], [44], while some studies have either
incorporated information relative to body pose [12], [6],
[2], [9] or have attempted to perform emotion recognition
exclusively on the basis of body movements and gestures
[1], [15], [28], [31], [32]. While some of these approaches
perform well in certain specified settings, they fail to interpret
real-world scenarios. This is because emotion recognition
systems are, more often than not, expected to operate on
instances of people whose facial features are fully visible
and their body joints are unoccluded, something which does
not generally conform to reality.

Evidence from psychology related studies suggest that
visual context, in addition to facial expression and body

pose, provides important information to the perception of
people’s emotions. Dudzik et al. [8] propose two sources of
context as means of interpreting emotional behavior, namely
perceiver knowledge/experience and perceivable encoding
context. Wieser and Brosch [39] highlight situational context
as the primary aspect of the latter, with features that mainly
revolve around the visual scenes in which the depicted
emotional behaviors are embedded. Barrett and Kensinger [3]
report that the structural features of the face, when viewed
in isolation, often prove to be insufficient for perceiving
emotion. Furthermore, empirical findings suggest that the
categorization of facial expressions is sped up at the sight
of congruent scenes [29], while both positive and negative
contexts result in significantly different ratings of faces
compared with those presented in neutral contexts [24].

In this work, we aim at extending the concept of context-
based visual emotion recognition in the dynamic setting
of video sequences. Our approach to the problem rests
on the late fusion of Temporal Segment Networks (TSN)
[38] and a Spatial-Temporal Graph Convolutional Network
(ST-GCN) [41]. We extend the original TSN framework
by incorporating multiple input streams that encode bod-
ily, contextual, facial and generic scene-related features,
enhancing our model’s joint understanding of emotion and
the depicted surrounding environments. To the best of our
knowledge, our approach is the first to explicitly infuse scene
characteristics as well as make effective use of multi-stream
optical flow in an emotion recognition process. Extensive
ablation experiments, based on the recently assembled and
challenging Body Language Dataset (BoLD), are carried out
so as to study the various contributions of our methods.

The remainder of the paper is structured as follows: Firstly,
we provide an overview of the most notable related work
in the domain of context and skeleton-based visual emotion
recognition. Subsequently, we analyze our proposed model
architecture. Next, we present our experimental results on
the BoLD dataset, followed by conclusive remarks.

II. RELATED WORK

Kosti et al. [17] made one of the first notable contributions
towards context-based emotion recognition by introducing
the EMOTIC dataset as well as providing a baseline model
that was trained and evaluated on the latter. Their baseline
model consisted of three modules: two ConvNet feature
extractors (one for each of the body and context input
streams) and one fusion network. A notable improvement978-1-6654-3176-7/21/$31.00 ©2021 IEEE
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in recognition performance over the baseline model came
along the EmotiCon framework, as it was introduced by
Mittal et al. [23]. Their main contributions are associated
with the incorporation of multiple modalities in the task of
context-based emotion recognition, including the face, pose,
inter-agent interactions and socio-dynamic context.

Subsequently, researchers shifted their attention towards
video-based emotion recognition in context. Lee et al. [19]
introduced the Context-Aware Emotion Recognition bench-
mark which is comprised of 13.201 TV video clips and a total
of 1.1M frames. Moreover, a baseline model was proposed,
featuring a face and a context encoding stream which were
merged using an adaptive-fusion network.

After the recent assemble of the Body Language Dataset
(BoLD), Luo et al. [22] furthered their contributions by com-
paring various network configurations and finally providing
a baseline model for the task of categorical and continuous
emotion prediction. Among the examined methodologies
were: motion-based descriptors, i.e. histograms of optical
flow and motion boundary histograms, skeleton-based learn-
ing through a ST-GCN and Laban Movement Analysis [18]
as well as pixel-level learning through two-stream convolu-
tional and TSN architectures. Filntisis et al. [10] proposed
the incorporation of a contextual feature encoding branch
and the addition of visual-semantic embedding loss based
on Global Vectors (GloVe) [27] word embeddings, achieving
state-of-the-art performance on BoLD.

As graph-based neural networks have proven to be power-
ful tools for determining human actions [41], [34], [20], [35],
[21], there have also been attempts to adapt them for the task
of emotion recognition. Bhattacharya et al. [4] introduced a
classifier network for the task of emotion recognition through
gaits, as well as a realistic gait generator, with the ST-GCN
architecture being the common denominator between the
two. Sheng et al. [33] proposed an Attention Enhanced
Temporal Graph Convolutional Network (AT-GCN) as part
of a multi-tasking framework which can jointly learn repre-
sentations relative to both emotion and identity recognition.

