Robotics and Autonomous Systems 150 (2022) 103975

journal homepage: www.elsevier.com/locate/robot

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

Rabotics, and

ChildBot: Multi-robot perception and interaction with children” R

Niki Efthymiou ***, Panagiotis P. Filntisis *°, Petros Koutras *!, Antigoni Tsiami *P,

Check for
Updates

Jack Hadfield *°, Gerasimos Potamianos ¢, Petros Maragos *

@ Athena Research and Innovation Center, Maroussi 15125, Greece
b School of ECE, National Technical University of Athens, Athens 15780, Greece
¢ Department of ECE, University of Thessaly, Volos 38221, Greece

ARTICLE INFO ABSTRACT

Article history:

Received 6 October 2020

Received in revised form 7 September 2021
Accepted 10 December 2021

Available online 24 December 2021

Keywords:

Child-Robot Interaction

Multi-robot perception

Visual activity recognition

Distant speech recognition
Audio-visual active speaker localization
6-DoF object tracking

experience with it.

In this paper, we present an integrated robotic system capable of participating in and performing
a wide range of educational and entertainment tasks collaborating with one or more children. The
system, called ChildBot, features multimodal perception modules and multiple robotic agents that
monitor the interaction environment and can robustly coordinate complex Child-Robot Interaction
use-cases. In order to validate the effectiveness of the system and its integrated modules, we have
conducted multiple experiments with a total of 52 children. Our results show improved perception
capabilities in comparison to our earlier works that ChildBot was based on. In addition, we have
conducted a preliminary user experience study, employing some educational/entertainment tasks, that
yields encouraging results regarding the technical validity of our system and initial insights on the user

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Recently, robotic systems designed for Human-Robot Interac-
tion (HRI) have been attracting significant interest, finding appli-
cations in various aspects of everyday life [1], such as
entertainment [2], education [3,4], nursing and personal care [5],
rehabilitation [6,7], and autism therapy [8,9], among others. Cru-
cial to their usability and wider adoption is the achievement of
resembling human-to-human interaction. For this purpose, robots
need to have the ability to perceive and understand the different
modalities that people use for communication, such as speech or
body movements [10,11].

To date, most social robotics systems present two major defi-
ciencies: First, they typically incorporate only specific modalities,
forcing their users to adapt to the way the system perceives the
environment instead of the opposite. Second, they are developed
and designed for specific applications and tasks. With their ex-
panding use in various application areas though, the need arises
for integrated systems capable of dealing with multiple appli-
cations and real-world scenarios in challenging environments,
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offering natural interaction to their users. Such interaction in-
volves creating smart adaptive integrated robotic systems capable
of multitasking with a wide range of perceptual and actuation
abilities, allowing HRI system users to design multiform interac-
tive applications that can maintain their interest and engagement.
This is especially important for children users in the context of
education and entertainment (edutainment). In addition, systems
leveraging multiple perceptual modalities allow their users to
conduct HRI in their preferred communication modality.

One of the challenges in achieving the above is the fact that
commercial social robots have different capabilities. For example,
the NAO robot [12] is capable and adept in body movements,
but incapable of facial expressions, Furhat [13] presents a large
variety of facial expressions but cannot move, while the Zeno
robot [14] is capable of movements and facial expressions, but
not adept in both (Zeno’s body movement lacks in comparison
to NAO). Additionally, each social robot has different sensors,
constraining the user to specific communication channels.

Motivated by the above, in this work, we present an inte-
grated robotic system that can be used for multiple edutainment
applications, which we will refer to as “ChildBot”. To achieve
this versatility, ChildBot incorporates: (i) multiple sensors and
perception modules that allow the user to communicate with
the robots via multiple channels, and (ii) multiple social robots,
leveraging each other’s strengths to circumvent their individual
weaknesses.

An overview of the proposed system can be seen in Fig. 1.
ChildBot is developed using a Sense-Think-Act paradigm [15] and
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Fig. 1. Schematic overview of the ChildBot system during Child-Robot Interaction. The multimodal information of the child’s action is received through a network
of sensors placed around an interaction area. The perception system processes it and extracts high-level information about the action context. Based on this, the

behavior generation module decides and controls the robotic agents.

is indoors based, allowing us to employ external sensors arranged
inside a “smart space" where the interaction takes place. Robot-
external sensing can overcome common HRI problems such as
occlusions and allows the fusion of different data streams, im-
proving the robustness and performance of the various percep-
tion modules. This way, we also achieve automatic perception
of the interaction in a robot-independent fashion, bypassing the
sensing limitations of individual robotic systems. In addition,
this robot-agnostic architecture can easily accommodate new
robots. The system coordinates a complex and continuous HRI
procedure involving child actions and robot responses. Specif-
ically, multimodal information flows from the sensors (Sense)
to the perception modules. Then, high-level information about
action context is extracted, and the appropriate response/action
of the robot is decided (Think). Finally, the system transmits this
decision to the robotic agent to act appropriately (Act).

The contribution of the proposed system lies both on the
variety of its modules and the proposed integration of the system.
Integration of perception modules is vital for accommodating
more complex Child-Robot Interaction (CRI) scenarios that re-
quire multimodal HRI. This modularity allows the selection of
different perception modules according to the desired application
without affecting the functionality of the entire system. Fur-
thermore, integration of multiple robots in a robot independent
fashion allows switching between different robots according to
the users’ desires, as well as the addition of new social robots as
they are released.

To showcase the versatility and capabilities of the integrated
system and its individual perception modules, we have designed
five different edutainment use-cases. These use-cases are indica-
tive and have been designed to exploit different system compo-
nents, showcasing the large variety of applications that can be
accommodated with ChildBot. The data collected by a pool of 52
children while performing the aforementioned use-cases with the
robots allow us to objectively evaluate the performance of each
module of the ChildBot system regarding its perception capabili-
ties. Furthermore, our crude evaluation of user experience yields
encouraging results towards a complete well-designed subjective
evaluation in the future.

