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Abstract— Over the last two decades, visual SLAM research
has taken a turn towards using geometric structures more
complex than points for describing indoor environments. At
the same time, semantic information is becoming increasingly
available to robotic applications, improving robots’ perceptive
capabilities. In this work, we introduce a method for uniting
these two approaches. Namely, we propose a novel mechanism
for propagating semantics directly into the optimization level
of an RGB-D SLAM framework. This framework internally
uses unified geometric representations to jointly describe points,
lines and planes. We also validate our approach with experi-
ments on various datasets, both synthetic and real-world, with
comparisons against representative systems from the literature.

I. INTRODUCTION

Simultaneous Localization And Mapping (SLAM) is an
overarching problem in robotics. SLAM refers to the problem
of obtaining a representation of the robot’s environment and
simultaneously estimating its trajectory. On-board sensors are
used to perceive the environment and then SLAM algorithms
process their measurements to infer information about the
robot’s surroundings, as well as its own path. Both the
sensor technology and algorithm complexity are constantly
evolving, thus providing robotic systems with increased
autonomy in a variety of settings. Over the last two decades,
numerous solutions have been proposed for all variants of
the SLAM problem [1], [2].

An important sector of SLAM research concentrates on
indoor spaces. Enabling safe robot interaction with humans
indoors relies on robust autonomy, with perception being one
of its cornerstones. Works on perception have considered
both localization and semantic understanding [3], therefore
it would be justified to combine SLAM with semantics
towards this direction. Of course, indoor spaces present
similar difficulties to most SLAM use-cases, including low-
texture areas (empty hallways), repetitive structures (near-
identical rooms) or dynamic entities (humans) [4]. Such
open challenges have motivated this work to explore possible
solutions and improvements for the indoor setting.

There are two popular trends in indoor visual SLAM
(vSLAM) research that have recently gained considerable
momentum: (i) employing complex geometric structures [5]–
[7] and (ii) incorporating semantic segmentation methods, as
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Fig. 1: Point-cloud segmentation, obtained during the execution
of our RGB-D vSLAM system. Semantic classes are displayed in
different colors. A sample frame from the sequence the detections
were made in is shown at the bottom-right.

in the works of [8]–[11]. Accordingly, this work1 considers
the problem of uniting elements from each of the aforemen-
tioned research directions to improve indoor vSLAM.

Our contribution is a novel methodology for enhancing
unified geometric representations (entities jointly expressing
points, lines, and planes) with semantic information. We
propose a voting scheme to achieve this at the feature
level, and observe improvements in trajectory estimation,
especially when rich semantics are present. We introduce
the average amount of semantic labels as the measure of
semantic richness in our data sequences. This method differs
significantly from other semantic vSLAM approaches, where
the semantic and geometric pipelines are either computa-
tionally restricting [12], held completely separate [9], or
use semantics solely for mapping [13]. Our method directly
affects the optimization process and outputs both a sparse
map and pose estimates. Furthermore, it makes use of
heterogeneous geometric primitives, instead of just points, in
order to take advantage of the regular geometric structures in
indoor environments. Finally, we evaluate a complete system
implementation on three indoor datasets, comparing against

1Code available at:
https://gitlab.com/_JackFrost_/sem-sashago
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Fig. 2: Sem-SASHAGO architecture overview: The three geometric
detector modules detect the necessary geometric structures. The
semantic detector finds semantic bounding boxes for objects in the
input images. The data is then propagated to the tracker modules
that construct the back-end pose graph, while also applying our
semantic weighting process, using the voting scheme of Sect. III-
D. Finally, the relocalizer module checks for possible loop closures
and, if necessary, calls the loop closer to add the constraints.

state-of-the-art methods.