III. MODEL ARCHITECTURE
A complete schematic diagram of our proposed network

ensemble is shown in Fig. 1. The backbone of our network
implementation resides in a combination of the two-stream
convolutional [36] and TSN [38] architectures, both of which
were initially proposed for video-based action recognition.
During TSN training, any given input video sequence V
is firstly divided into K segments {S1, ..., SK} of equal
durations. The TSN operates on a set of K snippets, with
each snippet constituting an instance that has been randomly
sampled from the corresponding segment. More formally, the
output of a temporal segment network is modeled as follows:

TSN(T1, ..., TK) = H
(
G
(
F(T1;W), . . . ,F(TK ;W)

))
(1)

where {T1, ..., TK} denote the snippets, W denotes the
network trainable parameters, F denotes the snippet-level
network predictions, G denotes a segmental consensus func-
tion and H denotes a prediction function.

Firstly, we will present the TSN structure regarding the
RGB modality, along with our proposed extensions for the
enhancement of emotion understanding. Next, we will do
the same for the Optical Flow modality, and finally we
will present the part of the architecture relative to skeleton-
based learning. We choose to utilize 18-layer ResNets [13]
as our primary feature extractors for all the subsequent
convolutional branches. ResNets constitute state-of-the-art
ConvNet backbones, offering a valuable trade-off between
performance and computational complexity. Moreover, the
ResNet-18 variant produces 512-dim deep feature vector
representations for each given input image.

A. TSN-RGB

1) Body: A single RGB image usually encodes static
appearance at a specific point in time, lacking the contextual
information about previous and next frames. We begin by
training a standard TSN using the RGB modality and the
body crops of each frame instance. For the calculation of
the necessary body bounding boxes, we make use of the
coordinates of 18 body joints that have been successfully
tracked along the entirety of each video sequence and are
being provided by the distributors of the dataset. The body
branch feature extractor is pre-trained on ImageNet [7].

2) Context: We incorporate a context stream in the form
of RGB frames whose primary depicted agents have been
masked out. For the acquisition of the masks we use the
body bounding boxes that we have previously calculated and
multiply them element-wise with a constant value of zero.
Contextual feature extraction is a scene-centric task, and
therefore we choose to initialize the corresponding ConvNet
backbone using the Places365-Standard [45], a large-scale
database of photographs, labeled with scene categories.

3) Face: We introduce an input stream which explicitly
operates on extracted face crops. For the localization and
extraction of faces we use the 2D coordinates that correspond
to the detected eyes, ears and nose of each depicted instance.
These facial landmarks are used for the calculation of a
bounding box that effectively contains the head of each
primary depicted agent. As the pose of an agent might result
in partial or complete occlusion of their facial features, the
successful extraction of the face region is not guaranteed. The
ConvNet backbone of the face branch receives manual pre-
training on AffectNet [25] which constitutes the largest facial
expression database, containing over 1M images, annotated
on both categorical and dimensional level.

4) Scenes and Attributes: The depicted scene along with
its attributes hold valuable information relative to human
emotion understanding, especially in cases where primary
sources of affective information, such the face and body,
are occluded. Therefore, we aspire to enrich our model’s
perception of context by directly extracting the Places365
scene-specific scores and the corresponding Scene UNder-
standing (SUN) [26] attributes through an 18-layer Wide-
ResNet [43] which has been jointly pre-trained on both of
the aforementioned databases.
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Fig. 1. Complete schematic diagram of the proposed network ensemble, featuring a ST-GCN module and three TSN input streams (body, context, face)
for both the RGB and Optical Flow modalities, plus a scene & attribute related stream, especially for the RGB modality. Concatenated feature vectors
are depicted in cyan, fully-connected layers are depicted in orange and GloVe word embeddings are depicted in green, along with their dimensionality
or number of hidden units. The ST-GCN inherently produces video-level predictions, while in the case of the TSN-RGB and TSN-Flow, this requires the
prior application of segmental consensus upon the corresponding snippet-level predictions (26 confidence scores for discrete emotions, 3 regressed values
for VAD dimensions). Final predictions are obtained through late score fusion.