ChildBot is an improved integrated extension of a set of pre-
liminary works reported by the authors in conference publica-
tions on specific problems of multi-robot perception and inter-
action. It presents a wide-application CRI system able to man-
age multitasking interaction autonomously and accommodate a
plethora of edutainment scenarios [16-19]. The work presented
here has integrated our earlier research under a single and mod-
ular three-layer multi-robot architecture [15], includes improved
perception modules, and is evaluated extensively on a larger

corpus that contains spontaneous children data, more represen-
tative of CRL. To summarize, we highlight the most important
contributions of the presented work:

e An integrated system for HRI has been designed and imple-
mented by leveraging multiple robotic agents. The modular
three-layer system architecture integrates multiple sensors,
numerous perception modules, and different robotic agents,
culminating in a multi-application autonomous HRI system.

e Perception modules for multimodal scene understanding have
been developed and adjusted to specific CRI conditions
by incorporating novel approaches and extensive studies.
Audio-visual active speaker localization, six degrees-of-
freedom (6-DoF) object tracking, visual activity recognition,
and distant speech recognition are necessary for analyz-
ing and tracking human behavior over time in the con-
text of their surroundings. The perception modules of this
system have been developed according to and sometimes
exceed the state-of-the-art of the underlying technologies,
as shown by our objective evaluations.

e Spontaneous children data during CRI have been collected
and used for system evaluation. Indicative use-cases have
been defined and implemented in order to showcase the
large range of applications that ChildBot can be used for.
The collected data have allowed for an extensive objective
evaluation of the ChildBot capabilities during real use-case
scenarios, as well as a preliminary user experience study.

2. Related work

Many research projects have aimed at developing robots both
in ambient assisted living environments [20], as well as in well-
defined and constrained environments, e.g., in bathrooms for
assistive bathing [21]. Some robotic agents act as companions to
improve quality of life, assist with mobility, or complete house-
hold tasks [22,23], while others are designed to help people live
independently and serve themselves when they face difficulties
due to disabilities or old age [24,25]. Nevertheless, the inter-
vention of robots in human life remains a controversial issue
[26-29].

Regarding educational CRI applications, many previous works
focus on the theoretical exploration of different social robot be-
haviors in the learning experience, without delving deeply into
the technical aspects, but mainly using off-the-shelf solutions for
environment perception. An immediate result of this is the fact
that the interaction space is constrained. In [30], a study involved
children playing an educative mathematics scenario with a NAO
robot. In [31], Saerbeck et al. studied the effect of social robot
behavior on the subjects’ learning performance in the context of a
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language learning task. Similar studies can be found in [32], while
in [33] a humanoid robot was employed to interact with autistic
children.

Notable works that have also focused on the robot perception
aspect of CRI include the ALIZ-E project [34]. Belpaeme et al.
studied a long-term, adaptive social CRI, emphasized the difficul-
ties faced in real-world experiments at a school and a hospital,
and developed a complete framework for multimodal CRI. An-
other interesting work evaluated in a hospital environment is
the NAOTherapist platform [35], which focused on upper-limb
rehabilitation sessions for children with physical impairments.
The NAO robot performed physiotherapy sessions autonomously,
observing the patient’s pose through a Kinect sensor and giv-
ing appropriate corrective instructions if needed. A similar plat-
form for creating autonomous interaction between a robot and
Autism Spectrum Disorder (ASD) children was built by the INSIDE
project [36]. A multimodal perception system was developed to
identify the child’s position and activity, as well as satisfaction
when replying by the robot, and the state of the current activity.

Other similar projects include L2TOR [37], where a NAO robot
capable of multimodal perception assumed the role of a second-
language tutor, and the EASEL educational CRI project, where
Vouloutsi et al. [38] presented a distributed adaptive control
architecture of the robotic system developed and its four layers:
somatic, reactive, adaptive, and contextual. Esteban et al. [39]
built a multi-sensor system for autonomous interaction of a NAO
robot with autistic children to perceive different features during
an interaction, such as gaze estimation, action recognition, and
object tracking. The system capabilities were sufficient for the
presented tasks but limited for a more generic interaction, and
the system lacked real use-case evaluation. In [40], Marinoiu
et al. introduced an action and emotion recognition system by
exploiting 2D and 3D pose estimation methods and evaluated
it on a large-scale dataset of robot-assisted therapy sessions of
children with autism. The ANIMATAS project, focusing on training
researchers to advance human-machine interaction, is also worth
mentioning. Specifically, in [41], Valipour et al. underlined the
differences in social robot mind perception during virtual and
real-world experiments and the importance of conducting real
experiments to reveal all interaction parameters.

A general review of the perception methods used for HRI in
social robots until 2014 is presented in [42]. Three important
issues associated with perception systems are highlighted there:
the need for developing perception systems in real environments
with real data, the requirement of creating good representations
following the context of the interaction, and the demand of
combining an efficient perception system with reasonable robot
responses in order to create pleasant HRI experiences. A recent
review about how social robots perceive humans and their inter-
actions is presented by Tapus et al. [43] and illustrates how social
cues occur during HRIL. Zaraki et al. [44] attempted to develop
perception systems for HRI by combining low-level and high-
level features to detect a range of human-relevant features that
appear during a real use-case procedure. Valipour et al. [45] pro-
posed a novel paradigm for incrementally improving the visual
perception of a robot during an HRI experience.