II. RELATED WORK

Visual SLAM was preceded by localization methods that
also used optical sensors, known as Visual Odometry (VO).
VO methods are still applied in some settings with strict per-
formance constraints or demands for algorithmic efficiency.
They avoid constructing a full map of the environment,
focusing instead on localizing the agent and executing only
some local, temporal optimization steps, commonly referred
to as Bundle Adjustment (BA) [14], [15]. However, contem-
porary SLAM solutions have become capable of running in
real-time on modern hardware [16], [17]. Some approaches
integrate a VO solution running at a low level and only use
vSLAM components periodically [18].

Initial research in SLAM was constrained by processing
power, which naturally led to using LiDAR sensors instead
of cameras, since their data streams are sparser. LiDARs
also capture geometry directly and their measurements are
immune to lighting changes [19]. As a result, researchers
made extensive use of sensor measurement filtering for pose
estimation [20]–[23]. As CPUs became more potent, using
camera feeds directly proved to be a realistic possibility. Not
only are cameras generally cheaper than LiDAR sensors, they
can also capture an entire frustum of optical information,
as opposed to range information from just one 2D planar
slice of the world. Recently, the deep learning revolution
has brought GPUs to the forefront of computation [24], also
enabling large scale visual data processing; in fact, GPUs
have even been used directly for vSLAM [25].

VSLAM systems can be divided in multiple categories
according to their algorithmic design. Direct dense or semi-
dense vSLAM methods, such as [26], [27], produce maps
with high levels of detail, while indirect sparse methods
[17] are generally faster to compute, and appropriate when
the resulting map can be simpler. The processing is usually
split between a front-end and a back-end [28]. The front-

end, which involves data association and graph updates,
creates and maintains the graph. It also calculates the initial
egomotion estimate, for example by obtaining frame-to-
frame pose estimations using a solver for the Perspective-n-
Point problem (PnP) [29]. Finally, it handles outlier rejection,
e.g. using RANSAC [30], [31], to formulate more accurate
initial motion estimations. The back-end typically relies on
a generic non-linear least squares optimizer [32], [33], and
is responsible for optimizing the pose graph.

VSLAM solutions may also be classified based on their
intended application. For outdoor applications, the scale
of the environment limits the use of close-range sensors,
such as depth cameras. Instead, alternative sensors, such as
stereo cameras, LiDAR, IMU or GPS, are frequently used
to provide sources of perception [34]–[36]. Indoor SLAM
systems typically operate on a much smaller scale than
their outdoor counterparts and with different objects in their
vicinity. Outlier removal methods are commonly used in both
settings to filter out dynamic entities (e.g. moving humans) or
spurious feature matches, with recent works also employing
machine learning [8], [9]. In addition, indoor environments
may contain regular geometric structures, such as lines and
planes, which can be detected and tracked [6], [37], [38].
This idea led to the development of unified representations
of heterogeneous geometric primitives, which are of great
interest to our work [7], [39].

Nowadays, semantic information is being used in vSLAM
with increasing frequency. Semantic detectors based on neu-
ral networks are fast and accurate [40]–[42]. [11] used stereo
image pairs to generate 3D object-bounding volumes, along
with viewing angle estimates. Other approaches focus on op-
timizing data associations. Specifically, [12] use Expectation
Maximization (EM) to track the most probable semantic class
for an object detection. They define a semantic error term,
which is added to their GTSAM factor graph [43]. [44] is
a variant of this method, which assumes multimodal sum-
of-Gaussian variables and uses belief propagation to take all
possible class assignments under weighted consideration.

Our approach leverages the advantages of merging se-
mantic detections with regular indoor geometric structures.
Contrary to other works in the literature, we aim to inject
semantic information directly into the pose graph, by storing
both the geometric and semantic history of tracked features
in the generated sparse map. In semantically barren environ-
ments, our solution will rely on its geometric detections;
empty indoor spaces typically provide salient geometric
structures, such as clear walls and corners that can be reliably
detected, as noted in some of our experimental sequences.