The Places [45] database is a quasi-exhaustive repository
of 10M scene photographs, labeled with 476 scene semantic
categories. We use only a subset of the latter, namely the
Places365-Standard which features 1.8M images and 365
scene categories. Moreover, the SUN attribute database [26]
constitutes a subset of the SUN categorical database [40],
comprised of 14,000 images that are annotated using a
taxonomy of 102 scene attributes. Some of the categories
that are included in the Places365 dataset are: amusement
park, basketball court, cemetery, jail, cell, lecture room,
museum, office, sauna, soccer field, etc. Some of the scene
attributes included in the SUN dataset are: competing, social-
izing, working, exercise, praying, open-area, enclosed-area,
stressful, etc. It is quite evident that the environment and
scene depicted in an image can be closely related with the
emotions of the people that are present. For example, an
image of a funeral that is located at a cemetery, suggests a
strong correlation between the above oppressive setting and
the generally negative and sad feelings shared among the
depicted people. Provided that our model can leverage the
hinted correlations, incorporating scene specific information
can potentially boost its overall recognition performance.

Given an input image, the feature extractor produces
feature maps Z ∈ R512×14×14, through its last convolutional
block. After the application of an average pooling layer, a
deep feature vector representation is formed and fed into a
FC layer with weights Wscenes ∈ R512×365, producing class
confidence scores ŷscenes ∈ R365. An additional set of pre-
trained weights, namely Wattr ∈ R512×102 can be used for
the prediction of confidence scores ŷattr ∈ R102 for 102
scene attributes that are included in the SUN dataset. The
corresponding scene and attribute classification probabilities,
i.e. pscenes ∈ [0, 1]365 and pattr ∈ [0, 1]102, are calculated
after the row-wise application of the softmax function. Sub-
sequently, the produced scene and attribute probability scores

are concatenated with the extracted deep features from all the
aforementioned input streams. After the initialization of the
feature extractor with the aforementioned pre-trained models,
weight parameters are kept frozen during the training phase.

The inclusion of all input streams of the TSN-RGB results
in a 2003-dim concatenated feature vector.

5) Loss Functions: For the training of the continuous
emotion prediction branch, we use a standard mean squared
error (MSE) loss Lcont along the three emotional dimensions
of valence, arousal and dominance. As far as categorical
emotion prediction is concerned, the ground truth targets are
provided in the form of confidence scores. Firstly, we apply a
sigmoid function to the barebones extracted class scores and
then impose an MSE loss between the predicted and ground
truth confidence scores. We denote this loss term as Lcat1 .
Secondly, after binarizing the ground truth confidence scores
with a threshold of 0.5, we apply a binary cross-entropy
loss between the produced and ground truth multi-hot tar-
get labels. We denote this term as Lcat2 . We also enforce
semantic congruity between the extracted visual embeddings
and the categorical label word embeddings from a 300-dim
GloVe [27] model, pre-trained on Wikipedia and Gigaword 5
data, in the same manner as in [10]. More specifically, given
an input image X, we transform the concatenated visual
embeddings fv(X) into the same dimensionality as the word
embeddings ft(y

i) through a linear transformation Wemb,
with y being the corresponding multi-hot target vector and
i being the categorical label class index. We later apply an
MSE loss between the transformed visual embeddings and
the average of word embeddings that correspond only to the
positive labels of the given ground truth target vector and
denote this term as Lemb:

Lemb = ∥Wembfv(X)− 1

|P|
∑
yi∈P

ft(y
i)∥22 (2)



where P denotes the set of positive class labels for a given
target vector y and |P| denotes the cardinality of that set.
The whole network can be trained in an end-to-end manner
by minimizing the combined loss function:

L = Lcat1 + Lcat2 + Lcont + Lemb (3)

B. TSN-Flow

Similarly to the case of temporal stream ConvNets in
the original two-stream convolutional architecture [36], we
experiment with training a TSN on stacked optical flow
fields. Optical flow extraction is carried out via the TV-L1

algorithm [42]. This form of dense optical flow is known to
effectively encode motion between consecutive frames. We
denote this model as TSN-Flow.

