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ABSTRACT

In this paper, we study concepts of sparsity in the max-plus algebra
and apply them to the problem of multivariate convex regression. We
show how to efficiently find sparse (containing many−∞ elements)
approximate solutions to max-plus equations by leveraging notions
from submodular optimization. Subsequently, we propose a novel
method for piecewise-linear surface fitting of convex multivariate
functions, with optimality guarantees for the model parameters and
an approximately minimum number of affine regions.

Index Terms— sparsity, max-plus algebra, submodular opti-
mization, multivariate convex regression, piecewise-linear fitting

1. INTRODUCTION

Max-plus arithmetic consists of the semiring (Rmax,max,+), where
Rmax = R ∪ {−∞} is the real line including −∞, and max, +
are the standard maximum and sum operations respectively. It has
been used to represent various nonlinear processes in areas such as
scheduling and synchronization [1, 2, 3], geometry [4], control the-
ory and optimization [5, 6], morphological image and signal analysis
[7, 8, 9], and machine learning [10, 11, 12, 13, 14]. Max-plus alge-
bra is obtained from the conventional linear algebra if we replace
addition with maximum and multiplication with addition. Hence,
many of the aforementioned nonlinear processes enjoy some linear-
like properties when described in terms of the max-plus algebra.

In this paper we are interested in sparse max-plus representa-
tions, i.e. vectors which consist of as many uninformative (−∞)
elements as possible. In particular, we focus on generalizing the
problem of computing the sparsest solution of the max-plus equa-
tion, which was introduced in [15]. Such solutions describe the same
information with the least number of elements. Hence, they can lead
to a significant reduction in memory and computational time–see, for
example, the pruning problem in optimal control [16]. Sparse solu-
tions have also been employed to recover underlying sparse systems
in max-plus system identification [15]. In general, an exact solution
to the max-plus equation might not exist due to data-corruption or
model-mismatch [15]. For this reason, we consider the problem of
finding a sparse approximate solution, i.e. a solution which is both
sparse and a good fit for the equation. We note that although spar-
sity has been extensively studied before in the linear setting [17], the
results do not apply to the max-plus setting.
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We apply our framework to the fundamental problem of multi-
variate convex regression, where the goal is to approximate a con-
vex function by a piecewise-linear (PWL) one. Formulating the
problem as a max-plus equation and computing a sparse solution
enables us to obtain a PWL function with an approximately mini-
mum number of affine regions. In general, the problem of fitting
PWL functions has been studied before in many areas, including
convex optimization, non-linear circuits, geometric programming,
machine learning and statistics. Previous attempts on solving the
multivariate version of it have focused on iterating between find-
ing a suitable partition of the input space and locally fitting affine
functions to each domain of the partition [18, 19, 20, 21]. A sta-
ble method is proposed in [21], where the authors propose a convex
adaptive partitioning algorithm that is a consistent estimator and re-
quiresO(n(n+1)2m log(m) log(log(m))) computing time, where
n is the dimension of the input space and m the number of points
sampled from the convex function. Recently, it has been proposed
to identify PWL functions with max-plus polynomials and formulate
the regression problem as a max-plus equation, yielding a linear time
algorithm [22].

Contributions: In summary, we pose a generalized inverse
problem with sparsity and “lateness” constraints for matrix max-plus
equations, where the approximation error is in terms of any `p norm,
for p < ∞. This formulation is more general than [15], where only
the `1 norm was considered. We present the supermodular struc-
ture of the problem, which allows us to solve it approximately but
efficiently via a greedy algorithm. Then, we discuss how to handle
the `∞ case without the “lateness” constraint and pose a method for
approximately solving it. Finally, we apply our framework to the
problem of multivariate convex regression via PWL function fitting.
Our method shares a common theoretical background with [22], but
it differentiates from it as it allows an automatic, nearly optimal,
selection of the affine regions, due to the imposed sparsity of the
solutions. It, also, guarantees error bounds to the approximation,
while compared to partitioning and locally fitting style methods
[18, 19, 20, 21] it has lower complexity. Full proofs can be found in
[23].