III. METHODOLOGY

A. System overview

The architecture of our system (Sem-SASHAGO), is pre-
sented in Fig. 2. The detection modules are responsible for
detecting geometric and semantic features in the input RGB-
D frames. We fuse semantic information with geometric
primitives (Sect. III-B), using a semantic voting mechanism
(Sect. III-D). The tracker performs two operations: it aligns



the new frame with the observed world map through feature
association and it generates the hypergraph edges that will
update the back-end pose graph. Finally, the system executes
relocalization; it searches for previous scenes with high sim-
ilarity and generates loop closure constraints, if necessary.
The loop closer is only executed when such constraints
are imposed, optimizing the graph accordingly. The system
outputs a camera pose estimate for each input frame, along
with a global geometric-semantic map.

B. Unified geometric representations

We begin by presenting the definition of the unified
geometric primitives used throughout this work. These are
points, lines and planes, expressed using degenerate quadrics
as:

(x− p)TA(x− p) = 0 (1)

where x is the coordinates of the points in the primitive, p is
the centroid and A is a symmetric, positive-definite matrix.
A matchable [7] is mathematically defined as:

M := ⟨pM , RM , ΛM ⟩ (2)

where pM is the centroid of the matchable, and matrices
RM ∈ SO(3) and ΛM correspond to the orientation and
shape of the matchable respectively, derived from matrix A
in (1) after refactoring in the form A = RΛRT , where R :=
[rx, ry, rz]. The direction of the matchable M is defined as
dM := rx. The shape matrix ΛM is 3×3-diagonal and takes
one of the following forms, depending on M ’s geometry:

ΛM = diag(λ), λ =


(1, 1, 1) for points
(0, 1, 1) for lines
(1, 0, 0) for planes

(3)

The geometric primitives considered here - points, lines
and planes - are represented as zero-radius spheres, zero-
radius cylinders and coincident planes, respectively. Points
are detected using FAST detectors [45]. Lines are detected
using the Line Segment Detection (LSD) algorithm [46].
Finally, planes are detected from depth images by clustering
points of the point cloud [39]. Only lines and planes have
a direction (for planes it is their normal). Note that the
detectors need to be parameterized for good results.

C. Graph setup

In our implementation, the pose graph is implemented
with the g2o library [32], appropriately extended to rep-
resent matchables in the back-end. The optimization can
be formulated as a non-linear least squares problem, which
resides in a manifold, i.e. a space that is only locally linear
[28]. Since our system uses matchables as its fundamental
geometric units, some adjustments to the standard SLAM
error framework are necessary. Therefore, matchable errors
contain not only a spatial distance component ep, but also a

directional misalignment component ed and an orthogonality
component eo:

e(Ma,Mb) =

eped
eo

 =

RT
b (pa − pb)
da − db

dT
a db

 (4)

Since the error terms defined above are not relevant for all
possible pairs of matchables, an activation matrix C is used
to discriminate between different cases:

C =

 Cp 03×3 03×1

03×3 Cd 03×1

01×3 01×3 Co

 (5)

The block-diagonal elements Cp, Cd and Co in (5) serve
this purpose, by selectively (de)activating error components,
depending on the type of observed matchable pair. Consider
one pose-graph edge linking pose xi to matchable Mj

via measurement zij with raw input sensor information
matrix Ω̄ij . Then, the modified information matrix is Ωij =
C · Ω̄ij · CT and the corresponding error contribution is
eij(xi,Mj) =

∥∥e(xiMj , zij)
∥∥
Ωij

. The overall optimiza-
tion problem is formulated as:

X∗ = argmin
X

∑
ij

eTij(X)Ωijeij(X) (6)

where X represents the pose vector. The system is op-
timized iteratively in the back-end using g2o [32]. The
process takes small perturbations around the current vector
of state estimates, selecting the direction that steps towards
minimizing the error using a Jacobian of the error metric,
until convergence [28]. The Gauss-Newton and Levenberg-
Marquardt algorithms are commonly used to achieve this,
with the latter allowing for dampening the iteration step, for
more stability around the optimum.