In all our subsequent implementations, we stack bidirec-
tional optical flow fields from L = 5 consecutive frames for
each snippet. After decomposing each displacement vector
into its horizontal and vertical components, we end up with
a 10-channel input volume per segment, per input stream.
To begin with, we train a standard TSN using the Optical
Flow modality and the body crops of each frame instance.
The usage of body joint coordinates for the localization
and extraction of the necessary bounding boxes remains the
same as in the case of the RGB modality. Body-oriented
dense optical flow encodes the movement of the primary
depicted agent in each instance. Additionally, we incorporate
a context stream, in the form of stacked optical flow fields
whose primary depicted agents have been masked out. The
context input stream effectively encodes the motion of any
occasional secondary agent or object. Lastly, we introduce
an input stream that focuses solely on the head and face
movements of the primary agent. This is achieved by training
an additional temporal ConvNet on small fragments of dense
flow that correspond to the head region of each agent.

The features extracted using optical flow streams have
distributions that greatly differ from their RGB counterparts.
As optical flow values are discretized in the interval [0, 255],
therefore sharing the same range with RGB images, we use
RGB models to initialize the parameters of the temporal
ConvNets. The feature extractors for all TSN-Flow streams
were pre-trained on ImageNet [7]. Consequently, the weights
of the first convolutional layer are modified so as to handle
the input of optical flow fields. More specifically, the weights
are averaged across the RGB channels and replicated by the
number of channels of the temporal stream inputs.

The inclusion of all the aforementioned input streams
results in a 1536-dim concatenated feature vector per input
volume. During training we employ the same combined loss
function as the one used for its RGB counterpart.

C. Skeleton-Based Learning

As for the final source of affective information, we shift
our attention towards the Human Skeleton and attempt to in-
corporate a Spatial-Temporal Graph Convolutional Network
(ST-GCN) [41], as it was originally proposed for skeleton-
based action recognition. We choose to deploy the vanilla

ST-GCN consisting of 9 layers of spatial-temporal graph
convolution operators (ST-GCN units). The features extracted
from the last ST-GCN unit undergo average pooling and
with the use of 1× 1 convolutions, the final predictions are
produced.

1) Joint Labeling Strategies: The main variable setting
of the ST-GCN configurations is the joint labeling strategy
that is being used during the construction of the graph
adjacency matrix, namely uniform, distance or spatial. With
uniform being the simplest labeling strategy, all joints that
are connected through a limb belong in the same subset,
resulting in Kv = 1 total subsets. The distance labeling
strategy extends the concept of neighboring joints, as pairs of
joints that are connected through a sequence of limbs are also
taken into consideration, leading to a total of Kv = D + 1
subsets, where D is the maximum allowed distance between
two neighboring joints (we choose D = 1 for simplicity).
Lastly, according to the spatial labeling strategy, neighboring
joints are distinguished based on their individual distances
from a fixed root (the neck), resulting in Kv = 3 subsets.

2) Forward Propagation: In the spatial-temporal case,
the input feature map Hin of a ST-GCN unit is repre-
sented as a tensor of shape (Cin, Tin, V ), where Cin denotes
the number of input channels, Tin denotes the number
of frames in the skeleton sequence and V denotes the
number of nodes. Firstly, the input tensor undergoes a
(Kv · Cout)× 1× 1 spatial graph convolution operation, with
Cout being the desired number of output channels and Kv

being the number of joint subsets that are formed based on
the chosen labeling strategy. The resulting tensor is reshaped
into (Kv, Cout, Tin, V ) and multiplied with the normalized
adjacency matrix D− 1

2 ÂD− 1
2 , where Â = I+A (I denotes

the identity matrix) and D is a diagonal matrix with elements
Dii =

∑
j Â

ij . In case of the distance and spatial partition-
ing strategies (Kv > 1), the adjacency matrix A is formed
by stacking Kv matrices Ak, with each one corresponding
to one of the Kv joint subsets. If we ignore interlayer
nonlinearities, then the aforementioned spatial convolution
operation is equivalent to the original GCN [16] formula:

Hout =
∑
k

WkHinD
− 1

2

k ÂkD
− 1

2

k (4)

where Wk are Cout ×Cin × 1× 1 weight matrices (the mul-
tiplication is replicated Tin times in the temporal dimension
and V times in the spatial dimension). Dii

k =
∑

j Â
ij
k + α is

the normalized diagonal matrix and α is set to 0.001 to avoid
empty rows. Additionally, learnable edge importance weight-
ing can be implemented simply by multiplying element-wise
the adjacency matrices Âk of Eq. 4 with a weight mask M,
namely Âk ⊙ M. The output feature map resulting from
the spatial graph convolution undergoes a Cout × Γ × 1
temporal convolution, with Γ denoting the temporal kernel
size, completing the processing pipeline of a ST-GCN unit.