2. PRELIMINARIES AND PROBLEM FORMULATION

Preliminaries: For max and min operations we use the well-
established symbols of ∨ and ∧, respectively. We use roman letters
for functions, signals and their arguments and greek letters mainly
for operators. Also, boldface roman letters for vectors (lowcase) and
matrices (capital). If M = [mij ] is a matrix, its (i, j)-th element
is also denoted as mij or as [M]ij . Similarly, x = [xi] denotes a
column vector, whose i-th element is denoted as [x]i or simply xi.
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Max-plus algebra consists of vector operations that extend max-
plus arithmetic to Rn

max. They include the pointwise operations of
partial ordering x ≤ y and pointwise supremum x ∨ y = [xi ∨ yi],
together with a class of vector transformations defined below. Max-
plus algebra is isomorphic to the tropical algebra, namely the min-
plus semiring (Rmin,min,+), Rmin = R ∪ {∞} when extended to
Rn

min in a similar fashion. Vector transformations on Rn
max (resp.

Rn
min) that distribute over max-plus (resp. min-plus) vector super-

positions can be represented as a max-plus � (resp. min-plus �
′
)

product of a matrix A ∈ Rm×n
max (Rm×n

min ) with an input vector x ∈
Rn

max(Rn
min):

[A� x]i ,
n∨

k=1

aik + xk, [A�
′
x]i ,

n∧
k=1

aik + xk (1)

More details about general algebraic structures that obey those arith-
metics can be found in [24]. In the case of a max-plus matrix equa-
tion A� x = b, there is a solution if and only if the vector

x̂ = (−A)ᵀ �
′
b (2)

satisfies it [1, 2, 24]. We call this vector the principal solution of the
equation. Lastly, a vector x ∈ Rn

max is called sparse if it contains
many−∞ elements and we define its support set, supp(x), to be the
set of positions where vector x has finite values, that is supp(x) =
{i | xi 6= −∞}.

Let U be a universe of elements. A set function f : 2U → R is
called submodular [25, 26] if ∀A ⊆ B ⊆ U, k /∈ B holds:

f(A ∪ {k})− f(A) ≥ f(B ∪ {k})− f(B). (3)

A set function f is called supermodular if −f is submodular. Sub-
modular functions occur as models of many real world evaluations
in a number of fields and allow many hard combinatorial problems
to be solved fast and with strong approximation guarantees [27, 28].

Problem formulation: We consider the problem of finding
the sparsest approximate solution to the max-plus matrix equation
A� x = b,A ∈ Rm×n,b ∈ Rm. Such a solution should i) have
minimum support set supp(x), and ii) have small enough approxi-
mation error ‖b−A� x‖pp, for some `p, p < ∞, norm. For this
reason, given a prescribed constant ε we formulate the following
optimization problem:

min
x∈Rn

max

|supp(x)|, s.t. ‖b−A� x‖pp ≤ ε,

A� x ≤ b.
(4)

Note that we add an additional constraint A� x ≤ b, also known as
the “lateness” constraint, which essentially restricts the approxima-
tion of b to happen from below. This constraint makes problem (4)
more tractable; it enables the reformulation of problem (4) as a set
optimization problem in (6). In many applications this constraint is
desirable–see [15]. However, in other situations, it might lead to less
sparse solutions or higher residual error. A possible way to remove
this constraint is explored in Section 3.1.

3. SPARSE APPROXIMATE SOLUTIONS TO MAX-PLUS
EQUATIONS

Even with the additional lateness constraint, problem (4) is very hard
to solve. For example, when ε = 0, solving (4) is anNP-hard prob-
lem [15]. Thus, we do not expect to find an efficient algorithm which
solves (4) exactly. Instead, we will prove next there is a polynomial

time algorithm which finds an approximate solution, by leveraging
its supermodular properties.

First, by exploiting the lateness constraint, we prove that the
original problem (4) can be recast as a set-optimization problem,
where we minimize only over the support of the sparse solution. For
the components in the support, it is sufficient to take xi = x̂i, where
x̂ is the principal solution defined in (2). This is formalized in the
following definition. For the rest of this section, let J = {1, . . . , n}.

Definition 1. Let T ⊆ J be a candidate support and let Aj denote
the j-th column of A. The error vector e : 2J → Rm is defined as:

e(T ) =

{
b−

∨
j∈T (Aj + x̂j), T 6= ∅∨

j∈J e({j}), T = ∅.
(5)

The error function Ep : 2J → Rmin is defined as: Ep(T ) =

‖e(T )‖pp =
∑m

i=1 e
(p)
i (T ).