D. Semantic voting

We wish to tightly couple semantics with the geometric
optimization process. To achieve this, we augment geometric
detections with semantic labels, and use the semantic data
to better guide the optimizer. Since each frame contains
hundreds of potential detections, with dozens of possible
associated classes, the approach of [12] is rendered compu-
tationally infeasible, due to the exponential complexity of its
EM (note that [12] considers object-level detections of only
two semantic classes). Instead, our method approximates
a Maximum Likelihood (ML) logic, in a way that adds
negligible computational overhead.

Our goal is to augment each matchable with the most
appropriate semantic label. For this reason, we detect se-
mantic entities in semantic bounding boxes (SBBs), which
are computed either using Faster R-CNN [41], or from
ground truth (GT) files where available. The kth semantic
measurement in frame i, si,k, following the notation of [12],
is defined as:

si,k = ⟨si,kc , si,ks , si,kb ⟩ (7)



where si,kc ∈ C is an integer representing the semantic
class of the observation, si,ks ∈ [0.0, 1.0] is the confidence
score of detection, computed by the detector, and si,kb =

[(xtl, ytl), (xbr, ybr)] ∈
(
[0,W − 1]× [0, H − 1]

)2
is the

top-left-bottom-right-corner expression of the pixel region of
an SBB in a W ×H-sized image.

1) Mapping matchables to unique labels: Now, let
(xi,j , yi,j) = ri,j := πxi(pi,j) be the reprojection of the
jth 3D matchable position at frame i, pi,j , onto the image
plane for camera pose xi. We denote as Si,j

b the set of all
SBBs detected in frame i, such that the reprojection of the
centroid of the jth matchable falls within the SBB, that is:

Si,j
b :=

⋃
k

{
si,kb

∣∣∣xi,j ∈ [xi,k
tl , x

i,k
br ] ∧ yi,j ∈ [yi,ktl , yi,kbr ]

}
(8)

Out of all semantic measurements that contain the j-th
matchable in frame i, we select the one with minimal pixel
area. This choice was based on the fact that it most likely
corresponds to a nested foreground object, thus resolving
detection ambiguities. Next, we formulate our semantic label
association objective for measurement si,j , ŝi,j :

ŝi,jb = argmin
sb∈Si,j

b

Area(sb) (9)

At this point, each matchable M is associated with an
index, indicating the semantic detection it has been assigned
to. Therefore, we can augment (2) to accommodate this
index:

M s := ⟨pM , RM , ΛM , sM ⟩ (10)

where M s is the augmented matchable and sM = ŝi,j

corresponds to the semantic measurement found through (9),
and that best describes the jth matchable M .

2) Dominant landmark classes: A landmark is a match-
able that has been observed several times during a trajectory.
Each re-observation comes with a potentially different class
assignment to the matchable. Since geometric landmarks
are abundant in general (typically hundreds per frame), we
require a direct way of computing the most probable class
of a landmark, given our observations thus far. Therefore,
we estimate class l̂F,j

c of the j-th landmark at frame F to
be the one that maximizes the sum of its observation scores
ŝi,js over all frames thus far:

l̂F,j
c = argmax

v∈C+

F∑
i=0

1[ŝi,jc = v] · ŝi,js (11)

where C+ is the set of semantic classes along with a special
no-detection class (for frames where the landmark was not
observed, with a default confidence score of 1.0). Essentially,
(11) uses a weighted voting scheme to determine which is the
most probable class for each landmark, called the dominant
class of the landmark, based on previous semantic detector
output. This approach clearly adds a negligible computational
overhead, even when dozens of semantic classes are used,
and hundreds of landmarks present in each frame.

(a) Ground truth (b) Faster R-CNN

Fig. 3: Semantic detection in different datasets (InteriorNet and
TUM RGB-D). Note the difference in semantic detection density.