Training in the case of the ST-GCN is driven by a
combined loss function similar to the one described in Eq. 3,
with the sole difference being the exclusion of the categorical
label embedding loss Lemb.



3) Data Augmentation: Joint coordinates are normalized
using the largest joint bounding box within each sequence
and subsequently centralized in the range [−0.5, 0.5]. We
then partly follow the proposed methodologies of [41]. After
finding the maximum sequence length T , we proceed to pad
all joint sequences with zeros until they reach that specified
length, instead of repeating them from the beginning. During
training, paddings are applied randomly within the sequence,
while during inference, paddings are placed always at the
end for consistency. During training, we also perform ran-
dom affine transformations on the skeleton sequences of all
frames, with the aim of simulating camera movement.

After augmentation, input data is represented by tensors
of size (C, T, V ). For each video frame, BoLD provides 18
tuples that contain 2D joint coordinates, plus a detection
confidence score associated with each joint, therefore in our
case C = 3 and V = 18. In order to further reduce the effect
of over-fitting, we also pre-train the ST-GCN on the Kinetics
dataset [5] which has been extensively used for skeleton-
based action recognition.

IV. EXPERIMENTAL EVALUATIONS

A. Dataset

All of our upcoming experimental results are based
on the standard train, validation and test splits of the
Body Language Dataset (BoLD)1 which was assembled by
Luo et al. [22] and constitutes a database that focuses on
bodily expressions of emotion. BoLD is comprised of 9,876
movie video clips of body movements, depicting a total
of 13,239 human characters. The annotation of the dataset
was performed using a crowdsourcing pipeline based on the
Amazon Mechanical Turk. Instances are annotated in both
categorical and dimensional level, utilizing the 26 emotional
categories of the EMOTIC [17] dataset and the VAD [30]
dimensional model, respectively.

As far as evaluation metrics are concerned, for categorical
emotion prediction, average precision (AP), i.e. the area
under the precision-recall curve as well as the area under the
receiver operating characteristic (ROC-AUC) are used. For
continuous emotion regression along the VAD dimensions,
the coefficient of determination (R2) is used. Performance
comparison among different models is carried out on the
basis of an aggregatory emotion recognition score (ERS)
which is calculated as follows:

ERS =
1

2

(
mR2 +

1

2
(mAP + mRA)

)
(5)

where mR2 denotes the mean R2 score among the VAD
dimensions while mAP and mRA denote the mean AP and
mean ROC-AUC scores over the 26 emotion categories,
respectively.

B. Configuration Details

For all experiments regarding TSN configurations, we use
Ktrain = 3 segments during training and Kval = 25 segments

1https://cydar.ist.psu.edu/emotionchallenge

during validation while the segmental consensus function
has been chosen to be average pooling. Both the TSNs and
ST-GCN are trained for 30 epochs with a batch size of 16,
using the SGD optimizer, momentum equal to 0.9 and weight
decay equal to 10−5. The initial learning rate is set to 10−3

in the case of TSNs and 5 ·10−3 in the case of the ST-GCN.
The learning rates are reduced by a factor of 0.1 whenever
the monitored loss on the validation set plateaus. No data
augmentation technique was applied for either the TSN-RGB
or TSN-Flow, as the built-in variations of the BoLD dataset
proved sufficient for avoiding over-fitting.

Apart from the previously described methodologies, we
experiment with the partial batch-normalization scheme
(Partial BN), as proposed in [38]. After the initialization
with pre-trained models, in every ConvNet feature extractor,
we freeze the mean and variance of parameters of all batch
normalization layers, except for the first one. This method
is expected to work especially well in the case of temporal
ConvNets and reduce the effect of over-fitting. More specifi-
cally, as the distribution of optical flow is different from the
RGB images, the distribution of activation values in the first
convolutional layer will also differ from the ones inherited
through their initialization with RGB pre-trained models.

All results were generated on a single NVIDIA GeForce
RTX 2080 Ti. Our PyTorch code and pre-trained models are
publicly available2.

C. Ablation Studies

Tables I and II present performance comparisons among
all TSN-RGB and TSN-Flow configurations, respectively,
which we have considered. The second columns describe
the various input streams that are being included, with “B”
denoting the body, “C” denoting the context, “F” denoting
the face, “S” denoting the Places365 scene categories and
“A” denoting the corresponding SUN attributes.