Focusing on perception technologies for children, Kennedy
et al. [46], after evaluating numerous automatic speech recogni-
tion systems, concluded that child speech recognition requires a
multi-pronged approach to be efficient and achieve higher perfor-
mance. An interesting result was noted by Yeung and Alwan [47],
where it was found that even a single year difference in the
kindergarten age impacts the performance of automatic speech
recognition. Regarding action recognition, Chiang et al. [48] clas-
sified eight human actions performed by children and adults
using Histograms of Oriented Gradients (HOG) features extracted
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from combined depth and motion color maps. Moreover, in [49],
Zhang et al. developed a method that recognizes stereotyped
actions of ASD children using Long Short-Term Memory networks
on top of skeleton data. Finally, in [50], Wu et al. integrated
object recognition in an educative robotic system that provided
interesting and innovative second language learning services for
preschool children in China.

Aiming to increase performance, flexibility, and robustness,
ChildBot consists of multiple robots and multimodal perception
modules designed for and adapted to children, allowing interac-
tion inside a relatively large space for a variety of edutainment
tasks. Parts of the ChildBot system are based on our previous
preliminary works, where an early design was presented. More
specifically, a preliminary setup and evaluation of a basic archi-
tecture in a few use-cases has been presented in [19], while [18]
has focused mainly on multi-party interaction via speech. In [16],
the techniques for a multi-view fusion of action recognition have
been explored more in-depth. Finally, [17] has focused on devel-
oping tracking algorithms, essential in interactive tasks between
a child and a robot. In all these previous works, limited and
specific functionality of the system has been investigated, and
evaluation has been carried out employing data acquired in a
strictly controlled procedure and not spontaneous data from real
interaction.

The current paper integrates all these different modules from
previous works under the same unified system, using a three-
layer architecture. The modules can now work both in isolation
and in synergy, and due to the system modularity, adding or
removing a component is an easy task. Moreover, much effort
has been dedicated to improving the perception modules’ per-
formance apart from the integration. For this reason, we have
included more sensors and carried out ablation studies in order
to validate the plausibility of the employed modules. Most impor-
tantly, contrary to all previous works, the modules evaluation has
been performed employing real-time spontaneous children data
(see Section 4.2), which are more challenging.

3. System overview

This section presents the overall ChildBot perception system
that provides global and effective CRI supervision. We first briefly
provide an overview of the perception system and its mod-
ules. Then we delve into each perception module and its al-
gorithms, describing them in depth. Finally, we detail the sys-
tem architecture that constitutes the backbone of the perception
system.

3.1. Perception system

The overview of the robot-agnostic perception system can be
seen in Fig. 2, consisting of three main modules: Audio-Visual
Active Speaker Localization and 6-DoF Object Tracking, Visual Ac-
tivity Recognition, and Distant Speech Recognition. Four Kinect V2
sensors capture a detailed raw data representation of the environ-
ment and feed it into the perception system. The Kinect V2 sen-
sors are placed at different positions and viewing angles to suf-
ficiently cover the entire environment, tackle occlusion problems
(self or from objects), and offer multiple viewpoints for visual
perception. The sensors record RGB, depth, and 4-channel audio
- the latter from the microphone array of each Kinect. The spatial
arrangement of the sensors is presented in Fig. 3(a). Subsequently,
we present an overview of each perception module:

Audio-Visual Active Speaker Localization and 6-DoF Object
Tracking: To allow a natural interaction between robots and
humans, robotic awareness of the active speaker location, as well
as the detection and tracking of important objects, are essential.
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Fig. 2. Overview of the ChildBot perception modules including: a) Audio-Visual Active Speaker Localization and 6-DoF Object Tracking, b) Visual Activity Recognition, and
c) Distant Speech Recognition. “A” refers to microphone array and “SRP” to Steered Response Power. The modules are employed during CRI to monitor the multiple
aspects of human behavior, and then their outputs are fed to the robotic behavior generator module.

An effective audio-visual method for active speaker localization in
HRI scenes has been developed by leveraging audio information
in addition to visual information. Moreover, a module for object
recognition that can detect multiple toys based on their colors
and size has been incorporated into the system. Finally, a 3D
tracking method has been designed for providing both the 3D
location and the orientation of rigid objects.

Visual Activity Recognition: A visual frontend has been de-
veloped to recognize hand gestures accompanying everyday com-
munication and more general body movements conveying spe-
cific meanings. The multiview visual activity recognition module
can successfully recognize the child’s activity while wandering
around the room and interacting with the robots and objects.
The gesture recognition version of the module aims at identify-
ing hand gestures that deliver a conceptual message during the
interaction, such as waving at the robot or asking the robot to
come closer. On the other hand, the action recognition version
targets child body movements that form complex meanings, such
as pantomimic movements.

Distant Speech Recognition: A multisensory distant speech
recognition (DSR) system in Greek has been developed to enable
CRI via speech. As close-talking microphones are not convenient
for children and restrict their movements, we take advantage of
the multiple microphone arrays located around the room record-
ing audio, while at the same time the children can move freely
and communicate hands-free with the robots. In order to make
the DSR more robust and exploit the distributed microphone
arrays, we experiment with adaptation and fusion.

The high-level understanding obtained by the perception
modules is fed to the Dialog Manager, along with extra input from
a Touch Screen, which is used as an extra means of communica-
tion during the interaction. According to its input, the Behavioral
Generator then decides on the multi-robot system action and
forwards its decision to the actuators. The actuators, in turn,
respond with information back to the system.

In order to create a detailed picture of the ChildBot system,
we proceed by describing each perception module extensively.
Following this, we present the system architecture, the inter-
communications, and the dialog management module in order to
describe our complete system for CRI.