The next theorem reveals that it is indeed sufficient to optimize
only over T , where T is the support set of the solution x.

Theorem 1. Problem (4) can be recast as the optimization problem:

min
T⊆J

|T |, s.t. Ep(T ) ≤ ε. (6)

Next, we show that the error function Ep(T ) is supermodular.
This property allows us to approximately solve problem (6) via a
greedy algorithm.

Theorem 2. Ep(T ) is decreasing and supermodular.

The proof of its supermodularity employs the submodular ratio
of a function [29], which captures the idea of how far a given func-
tion is from being submodular. The full details of the proof can be
found in [23]. Setting Ẽp(T ) = max(Ep(T ), ε), we are able to for-

Algorithm 1: Approximate solution of problem (4)
Input: A,b
Compute x̂ = (−A)ᵀ �

′
b

if Ep(J) > ε then
return Infeasible

Set T0 = ∅, k = 0
while Ep(Tk) > ε do

j = argmins∈J\Tk
Ep(Tk ∪ {s})

Tk+1 = Tk ∪ {j}
k = k + 1

end
xj = x̂j , j ∈ Tk and xj = −∞, otherwise
return x, Tk

mulate problem (6), and thus the initial one (4), as a cardinality mini-
mization problem subject to a supermodular equality constraint [30],
which allows us to approximately solve it by the greedy Algorithm 1.
The approximation ratio between the output of Algorithm 1 and the
optimal solution of (4) isO(logm) (see [23] for details). The calcu-
lation of the principal solution requires O(nm) time and the greedy
selection of the support set of the solution costs O(n2) time. We
call the solutions of problem (4) Sparse Greatest Lower Estimates
(SGLE) of b. Note that when p = ∞, problem (4) does not neces-
sarily admit an approximately optimal solution by the greedy algo-
rithm, since the error function becomes non-supermodular.



3.1. Sparse vectors with minimum `∞ errors

In this subsection, we discuss a way to go around the lateness con-
straint A� x ≤ b. Although in some settings the constraint is
needed [15], in other cases it could disqualify potentially sparsest
vectors from consideration. Omitting the constraint, on the other
hand, makes it unclear how to search for minimum error solutions
for any `p (p < ∞) norm. For instance, it has recently been re-
ported that it is NP-hard to determine if a given point is a local
minimum for the `2 case [31]. For that reason, we shift our atten-
tion to the case of p = ∞. It is well known [1, 2] that problem
minx∈Rn

max
‖b−A�x‖∞ has a closed form solution; it can be cal-

culated in O(nm) time by adding to the principal solution element-
wise the half of its `∞ error. Note that this new vector does not
necessarily satisfy A� x ≤ b, so it shows a way to overcome the
aforementioned limitation.

Here we exploit the above idea. We first obtain a sparse vector
x∗ by solving problem (4). Then, we add to the vector element-
wise half of its `∞ error ‖b−A� x∗‖∞/2. Interestingly, this new
solution minimizes the `∞ error among all solutions with the same
support, as formalized in the following result.

Proposition 1. Let xSMMAE ∈ Rn
max be defined as:

xSMMAE = x∗ +
‖b−A� x∗‖∞

2
, (7)

where x∗ is a solution of problem (4) with fixed (p, ε). Then ∀ z ∈
Rn

max with supp(z) = supp(x∗), it holds:

‖b−A�z‖∞ ≥ ‖b−A�xSMMAE‖∞ =
‖b−A� x∗‖∞

2
(8)

and, also,

‖b−A� xSMMAE‖∞ ≤
p
√
ε

2
. (9)

The above method provides sparse vectors that are approxi-
mate solutions of the equation with respect to the `∞ norm without
the need of the lateness constraint. It is also empirically verified
in the next section that it produces tight and robust approxima-
tions of the goal vector b. After computing x∗, xSMMAE requires
O(m|supp(x∗)| + |supp(x∗)|) time. We call xSMMAE Sparse Mini-
mum Max Absolute Error (SMMAE) estimate of b.