TABLE I
PERFORMANCE COMPARISON OF VARIOUS TSN-RGB MODEL

CONFIGURATIONS ON THE BOLD VALIDATION SET.

Method Features Lemb Partial BN Regression Classification ERS
mR2↑ mAP↑ mRA↑

TSN-RGB

B

No No

0.0300 0.1419 0.5910 0.1983
BC 0.0362 0.1468 0.6021 0.2053

BCF 0.0647 0.1756 0.6414 0.2366
BCFS 0.0679 0.1746 0.6414 0.2379
BCFA 0.0685 0.1763 0.6417 0.2388

BCFSA
No No 0.0710 0.1762 0.6435 0.2404
Yes No 0.0713 0.1779 0.6457 0.2416
Yes Yes 0.0969 0.1839 0.6537 0.2579

CFSA Yes Yes 0.0804 0.1821 0.6485 0.2479

TABLE II
PERFORMANCE COMPARISON OF VARIOUS TSN-FLOW MODEL

CONFIGURATIONS ON THE BOLD VALIDATION SET.

Method Features Lemb Partial BN Regression Classification ERS
mR2↑ mAP↑ mRA↑

TSN-Flow

B
No No

0.0560 0.1431 0.5778 0.2082
BC 0.0661 0.1415 0.5882 0.2155
BF 0.0649 0.1497 0.5971 0.2192

BCF
No No 0.0795 0.1524 0.6054 0.2292
Yes No 0.0888 0.1563 0.6135 0.2369
Yes Yes 0.0948 0.1566 0.6172 0.2409

CF Yes Yes 0.0799 0.1574 0.6219 0.2348

2https://github.com/GiannisPikoulis/FG2021-BoLD



Scenes Attributes Ground Truth BCF BCFSA

Temple/Asia Man made Peace Anticipation Peace
Pagoda Natural light Annoyance Affection
Chalet No horizon Happiness
Palace Open area

Hunting Lodge Touring
Vert. components V: 0.5589 V: 0.6527

Shingles V: 0.5875 A: 0.6504 A: 0.5948
Semi-enclosed A: 0.5772 D: 0.6285 D: 0.6459

Aged D: 0.8088 JC = 0.0 JC = 0.25

Scenes Attributes Ground Truth BCF BCFSA

Martial arts gym No horizon Anticipation Anticipation Anticipation
Clean room Man-made Confidence Confidence
Locker room Enclosed area Engagement
Artists loft Cloth

Elevator lobby Indoor lighting
Work V: 0.5714 V: 0.6097

Vert. components V: 0.5153 A: 0.5759 A: 0.6397
Natural light A: 0.7399 D: 0.6353 D: 0.6682
Competing D: 0.6193 JC = 0.50 JC = 0.667

Stage/Indoor Enclosed area Engagement Engagement Engagement
Discotheque No horizon Confidence Pleasure

Ballroom Indoor lighting Pleasure Excitement
Orchestra pit Cloth Sensitivity Anticipation
Movie theater Congregating

Socialising V: 0.5003 V: 0.5601
Man-made V: 0.8234 A: 0.6079 A: 0.5537
Spectating A: 0.5572 D: 0.5651 D: 0.5086
Stressful D: 0.8015 JC = 0.25 JC = 0.33

Oast house Natural light Affection Peace Esteem
Cottage Foliage Esteem Happiness Peace

Tree farm Open area Sympathy Engagement
Kasbah Vegetation Happiness
Village Leaves Pleasure

Trees V: 0.5658 V: 0.6856
No horizon V: 0.5764 A: 0.4353 A: 0.4592
Man-made A: 0.4758 D: 0.5420 D: 0.5874
Shrubbery D: 0.7499 JC = 0.0 JC = 0.143

Beer hall No horizon Peace Peace Peace
Pub/Indoor Enclosed area Anticipation Happiness

Banquet hall Man-made Happiness
Dining hall Indoor lighting Pleasure

Bar Socialising
Cloth V: 0.5699 V: 0.6095

Congregating V: 0.8083 A: 0.5485 A: 0.4758
Eating A: 0.3500 D: 0.6299 D: 0.6141

Stressful D: 0.6623 JC = 0.25 JC = 0.50

Catacomb No horizon Anticipation Suffering Anticipation
Arch. Excavation Man-made Sympathy Fear Sensitivity

Grotto Dirt Sensitivity Sadness
Trench Natural light Sadness Suffering, Pain

Basement Enclosed area Suffering Engagement
Dry V: 0.4828 V: 0.5499

Dirty V: 0.3343 A: 0.5799 A: 0.5384
Rugged scene A: 0.4304 D: 0.6331 D: 0.6444

Aged D: 0.4720 JC = 0.167 JC = 0.57
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Fig. 2. Top-5 predicted scene categories, top-9 predicted attibutes, ground truth and predicted (regressed) emotion categories (VAD values) as well as
Jaccard similarity coefficient (JC) on samples that have been randomly selected from the BoLD validation set. All predictions are made at video level.