3) Optimization: We update the optimization framework
of [7] by using a weight penalization for mismatches be-
tween expected landmark class l̂i,jc and observed matchable
detection class ŝi,jc . This weight wi,j

s is computed to diminish
the importance of observations between classes that are not
highly correlated in the confusion matrix DC :

wi,j
s = f

(
DC(ŝ

i,j
c , l̂i,jc )

)
≃

{
1 , ŝi,jc = l̂i,jc

Wp , ŝi,jc ̸= l̂i,jc

(12)

where Wp < 1 is a tunable penalization weight constant.
We edit the pose graph edge by scaling the error terms
proportionally to the weights in (12), as in Ω

′

ij = wi,j
s ·

Ωij , eventually solving a semantically-aware instance of the
optimization problem (6).

IV. EXPERIMENTAL EVALUATION

A. Datasets & systems

For evaluating the performance of the proposed method,
we experiment with three datasets: (i) ICL-NUIM [47], a
photorealistic synthetic indoor dataset, (ii) InteriorNet [48]
(recently used in ICRA’s 2019 workshop on SLAM bench-
marking), a visually and semantically richer photorealistic
synthetic indoor dataset, which comes equipped with COCO-
format [49] semantic GT labels and (iii) TUM RGB-D [50],
a standard real-world indoor dataset, commonly used in the
vSLAM literature.

The first system we evaluate is the base implementation
of SASHAGO [7]. Our system, Sem-SASHAGO, is run
both with and without semantics (Ours and Ours (w/o
sem.) respectively), in order to demonstrate the effect of
using only geometry. In this regard, the system has been
improved by overhauling parts of the KD-Tree backend, as
well as by adding dampening logic to the final iteration
steps of the iterative point-cloud alignment process (in the
Aligner block of Fig. 2). These enhancements, along with
other minor adjustments, comprise the difference between
Sem-SASHAGO without semantics and the base SASHAGO
system, but since they are technical in nature they are not
analyzed in detail here. We also evaluate MaskFusion [8],
which is a state-of-the-art semantic dense vSLAM system.
For completeness, we reference the results obtained with
ORB-SLAM2 [17], a graph-based, sparse vSLAM method,
even though it only uses point-features for geometry and does
not support semantics.



wall floor cabinet table other prop
0

20

40

60

80

Semantic Class

Se
m

an
tic

Vo
te

s

Frame 504
Frame 331
Frame 292
Frame 268
Frame 244
Frame 226
Frame 204
Frame 173

Fig. 4: Semantic votes over time for a landmark in the InteriorNet
dataset. Note that several semantic mismatches persist, despite the
ideal ground-truth detections. New observations belonging to non-
dominant classes are penalized by our framework.

B. Preprocessing

Geometry: For [48], we found that depth images needed to
be recomputed, as the images initially contained the distance
to the focal point rather than the distance to the image plane.
For [50]’s Freiburg 1 sequences, we denoise depth data using
a median filter with a kernel size of k = 5.
Semantics: The method for computing weights based on
the confusion matrix (12) depends on the semantic detector.
In datasets such as [48], the GT semantic information is
available, so (12) can be simplified to use a fixed penalization
weight. When using Faster R-CNN to extract semantic labels
for [50], we found that confusion matrix values were not
reported for the detector, so it would be impossible to
dynamically adjust our weights for misclassified classes, as
suggested by (12). To address this issue, we considered a
constant Wp, aiming to equally penalize all mismatches.

C. Semantic Information Analysis

To aid in our analysis of results, we introduce a di-
rect metric of semantic richness, SemInfo, expressed as
the median and average of semantic detections per frame
(where applicable). As shown in the two Tables of the next
subsection (Tables II and III), the InteriorNet sequences are
significantly semantically richer as compared to TUM RGB-
D sequences. Fig. 3 shows a characteristic example of this
difference in semantic detections between these two datasets.

To emphasize the advantages of our semantic approach,
Fig. 4 shows the histogram of semantic votes that were
assigned to a landmark, according to the methodology de-
scribed in Subsection III-D, from InteriorNet’s 5o11 full
sequence (also shown in Fig. 3a), comprising 1000 frames.
This specific landmark was chosen amongst the most ob-
served ones, in order to highlight the progression of votes
over a longer segment. The observations/votes are grouped in

different color batches of 20 (the first 20 observations occur
up to Frame 173, the next 20 up to Frame 204, etc.).