3.2. Perception modules

Audio-visual active speaker localization

When analyzing and understanding an auditory or audio-
visual scene that consists of multiple speakers, the sound and
speaker localization are necessary for tracking. In addition, the
speaker’s location is required for beamforming and guiding the
robot’s attention/head in a multi-party scenario to achieve natural
and intuitive interaction. Although visual tracking can be precise,
it does not suffice when the active speaker/speakers have to be
localized among other non-speaking persons in an audio-visual
scene.

Various techniques for audio speaker localization [51] have
been proposed in the literature. Some of them have been specif-
ically adapted to HRI setups [52,53] for microphones mounted
on robots. In our multi-robot case, microphones are external to
the robots, and a fast algorithm is needed due to the real-time
nature of our system. Thus, a real-time 3D audio localization SRP-
PHAT (Steered Response Power-Phase Transform) system based
on [54,55] has been developed, which is robust to noise and er-
rors. Regarding audio-visual speaker localization [56-58], several
methods have been developed for RGB cameras, most of them
employing Bayesian filtering techniques or fusion between audio
and video features. In our case, visual tracking is accomplished
via skeleton tracking, developed for Kinect sensors.

Our audio-visual active speaker localization exploits the 3D
skeleton (provided by Kinect V2) and the microphone arrays, and
it is performed as follows: Person tracking is first achieved by
retrieving the 3D skeletons of all persons present in the audio-
visual scene. Auditory source localization via SRP-PHAT provides
information concerning the speakers. The final active speaker
localization is performed by choosing the visual locations closest
to the auditory ones. The result is then used to guide the robot’s
attention by turning its head towards the active speaker. An
example of audio-visual active speaker localization can be seen
in Figs. 3(b)-3(d).

6-DoF Object Tracking

In certain CRI scenarios, children and robots may be expected
to interact with various movable objects. Thus, aside from hu-
man localization described above, the robot must understand the
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Fig. 3. (a) Spatial arrangement of the four Kinect sensors. (b-d) An example of audio-visual active speaker localization. The SRP output is shown with high values
in red. Positions of the table and the four Kinects are also shown. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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Fig. 4. Overview of the implemented 6-DoF object tracking module. In this
example, the bricks are tracked. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

configuration of these objects. We have developed a method for
robustly tracking the 6-DoF poses of multiple objects in real-time.
The main idea is to crudely detect the objects computationally
cheaply and then use the detected positions to infer each ob-
ject’s 3D pose. The used objects are known beforehand, meaning
that their shape and appearance models are predefined. The
developed tracker consists of two stages: the first involves a
tracking-by-detection scheme upon the color stream to locate the
objects on the image plane. The second operates on depth data
to refine the first stage output and infer the remaining variables
related to the object rotations. The basic architecture is presented
in Fig. 4.

During the first stage, our approach uses a simple color his-
togram model to detect object regions, though depending on
the object characteristics a variety of features could potentially
be used. The histogram models are defined offline and remain
unchanged during the entire tracking. The hue and saturation
of the Hue Saturation Value (HSV) color space were used to
introduce sufficient robustness to brightness changes. Assuming
the histograms are normalized, they define a probability distri-
bution over the color space. Therefore, a probability map can
be generated over the latest color image. After thresholding and
morphological filtering, a binary mask contains the most likely
object regions in the image. We choose to retain the region with

the largest area under the assumption that the remaining re-
gions will correspond to noisy artifacts or irrelevant background
objects. The center of the chosen region is taken as the object
location, and a confidence score s; is produced for object k.

Once the object locations have been detected on the image
plane, the tracker’s second stage consists of estimating the 6-DoF
poses with the help of the newest depth image. The developed
tracker employs particle filters and is closely based on the algo-
rithm proposed in [59], where the hidden states are augmented
with a set of binary variables that model the occlusions at each
pixel. We transform the kth object’s 2D position estimates p; into
3D estimates Py, using the camera inverse perspective mapping
and the depth image. The input vector for each object k is then
u, = (P, —ry)-sk, where ry is the particle’s position estimate from
the previous time step, and s, is the confidence score produced by
the tracking-by-detection module. Using a Rao-Blackwellisation
technique [60], only the pose variables need to be sampled, while
the occlusion variables can be marginalized out analytically. In
order to prevent collisions in the object estimated configuration,
the observation model is weighted by a factor that depends on
the existence of mesh intersections in the particle estimates. If no
intersections exist, this factor is set to 1 not to affect the initial
model. Otherwise, it is set empirically to 0.01, which is small
enough to penalize invalid configurations and other than zero to
avoid eliminating the observation model, if all the samples seem
to be intersections.

Visual activity recognition

For understanding nonverbal communication, an efficient
multi-sensor visual activity recognition frontend has been de-
veloped by experimenting with Dense Trajectories features [61]
along with different encoding methods and fusion schemes for vi-
sual information processing. Dense Trajectories have been chosen
over convolutional neural network pretrained features, because
the actions included in the state-of-the-art databases are not
similar to those of children, and the fine-tuning of pretrained
networks does not perform adequately since, in our case, we have
limited data from real-world CRI [16].

Our main goal is to establish a robust framework for tack-
ling different tasks, such as generic body movements performed
by kids, with limited training data. We have implemented two
different versions of the module in the ChildBot system that
work independently, one for gesture recognition and one for
action recognition. Although the pipeline for both versions is the
same, they are trained, tested, and enabled separately for hand
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Fig. 5. Example of the extracted Dense Trajectories from different sensor perspectives while the child is performing the swimming pantomime (see Section 4.1).

gestures and more general body movements, respectively. An
example of the extracted Dense Trajectories during a pantomime
performance (see Section 4.1) is presented in Fig. 5.