4. APPLICATIONS IN CONVEX REGRESSION

In this section, we are interested in approximating a convex func-
tion by a piecewise-linear one. We call this the Tropical Regression
problem. It is well known that any convex function can be expressed
as the pointwise supremum of a, potentially infinite, family of hy-
perplanes, using the Legendre-Fenchel conjugate (a.k.a. slope trans-
form) [32, 33, 34, 35]. Our goal is to approximate the convex func-
tion with as few hyperplanes as possible. We show next how the
sparse framework we introduced addresses this problem.

Let (xi, fi) ∈ Rn+1, i = 1, . . . ,m, be a set of (possibly noisy)
data sampled from a convex function f and {ak}Kk=1 be a set of
slope vectors; for example, this could be some integer multiples of
a slope step inside a fixed n-dimensional interval or the numerical
gradients of the data. Given the data and the slopes, our goal is to
compute a PWL (piecewise-linear) function p:

p(x) =

K∨
k=1

aᵀ
kx+ bk, (10)

(a) K = 16, ε = 108, p = 150 (b) K = 5, ε = 220, p = 2

Fig. 1: The sparse greatest lower and minimum max absolute error
estimates of surface z = x2 + y2 +N (0, 0.252) for 2 different runs
of the fitting algorithm. (Best viewed in color.)

that satisfies fi = p(xi)+ error, ∀i. Ideally, this regression problem
can be formulated as the following max-plus matrix equation:

aᵀ
1x1 aᵀ

2x1 . . . aᵀ
Kx1

. . . .

. . . .
aᵀ
1xm aᵀ

2xm . . . aᵀ
Kxm


︸ ︷︷ ︸

A

�


b1
b2
.
.
bK


︸ ︷︷ ︸

x

=

 f1
.
.
fm


︸ ︷︷ ︸

b

(11)

Observe that by taking bk = −∞, the hyperplane aᵀ
kx + bk is ne-

glected in the maximum. Hence, sparsity leads to using less affine
regions. We can formulate problem (4) for the above matrices for
any desired (ε, p). If a solution exists, then it produces intercepts bk
that ensure that the `p approximation error is less than ε and, at the
same time, the resulting tropical polynomial contains the approxi-
mately minimum number of affine regions needed to approximate
f . Except for the previous SGLEs, we are also able to get the SM-
MAE estimates of f by adding to the result half of its l∞ error, as
explained in section 3.1. Coming with `∞ guarantees, those esti-
mates are useful especially when the approximation is being used as
a surrogate of the original function in an optimization problem, as
the difference between the 2 minima can be bounded.

First, we calculate matrix A in O(Knm). Solving, now, prob-
lem (4) for equation (11) requires the computation of its principal
solution in O(Km) time and then employing the greedy algorithm
to find the intercepts bk with complexity O(K2), meaning a total
complexity ofO(K2 +K(n+1)m). Computing the SMMAE esti-
mate, as well, requires an extra O(Km). Next, we demonstrate the
effectiveness of our method via numerical examples.

4.1. Numerical example on 2D noisy data

Let us first consider the 2-dimensional case, meaning we obtain data
from a convex surface. For this example, we sample values from:

z = x2 + y2 +N (0, 0.252), (12)

where xi, yi are drawn as i.i.d. random variables from the Uniform
[−1, 1] distribution. We obtain 500 observations from the surface.

Let A = {−10.00,−9.75,−9.50, . . . , 9.50, 9.75, 10} be the
set of the partial derivatives of the affine regions that are to be con-
sidered, then our tropical model for this example is

p(x, y) =
∨

(k,l)∈A×A

bkl + kx+ ly. (13)

We obtain SGLEs by solving problem (4) for a variety of differ-
ent pairs of (ε, p) and then adding to these solutions the half of their



Fig. 2: RMS error of SMMAE estimators vs number of affine re-
gions K. Comparison between our method and the tropical regres-
sion method (MMAE) reported in [22].