1) TSN-RGB: Both the inclusion of the context and face
streams are conducive to an increase in ERS score, with the
latter showcasing a more considerable boost in performance
over the bare-bones body stream. The sole inclusion of either
the Places365 scene-specific or the SUN attribute scores
is conducive to higher recognition scores, with the latter
seemingly being more beneficial. However, it is the combined
usage of the two that results in the biggest improvement
in performance, in both the categorical and continuous
tasks, as expected. Moreover, while the addition of Lemb
leads to a trivial performance boost, the application of the
Partial BN regularization scheme tops off our previously best
performing network, reaching a maximum of 0.2579 ERS
on the BoLD validation set. It seems as if the continuous
re-estimation of mean and variance parameters of batch-
normalization layers that are located deeper within the net-
work, becomes obsolete and may in fact have a negative
impact on generalization performance, provided that the
model’s parameters have been previously initialized through
a proper pre-training procedure.

The beneficial influence of scene and attribute related fea-
tures in human emotion understanding becomes more evident
in cases where the facial characteristics and poses of the
depicted agents are occluded. This is further highlighted in
Fig. 2 which includes instances that were randomly selected
from the validation set. Each instance is accompanied by its
top-5 predicted scene categories, top-9 predicted attributes,
ground truth and predicted (regressed) emotion categories
(VAD values) as well as the corresponding Jaccard simi-
larity coefficient (JC), for each model configuration. Correct
category recognition is indicated in green. In all cases, the
incorporation of scene and attribute characteristics, on top
of the existing bodily, contextual and facial features, results
in more emotions being correctly recognized. In addition,
emotions that are semantically related, i.e. peace-happiness-

TABLE III
PERFORMANCE COMPARISON OF VARIOUS ST-GCN MODEL

CONFIGURATIONS ON THE BOLD VALIDATION AND TEST SETS.

Set Method Pre-training Labeling
Strategy

Regression Classification ERS
mR2↑ mAP↑ mRA↑

Valid. ST-GCN (ours) None
uniform 0.0322 0.1274 0.5674 0.1898
distance 0.0380 0.1352 0.5772 0.1971
spatial 0.0385 0.1392 0.5871 0.2008

Kinetics [5] spatial 0.0652 0.1542 0.6103 0.2237

Test Luo et al. [22] N/A N/A 0.0440 0.1263 0.5596 0.1940
ST-GCN (ours) Kinetics [5] spatial 0.0908 0.1694 0.6268 0.2445

pleasure (e) and sadness-suffering-pain (f), are jointly pre-
dicted, even though some of them have not been included
by the annotators.

2) TSN-Flow: The introduction of either the context or
face stream leads to a marginal improvement over the bare-
bones temporal body stream. A more considerable boost
in performance is achieved through the inclusion of all
three input streams. These findings validate our intuitive
decision to follow a multi-stream approach for encoding
motion through optical flow, analogously to the case of
the RGB modality. As mentioned in the case of TSN-
RGB, the addition of the categorical label embedding loss
Lemb improves the network’s performance in both categorical
and continuous tasks, while with the application of the
Partial BN scheme, the resulting model tops off all previous
configurations reaching a maximum of 0.2409 ERS.

3) ST-GCN: As far as skeleton-based learning is con-
cerned, Table III provides a performance comparison among
all ST-GCN configurations which we have considered. We
notice that the spatial labeling strategy leads to better results
compared to the others, confirming the findings of [41], in
spite of having a relatively minor impact on the overall
emotion recognition performance. Pre-training the ST-GCN
on Kinetics provides a significant performance boost in both
categorical and continuous tasks over all of its counterparts
that have been trained on BoLD from scratch, reaching a



TABLE IV
PERFORMANCE COMPARISON OF VARIOUS NETWORK ENSEMBLES ON

THE BOLD VALIDATION SET, UTILIZING LATE FUSION SCHEMES.