In a more detailed view of the system, the recorded RGB video
from each of the four RGB cameras is sampled frame by frame.
Feature points are sampled for each frame on a grid and are
tracked through time based on dense optical flow [62]. Multiple
spatial scales are used for the sampling and the tracking indepen-
dently, while the trajectories are pruned to a fixed length to avoid
drifting. The computed features include the Histograms of Optical
Flow (HOF) [63] and the Motion Boundary Histograms (MBH) [61]
on both axes (MBHx, MBHy).

Afterwards, the features are encoded employing either the
zero-order statistics Bag-of-Visual-Words (BoVW) [64] or the
first-order statistics Vector of Locally Aggregated Descriptors
(VLAD) [65]. Based on their BoVW representation, videos are
classified using non-linear Support Vector Machines (SVMs) with
the x? kernel, following a similar approach as in [66]. In addi-
tion, the above different types of descriptors are combined with
the Trajectory descriptor [61] and the Histograms of Oriented
Gradients (HOG) [63] by computing distances between their
corresponding BoVW histograms and adding the corresponding
kernels. Alternatively, the encoded features that result from VLAD
are classified employing linear SVMs.

After the feature extraction, we follow three different ap-
proaches - in multiple levels - to fuse the RGB information
acquired by the multiple sensors: (i) feature fusion, (ii) encod-
ing fusion, and (iii) score fusion. We modify the general frame-
works of BoVW and VLAD to deal with our proposed multi-view
approach for visual activity recognition.

Feature Fusion: In this method, the visual information is fused
at an early stage where only low-level D-dimensional feature
descriptors xj‘ﬂ € RP are extracted, i.e., local descriptors alongside
dense trajectory m = 1, ..., M; from each different sensor i =
1,...,S. The codebook generation approach, which is based on
the K-means algorithm, is modified in order to deal with the
multi-view data. Given a set of feature descriptors xi,,, our goal
is to partition the feature set into K clusters [dq, ..., dix], where
d; € RP is the centroid of the kth cluster. These d; are shared
between the features of all sensors. Using the notation of [64],
if descriptor xfn is assigned to cluster k, then the indicator value
mik = 1 and ry i, = 0 for £ # k. The optimal dy can be found
by minimizing the objective function:

K S M
min YOS rnelxg, — dall. (1)
kofmik 327 21 me
Then the encoding procedure is employed for both the BoVW
and the VLAD method, resulting in an encoded feature repre-
sentation s};j for each trajectory n; of the jth video captured by
sensor i, as explained in [16]. The global representation h of the
multi-view video using a sum pooling scheme is given by:

s N
h:ZZsLj (2)

i=1 nj=1

Finally, for the BoVW approach, an L2 normalization scheme [67]
is applied, while for the VLAD the intra-normalization strategy
proposed in [68] is followed.

Encoding Fusion: In this approach, a different global vector
hi is created by encoding the dense trajectory features using a
different codebook D' for each sensor i. For the BoVW encoding,
the multi-view fusion is applied by adding the x? kernels:

S N¢
K (. hg) = 3> exp (—AlL (hj“, h;")) , 3)

i=1 c=1

where h;”, h{' denote the BoVW representations of the cth
descriptor for the jth and qth video respectively captured by
sensor i, and A. is the mean value of x? distances L(hj“, hg’i)
between all pairs of training samples from a specific sensor i. On
the other hand, for the VLAD encoding, a simple concatenation of
the vectors corresponding to the different sensors is applied as
follows: h = [h', ..., h'].

Score Fusion: For a given sensor i a different SVM is trained for
all employed classes and obtains the probabilities P! as described
in [69]. Then a softmax normalization is applied to each sensor’s
SVM probabilities. For the fusion of the different sensor output
probabilities an average fusion is employed: P = % ZL P. Fi-
nally, the class with the highest fused score is selected, following
a one-against-all approach.

Distant speech recognition

In order to ensure natural communication between humans
and robots in an HRI system, it is essential to incorporate a
speech recognition module. A considerable amount of distance
between the robot and the users imposes the need to employ a
distant speech recognition system (DSR) [70,71] that will have to
efficiently address challenging problems, such as noise and rever-
beration [72]. Especially when children are the end users that play
and interact with the robots, speech recognition becomes much
more challenging because of the special characteristics of children
voices and the difficulty of acquiring quality data.

In our setup, the microphone arrays distributed in space are
employed for the DSR task. Children can use a set of utterances
adopted for the specific context of the employed use-cases to
communicate with the robots, thus our speech recognition sys-
tem is grammar-based. A continuous system would require a
large amount of children data to be collected; that was unfeasible
in our case. Also, a grammar-based speech recognition system
is adequate to fulfill the requirements of the considered use-
cases. The employed language is Greek, and the set of utterances
contains possible children answers in some games and some
general-purpose speech utterances.

The DSR system is able to detect and recognize the spoken ut-
terances at any time, namely, it is always-listening. Since speech
is usually corrupted by reverberation, noise, or other non-speech
events, robustness is achieved via beamforming of the far-field
signals and adaptation of the acoustic models.

More into the details, a sliding window of 2.5s duration with
a 0.6s shift is used to process speech in time frames. A custom
module has been developed and integrated with Robot Operating
System (ROS), allowing raw audio processing from the Kinect
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microphones. Each speech frame is first denoised with simple
delay-and-sum beamforming applied on each available 4-channel
Kinect array: The insertion of delays to the different microphone
signals a,(t), allows us to align them appropriately, in order to
enhance speech coming from a specific direction. For uniform
linear arrays with N microphones, which is also our case, if the
desired direction is denoted by ¢, the time-delay to be applied to
each microphone is
n — 1)d cos

a_leee, @

where c is the speed of sound and d the space between micro-
phones. The beamformed signal is denoted by:

Th =

1 N
v = ;an(r — ) (5)

The denoised signal is then fed to the DSR module, where
we enforce recognition of one of the pre-defined sentences.
Regarding acoustic modeling, Gaussian Mixture Models (GMMs)
and Hidden Markov Models built on cross-word tri-phone mod-
els have been trained using standard Mel-Frequency Cepstrum
Coefficients-plus-derivatives features on the Logotypografia
database [73] that contains clean, close-talk speech in Greek.
Thus, we artificially distort the database by convolving the clean
speech with room impulse responses and adding white Gaussian
noise in order to match the far-field condition [71]. Maximum
likelihood linear regression (MLLR) adaptation is employed to
transform the GMM means, aiming to reduce the mismatch
between the initial model and the adaptation data [74].