SGLE SMMAE
(ε, p) errorRMS error∞ errorRMS error∞ K
(210, 1) 0.4926 1.1575 0.3027 0.5787 28
(250, 1) 0.5518 1.1967 0.2847 0.5983 8
(300, 1) 0.6681 1.5405 0.3506 0.7703 4
(120, 2) 0.4899 1.1268 0.2942 0.5634 31
(130, 2) 0.5096 1.1575 0.2889 0.5787 16
(150, 2) 0.5465 1.1734 0.2729 0.5867 8
(220, 2) 0.6344 1.5405 0.3479 0.7703 5
(50, 5) 0.5018 1.1268 0.2812 0.5634 23
(75, 7) 0.5602 1.1963 0.2687 0.5981 9
(108, 150) 0.5560 1.1268 0.2574 0.5634 16

GLE [22] MMAE [22]
K errorRMS error∞ errorRMS error∞
10 0.6659 1.6022 0.3641 0.8011
25 0.5674 1.2779 0.3016 0.6389
50 0.5489 1.3068 0.3159 0.6534
100 0.5364 1.2828 0.3135 0.6414

Table 1: PWL approximations and their errors of surface (12). K is
the number of affine regions in the resulting tropical polynomial.

l∞ error to get the corresponding SMMAE estimators. We present
the results in Table 1, compared to those obtained from the tropical
regression method of [22], in which the number of affine regions is
a pre-defined constant. Fig. 2 shows the RMS error of the SMMAE
estimators as a function of the number K of affine regions and com-
pares it with the MMAE estimators reported in [22].

We verify that, in the presence of noise the SMMAE estimators
perform better than the SGLEs, as the latter must approximate the
data from below (see Fig. 1) and, therefore, underestimate noise-
corrupted low values. Both the estimators are able to find good ap-
proximations with a relatively low number of affine regions and the
results are superior to those reported in [22] (in terms of error and
number of affine regions). Notice that the SMMAE estimates have
exactly half the l∞ error of their SGLEs counterparts, as expected
by Proposition 1. Moreover, observe that when p = 150, the SM-
MAE estimate has l∞ error equal to 0.5634, which is very close to
the theoretical upper bound from equation (9) ( 10

8/150

2
= 0.5653).

This observation allows one to run targeted versions of the fitting
algorithm (namely, choose a high order norm p and set ε = (2δ)p,
where δ is the accepted l∞ error threshold).

Fig. 3: RMS error vs number of affine regions of PWL approxima-
tion of g(x) = log(exp(x1) + exp(x2) + exp(x3)).

4.2. Numerical example on 3D data

Consider, now, the case where n = 3, and we have m = 113 =
1331 points collected from set V ×V ×V , V = {−5,−4, . . . , 4, 5}.
The convex function to approximate is:

g(x) = log(exp(x1) + exp(x2) + exp(x3)). (14)

The above synthetic dataset was used before in the PWL fitting liter-
ature in [19]. The authors propose an iterated method, which alter-
nates between partitioning the data into affine regions and carrying
out least squares fits to update the local coefficients. As the result-
ing approximation depends on the initial partition, the authors pro-
pose running multiple instances of their algorithm to obtain a good
PWL fit to g. We propose, instead, finding the numerical gradients
of the data and setting them as the candidate slopes ak (similar to
[22]) and, then, applying our tropical sparse method, to select some
of the regions and determine their constant terms. As a result, the
method grows as O(m2). For this example, we fix p = 2 and to
obtain the first approximation, we set ε = 1331, so that the RMS
error is less than 1. The resulting tropical polynomial has K = 4
affine regions. From then on, we gradually lower ε, so that we get
approximations with varied K, until K reaches 21 (see Fig. 3). The
results are competitive to those reported in [19], while our method
produces approximations with a single run, as opposed to [19] which
relies on 10 or 100 different trials, with complexity for each one of
O((n+ 1)2mi), i being the number of iterations until convergence.

5. CONCLUSIONS

Max-plus and tropical algebra serve as a framework for various
fields, with emerging applications in optimization and machine
learning. In this work, we demonstrated how to obtain sparse
approximate solutions to max-plus equations and based on that, in-
troduced a novel method for multivariate convex regression by PWL
functions (i.e tropical regression) with a nearly optimal number
of affine regions. The proposed method comes with error bounds
for the resulting approximation and has an edge over previously
reported tropical regression methods, in terms of robustness. For
future work, it would be interesting to study the statistical properties
of the tropical estimators. Lastly, an extension of the sparsity results
in nonlinear vector spaces, called Complete Weighted Lattices [24],
would allow one to solve more general problems of regression, using
the tools introduced in this work.
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