Method Score Fusion Regression Classification ERS
mR2↑ mAP↑ mRA↑

TSN-RGB+TSN-Flow
(ours)

Maximum 0.1000 0.1840 0.6549 0.2597
Average 0.1458 0.1884 0.6671 0.2867

TSN-RGB+TSN-Flow
+ST-GCN (ours)

Maximum 0.0735 0.1806 0.6478 0.2439
Average 0.1440 0.1933 0.6667 0.2870

Weighted Average 0.1498 0.1930 0.6694 0.2905
Filntisis et al. [10] Average 0.0917 0.1656 0.6266 0.2439

maximum ERS of 0.2237 on the validation set and 0.2445
on the test set. Therefore, pre-training plays a crucial role in
the overall performance of the network and presumably con-
stitutes the main differentiating factor between the reported
results of [22], and ours.

4) Proposed Method: The proposed methodology consti-
tutes a late fusion scheme among the best performing models
from all modalities, namely RGB, Optical Flow and Human
Skeleton, effectively forming a network ensemble. The score
fusion methods which will be considered include: maximum,
simple average and weighted average. Table IV summarizes
the results. A weighted average of the TSN-RGB, TSN-Flow
and ST-GCN, with a weight ratio of 2:2:1 respectively, leads
to the best result of 0.2905 ERS on the validation set. More
importantly, our implementation surpasses the current state-
of-the-art of 0.2439 ERS on the BoLD validation set, as
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Fig. 3. Average precision (AP) scores per emotion category, as obtained
on the BoLD validation set, using our proposed network ensemble.
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Fig. 4. Coefficient of determination (R2) per emotional dimension, as
obtained on the BoLD validation set, using our proposed network ensemble.

TABLE V
QUANTITATIVE RESULTS ON THE BOLD TEST SET REGARDING THE

PERFORMANCE AND COMPLEXITY OF OUR PROPOSED MODEL VERSUS

OTHER PUBLISHED WORKS.

Method # Parameters
(×106)

Regression Classification ERS
mR2↑ mAP↑ mRA↑

Luo et al. [22] N/A 0.1030 0.1714 0.6352 0.2530
Filntisis et al. [10] 111.5 0.1141 0.1796 0.6416 0.2624

Ours 71.4 0.1609 0.2187 0.6829 0.3059

it was recently achieved in [10]. Figs. 3 and 4 summarize
the results for the 26 discrete emotion categories and the
continuous VAD dimensions relative to the AP and R2

performance metrics, respectively.
Subsequently, we evaluate our best performing network

ensemble on the official BoLD test set. A comparative study
regarding the performance and complexity of our proposed
model and earlier published works is presented in Table V.
The proposed network ensemble manages to surpass the
current state-of-the-art of 0.2624 ERS, as achieved in [10],
by a considerable margin on all metrics, thus verifying
the superiority of our technique. As far as complexity is
concerned, our model does a good job at maintaining a
lower number of trainable parameters through the efficient
utilization of multiple input streams and shallow feature
extractors (ResNet-18, Wide-ResNet-18), in comparison with
previous implementations that made use of deeper ConvNet
backbones [10] (ResNet-50 & 101) and disentangled the
various input streams all together [22].

V. CONCLUSIONS AND FUTURE WORK

This study employs two major components of action
recognition related literature, namely Temporal Segment
Networks (TSN) and Spatial-Temporal Graph Convolutional
Networks (ST-GCN) with the aim of extending the concept
of context-based emotion recognition in the dynamic setting
of video sequences. The most notable contribution of this
paper is the extension of the original TSN architecture with
the inclusion of multiple input streams that effectively encode
bodily, contextual, facial and generic scene-related features,
enhancing our model’s perception of visual context and
emotion in general. Our intuitive modifications regarding the
incorporation of scene and attribute classification scores, as
well as multi-stream optical flow, combined with a properly
pre-trained ST-GCN, have led to significant improvements
over the state-of-the-art techniques with relation to the
challenging Body Language Dataset (BoLD).

Lastly, a possible future research direction might be
proposals for further exploitation of the categorical label
dependencies that reside within the datasets and may lead to
an additional improvement in categorical emotion prediction.
Also, the Depth modality has been left relatively unexplored
on the subject of context-based emotion recognition in
videos. Currently, published data with relation to BoLD are
quite scarce and there is definitely a lot of room for improve-
ment. However, our existing results undoubtedly prove that
we have made significant steps in the right direction.
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