Despite the fact that InteriorNet’s semantics given as
ground-truth, it is observed that some votes are nonetheless
misplaced in non-dominant classes. This discrepancy can be
attributed to the inherent limitations of vSLAM feature asso-
ciation, that may attach a feature to an erroneous landmark.
Additionally, the fact that our semantic label associator of
Eq. (9) could assign the wrong class (e.g. in the case of
overlapping bounding boxes where the bigger bounding box
is the correct one, while the vote is won by the smaller), can
also contribute to this phenomenon.

However, the negative effect of these two factors is al-
leviated by the semantic voting scheme, followed by the
modification of pose graph edge weights. The edges that
correspond to non-dominant classes (e.g. wall, table, other
prop) receive significantly lower weights, and, because they
are expected to often correspond to erroneous associations,
they are correctly neglected.

D. Evaluation method

In order to systematically quantify vSLAM precision, we
focus on localization accuracy. Our evaluation process uses
[50]’s toolkit, which provides numerous error metrics; we use
the Absolute Trajectory Error (ATE) metric, specifically the
Root Mean Square (RMS). For ATE, the GT and estimated
pose sequences are first optimally aligned to eliminate ref-
erence frame ambiguity and subsequently the error metrics
are uniquely determined [51].

E. Results

In this section, we present the ATE for all of our experi-
mental sequences and compare with representative baseline
methods. For each dataset-system combination, we report the
results for the best parameter configuration we could find
(see Fig. 5 for sample visualizations of camera trajectories
projected on a 2D plane for readability).

1) ICL-NUIM: First, we evaluate our system on a purely
geometric dataset, without the use of semantics, which are
not available as GT for this dataset and could not be reliably
detected due to the dataset’s artificiality. Therefore, its main
purpose is to highlight the algorithmic improvements made
in SASHAGO’s [7] base implementation. It also provides
positive indications for the applicability of unified geometric
representations for indoor data, since our method achieves
low errors in sequences that include extended views of large
planar surfaces (ceilings, walls etc.). Table I reports the
results of our experiments.

2) InteriorNet: We have selected some representative and
challenging sequences from [48] for our experiments (Table
II). In sequences 3o11 open and 4o11 200-600, sparse
semantics set a threshold for the improvement that could be
offered by our semantic processing. However, the results re-
main within millimeters of the best ATE performance thanks
to its geometric fallback; it still outperforms SASHAGO
and MaskFusion. Note also how ORB-SLAM2’s perfor-
mance slightly deteriorates in these two feature-deprived
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Fig. 5: Estimated trajectories and GT for different datasets. In (c), note the effect of noise on the system’s performance in a real-world
dataset, as opposed to the synthetic photorealistic datasets (a) and (b).

TABLE I: ICL-NUIM results (RMS ATE [m])
Sequence Ours SASHAGO ORB-SLAM2(w/o sem.)

tr0 0.0131 0.0156 0.0212
lr0 0.0238 0.0519 0.0036
lrkt1 0.0046 0.0091 0.0392
lrkt2 0.0067 0.0148 0.0281

TABLE II: InteriorNet results (RMS ATE [m])
Sequence SemInfo Ours Ours SASHAGO MaskFusion ORB-SLAM2(Med/Avg) (w/o sem.)