3.3. System architecture

In this subsection, we describe the backbone of the percep-
tion system: the hardware architecture, the interconnection and
communication between the different modules, and how the
interaction flow is managed.

The perception modules are integrated into the full percep-
tion system based on the following hardware architecture. The
system runs on four distributed interconnected machines, three
of which run the Linux operating system and the ROS, and one
the Windows Operating System. Each of the three Linux machines
is connected with a Kinect V2 sensor which provides raw data
(i.e., color, depth, and audio). The Windows machine is also
connected to a Kinect V2 sensor, and using the Microsoft SDK
Kinect V2 API provides additional skeletal and tracking informa-
tion. A touch screen is also connected to the Windows machine
and sends feedback to the dialog module about the children’s
choices. The main data processing of the perception modules
takes place on each of the three Linux machines, while the multi-
view fusion is handled in one of the Linux machines. Streaming of
data and communication between the system modules flows via
events transmitted through the TCP/IP broker, which runs in the
Windows machine and is provided by the IrisTK framework [75].
Under the IrisTK paradigm, we divide events into three classes:

e Sense: events that include information about what the sen-
sors of the system perceive

e Action: events that order an actuator (i.e., a robot) to do
something

e Monitor: background events that contain feedback informa-
tion about the actions of the system (e.g., when a robot has
ended speaking)

Similarly, the architecture of the system was designed based
on the Sense-Think-Act principle [15], as shown in Fig. 1. The
multi-sensor setup of the system represents the Sense part, while
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Fig. 6. The “Speak Action State” employed for announcing a gesture during the
interaction.

the perception modules are classified into the Think principle.
Finally, the multiple robots belong to the Act part of the architec-
ture. This three-layer architecture allows for high-level modular-
ity because the different layers can be replaced/modified without
affecting the others.

The broker, along with the dialog management module which
will be described next, acts as a central unit that receives events
from all system modules and distributes them accordingly to the
appropriate modules. This unit offers extra fine-grained modu-
larity allowing modules to be easily removed or added to the
architecture by simply defining the sets of events that the module
should perceive or send back to the broker.

The dialog manager is the central module of the system and
models the interaction flow between the user and the system.
The interaction is modeled using Harel states [76]- states that can
be hierarchically structured, executed conditionally, and contain
parameters that alter the flow and transitions. In addition, states
can be called as functions, which means that the flow of the
execution will continue to the caller state after the callee has
finished his execution.

We have included “action states”, i.e., states that act as a
mediator between the core dialog flow and the robots for the
design and development of the statechart that models the dialog.
These action states contain the information needed to instruct
the system’s robots to perform an action and include the robot
as an additional state parameter. As a result, the core dialog flow
is decoupled from robot-specific details, and we avoid defining
multiple similar states for different robots. This extension also
allows us to easily include new robots in the dialog flow by
adding the robot-specific details in the action states and handling
the event on the robot side. An example can be seen in Fig. 6
where a state in the core dialog flow “calls” the “speak action
state”, including the robot that is needed to speak as an additional
parameter.

From the three robots that our multi-robot system uses, the
Furhat robot head is already integrated into the IrisTK framework.
For the NAO and Zeno robots, we developed intermediate APIs
that we use for communication between the robots and the
dialog.

Modularity and new scenarios:. We have described the modularity
of the proposed system, which extends both in terms of the
perception modules and switching robots and adding new robots
to the system. As a result, the system can be seen both as an
integrated framework, but also as an aggregation of different
robots and modules, which can be switched on/off according to
the desired application.

We show an example of this modularity in Fig. 7, where a
simple scenario that employs only two robots (Nao and Zeno)
and two perception modules (DSR and localization) is shown. It
is evident that due to the system’s architecture, apart from the
Dialog Manager, all other perception modules and robots can be
switched on/off without affecting the system functionality. For
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Fig. 7. Showcase of the system modularity system through a simple custom
scenario using two robots and two perception modules.

example, in the shown scenario, after Zeno asks the child, “Do you
want to play?", the scenario can include either the DSR module or
the Gesture recognition module (or it could be both) to recognize
the child’s answer.

Note that while we have described the entire architecture of
our multi-sensor and robot integrated framework in this section,
the only hard requirements for running the system include a
machine running ROS and the IrisTK-based Dialog Manager and
Broker, both of which are open source. Furthermore, while we
have used Kinect V2 sensors (which also carry the inherent lim-
itation of one sensor per machine), the system can use any RGB
sensor and microphone supported by ROS.

4. Use-cases for CRI

This section presents the indicative use-cases that we have
designed and implemented in order to showcase and evaluate the
ChildBot capabilities. Moreover, we describe the collected data of
the database and the protocols of the conducted experiments.

4.1. Tasks description

A set of scenarios has been designed to highlight the system’s
capabilities during an amusing and educative multimodal inter-
action between children and robots. As explained extensively,
our integrated system perceives various events that occur during
the interaction, such as children speech and activities, children
locations in the room, and tracking of objects. Each task employs
different technologies and combines them appropriately to create
a smooth interaction. Children are asked to complete the follow-
ing tasks-games: (i) “Show me the Gesture”, (ii) “Express the
Feeling”, (iii) “Pantomime”, (iv) “Assembly Game”, (v) “Form a
Farm”.