133 open 8/8.2 0.0075 0.0091 0.0203 0.0190 0.0057
2r11 250-600 17/15.8 0.0161 0.0267 0.0772 0.0205 0.0147
3o11 open 9/8.9 0.0065 0.0060 0.0179 0.0179 0.0189
4o11 200-600 6/5.1 0.0343 0.0319 0.0565 0.4595 0.0447
5o11 full 12/12.7 0.0099 0.0111 0.0409 0.0110 [track lost]
5o33 200-675 16/15.7 0.0292 0.0539 0.0502 0.0575 0.0268
6o11 800-1000 12/11.4 0.0128 0.0135 0.0195 0.0164 0.0045

TABLE III: TUM RGB-D results (RMS ATE [m])
Sequence SemInfo Ours Ours SASHAGO MaskFusion ORB-SLAM2(Med/Avg) (w/o sem.)

fr1 desk 4/4.0 0.0406 0.0825 0.1188 0.9116 0.0203
fr2 desk 500 6/5.9 0.0183 0.0178 0.1350 0.0581 0.0053
fr2 desk 1000 6/5.9 0.0193 0.0181 0.1634 0.0581 0.0067
fr2 desk full 4/4.6 0.0714 0.0653 0.2065 0.4559 0.0085
fr3 loh 200 11/10.2 0.0161 0.0267 0.0772 0.0337 0.0178
fr3 loh 1000 6/5.9 0.0521 0.0508 0.0867 0.0272 0.0087
fr3 loh full 7/6.6 0.1527 0.1576 0.4145 0.2092 0.0097
fr3 sitting static 10/10.4 0.0087 0.0081 0.0092 0.0117 0.0086
fr3 sitting xyz 9/8.5 0.0441 0.0436 0.0506 0.0530 0.0092

sequences, which makes a strong case for the robustness
of compound geometric-semantic solutions in indoor envi-
ronments. By contrast, rich semantics lead to considerable
improvements for our method; sequences 2r11 250-600
and 5o33 200-675 have much higher semantic content,
and therefore the most noticeable improvements in their
performance.

3) TUM RGB-D: This real-world dataset is challenging
for all vSLAM systems. The noisy measurements nega-
tively impact environment perception, which renders the
estimation of unified geometries especially difficult. Our
method outperforms SASHAGO and MaskFusion in most
cases (Table III). The three subsequences in fr2 desk and
fr3 loh demonstrate how error accumulates for our system
in noisy environments as more frames are processed (also
seen in MaskFusion and SASHAGO). We also observe that
MaskFusion is impaired by the noisy measurements, as seen
by its errors in several sequences. ORB-SLAM2 performs
very well in these settings overall, primarily due to its

resilience to measurement noise. Compared to the previous
dataset [48], scenes generally include fewer objects, and
semantic detections might be flawed because they are com-
puted using Faster R-CNN and not GT. Therefore, semantic
content is scarcer and the expected accuracy gain from
semantics for Sem-SASHAGO is limited; it needs to rely
more on geometry. Finally, we considered fr3 sitting ∗

sequences, which feature slightly dynamic entities (moving,
seated humans). We found that our system still improved
over its baseline SASHAGO, and managed to perform very
well in the static shot of the scene.

F. Result summary

Our approach is initially validated in plainer environments
(Table I), where we achieve the lowest errors in sequences
without many optical features or semantics, but with promi-
nent geometric regularities. Furthermore, we demonstrated
that higher average semantic content correlates with a sig-
nificant reduction in errors (Table II), which is supported
by our system’s ability to mitigate the problems illustrated
in subsection IV-C. Finally, we considered real-world data
(Table III), where we showed stable performance, consis-
tently improving over our base system and achieving higher
accuracy than MaskFusion in most cases. Overall, our exper-
iments show that the combination of semantics with unified
geometric representations yields improvements, compared to
the purely geometric approach.

V. CONCLUSIONS

In this work, we have developed a methodology for
incorporating semantic information in an indoor RGB-D
vSLAM framework. Motivated by recent advances in unified
geometric representations, we merged semantics with match-
ables to assemble a complete system. We showcased our
solution’s capabilities and its advantages, by evaluating on a
variety of datasets and comparing to other relevant vSLAM
methods. From the results we concluded both that the system
accuracy was improved in the presence of richer semantic
content and that, in its absence, the geometric component
was still effective. In the future, we shall attempt to expand
this work by handling dynamic entities in the robot’s field
of view, as well as tackling the persistent impact of noise
coming from real-world measurements.
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