In the first task, “Show me the Gesture", a child interacts with
the robot via gestures and speech. The robot requests the child
to perform a gesture that usually denotes a meaning and tries to
recognize it. It then asks the child for confirmation of its guess.
The different gestures of this game are: (i) stating an agreement,
(ii) calling the robot to come closer, (iii) asking the robot to sit
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down, (iv) pointing an object in the room, (v) asking the robot
to stop, and (vi) drawing a circle in the air. Except for the first
gesture that is usually performed by nodding, the rest are hand
gestures. The children are allowed to gesture spontaneously, as
they would do when interacting with another human.

The “Express the Feeling” game motivates children to reveal
their feelings using both their face and body during an enter-
taining interaction with the robot. In this game, the child selects
one of the cards depicted on the touch screen and expresses the
chosen feeling. The emotions included in this game are happiness,
sadness, fear, anger, surprise, and disgust. After the child’s reac-
tion, the robot also expresses the same feeling using its body and
face.

“Pantomime” is a popular game, during which, one person
mimes handwork and the other figures out the depicting hand-
work. The child can use the whole body to mimic an activity
and interact extensively with the robot. The robot and the child
repeatedly swap the roles of the mime and the guesser. The
twelve activities used in this game are the following: (i) cleaning a
window, (ii) driving a bus, (iii) hammering a nail, (iv) swimming,
(v) working out, (vi) dancing, (vii) reading a book, (viii) digging
a hole, (ix) playing the guitar, (x) wiping the floor, (xi) dancing,
and (xii) ironing a shirt.

For the “Assembly Game", one or more children are asked
to complete an assembly under robot supervision. Six intercon-
nectable 3D printed bricks of different lengths are used to create
rectangles and squares. The bricks are placed on a table in front
of the child, with the robot standing close by. The child is re-
sponsible for manipulating the assembly subcomponents while
the robot provides instructions and feedback. If the child correctly
completes a connection, the robot congratulates the child and
gives the next instruction. However, if the child makes a mis-
take, the robot will attempt to recognize this mistake and react
accordingly. Aside from verbal instructions, the robot also looks
and points at the bricks that it refers to, for clarity.

The “Form a Farm” game is a multi-party game scenario in-
volving two roles that can be interchanged and equally played by
both the robot and the children, aiming to entertain, educate, and
establish a natural interaction between all parties. The game in-
volves two different roles: the picker and the guesser. The picker
chooses an animal and utters its characteristics. The guesser has
to guess the picked animal. The interaction proceeds as follows:
At first, the robot chooses a random animal, and the human
players take turns guessing the chosen animal. In case of a wrong
guess, the robot reveals more animal characteristics (animal color,
number of legs, animal class, e.g.,, mammals, reptiles). In case of
correctly identifying the animals, the robot asks the children to
properly place the animal in a farm with some distinct segmented
areas, which appears on a touch screen in front of them. In the
second round, the roles are reversed: children discuss and pick an
animal and reveal one characteristic. The robot then tries to guess
the picked animal. If the robot guesses correctly, the children are
again asked to place the animal inside the farm, else they reveal
more animal characteristics, one at a time. The game continues by
interchanging the role of the guesser between children and robots
in each round. The game features a total of 19 animals, and their
characteristics belong to five different classes: color, size, species,
number of legs, and a distinctive feature, i.e. for the dog: “it’s the
human'’s best friend”.

The tasks mentioned above aim to create a proper framework
for multimodal communication between children and robots, as
it happens between humans. This way, the tasks demonstrate the
system’s capabilities and give some examples of how ChildBot can
be used and can be employed for system evaluation. Even though
each task focuses on one of the system perception technologies,
more than one modules are used in parallel. In Table 1, the used
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Table 1
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Used ChildBot technologies in each use-case scenario and the eligibility of each robotic agent for participating.

Distant Speech  Detect & Track  Speaker Local.

Visual Activity Rec. Touch Screen  Behavioral Robots

Recognition Gesture Action Generation NAO  Furhat  Zeno
Show me the Gesture v v v v v v v
Pantomime v v v v v v
Assembly Game v v v v v
Form a Farm v v v v v v v v
Express the Feeling v v v v

Fig. 8. Data collection room and experimental setup.

modules are summarized along with the eligibility of the robots
to participate in each task.

Considering that the tasks are intended for children, the use-
cases were designed under the supervision of psychologists and
in collaboration with the consortium of the BabyRobot project.
Specifically for the single games, we conducted pilot studies
with eight children in our specially designed room, which led
to the presented scenarios. An example of how the use-cases
are improved and adapted to the children’s needs is the game
“Form a Farm”. It was initially proposed as a game called “move
together” where the participants collaborate to decorate their
house. After pilot studies in two countries, Greece and Sweden, it
was concluded that while the game format (including interaction
with the touch screen) was suitable, the subject was complex
for children less than 12 years old. As a result, the subject of
the game was changed to a more familiar theme for children,
farm animals. We encourage readers who want to delve deep into
the experimental conditions and protocols to read the relevant
deliverables of the BabyRobot project (D 4.1-4.4, 5.1-5.4) [77].

4.2. Database

Real data obtained through HRI prove to be especially im-
portant while developing a system, from the training to the
evaluation stage. Such data contribute to an adaptation of the
system to actual circumstances and spontaneous human behav-
ior. Thus, extensive data collection has taken place with the
participation of a pool of 52 children, aged from six to eleven
years old, in a specially designed room and a school classroom.

Most of the data have been collected in a room that resembles
a child’s room and where the robotic agents and the sensors have
been located, as is presented in Fig. 8. There, the data collection
has been carried out in two phases. In the first one, children
data have been recorded while performing certain actions and
uttering certain phrases that are expected to arise throughout the
interplay between them and the robots, in a strictly controlled
way, when asked to do so. These data will be referred to below

as development data since they have been used to develop the
system. In the second phase, the data were collected during
the experimental procedure where children interact with robots
without interruption or other people’s intervention. The latter
data will be referred to as use-case related data. Both types of data
are equally important for CRI, as the first one is indispensable
for training the perception modules on data that are relevant to
use-cases, while the second one is essential for the testing of the
behavioral monitoring software during CRI. Table 2 presents the
most important recorded events during the two phases and the
total number of their occurrences.

The information we collected during the data collection in-
cludes Full HD (1920 x 1080) RGB and depth (512 x 424) video
streams from all four Kinect cameras, running at 30fps, as well as
raw audio from the microphone array embedded in each Kinect
sensor. By exploiting the Kinect v2 API we have also captured
the following streams from the frontal Kinect sensor: (a) Skeletal
information both in 2D (image) and 3D (world) coordinates; (b)
Bounding boxes from face detection, facial landmarks, and a facial
3D mesh.

For the development data, 28 children have participated by
performing seven gestures and twelve pantomimes, and utter-
ing 40 phrases from a vocabulary of 120 phrases. This phase is
crucial for developing the perception models and adapting them
to children since they focus on speech, gestures, and actions rele-
vant to the use-cases. Specifically, children are more spontaneous
and expressive than adults and their speech is usually brief and
low-voiced. Thus, in order to test the performance of ChildBot
modules, it is necessary to have a plethora of children activities
and utterances. Moreover, adults’ data have been collected to
augment the use-cases’ data, validate, and highlight the need
for children data for enhancing performance in the perception
models.

As far as the use-case related data are concerned, 31 children
with an average of 8.6 years old, 10 girls and 21 boys, had
been chosen randomly from a set of volunteers that met our
team in a dissemination event. From six to eleven years old, all
children spoke Greek and were able to read and write. Each child
accompanied by his/her parents entered the specifically designed
room and was introduced to the robots by a researcher. The
child got familiarized with the room and the robots while the
researcher explained the procedure’s structure and the tasks pre-
sented above. Afterwards, the parents and the researcher exited
the interaction space, and the child played individual games with
the robots. After completing the individual interaction, a sec-
ond child (who had completed the same interaction previously)
entered the space and collaborated with the other child while
playing the “Form a Farm" task (see Fig. 9). In cases where there
was no second child available, an adult took its place. However,
these data were removed from the subsequent evaluation. Fi-
nally, after completing the procedure, the children were asked
to complete a questionnaire that included subjective statements
regarding their experience. The questionnaire will be described
and discussed in Section 5.2.

The Ethics Committee of the Athena Research Center has ap-
proved the above procedure, and a consent form sent by email
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(a) “Show me the Gesture”, Kinect#1 (b) “Pantomime”, Kinect#2
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(c) “Form a Farm”, Kinect#3

(d) “Express the Feeling”, Kinect#4

Fig. 9. The four different use-cases that took place in our laboratory, each one presented from one the four different camera viewpoints of ChildBot.

Fig. 10. Setup of the “Assembly Game” at a Greek primary school.

Table 2
Statistics of the most important child activities during the data collection.

Collected data Event type Number of events
Utterances 977

Development data Gestures 196
Pantomimes 336
Utterances 641

Use-case related data Gestures 143
Pantomimes 109

to the parents before conducting the experiments. In addition,
all experiments have been supervised by an experienced child
psychologist.

The use-case related data regarding the “Assembly Game”
were collected in a Greek primary school from 21 students with
an age span between nine and ten years old. Six students partici-
pated individually and the remaining were organized in groups
of five, according to the teachers’ advice, in order to reinforce
their collaborative skills. For this task, a single Kinect camera and
one robotic agent (NAO robot) have been chosen as a lightweight
version of the system to accommodate the educational process.
Such a version can be easily installed in a typical classroom and
help the teacher give a vivid lesson through a CRI experience
(Fig. 10).

5. CRI evaluation

Each perception module of the ChildBot system has been
evaluated by measuring its performance in efficient multimodal
scene understanding using the collected data. In addition, we
have performed a preliminary user experience study to assess
how the children interact and perceive the system and collect
insights towards carrying out a complete subjective evaluation in
the future.

10

Table 3
Evaluation of the audio-visual active speaker module.

Audio source localization Audio-visual active
speaker localization

RMSE
0.60 m

RMSEf
0.35 m

Pcor
85.58%

Pcor
45.51%

5.1. Perception module evaluation

Audio-visual active speaker localization

The evaluation results of audio-visual speaker localization are
presented in Table 3. For audio-only speaker localization, the
employed metrics are Pcor (Percentage correct) which is the
percentage of correct estimations (deviation from ground truth
less than 0.5m) over all estimations, RMSE (Root Mean Square
Error) between the estimation and the ground truth, and RM-
SEf (RMSE for estimations with error less than 0.5m - i.e., 'fine
errors’). For audio-visual speaker localization, since person lo-
cations are estimated by the Kinect skeleton, the problem is
essentially transformed into an active speaker localization prob-
lem. Thus, evaluation is performed in terms of correct speaker
estimation, where Pcor is used, denoting the correct speaker
estimations over all estimations. Audio-only localization does not
perform sufficiently well yielding a Pcor of 45%, but the average
RMSE is 60cm, meaning that the average source localization error
is 60cm which is not very large. If both audio and visual informa-
tion are used, then the active speaker localization performance is
boosted to a Pcor of 86%.

6-DoF Object Tracking

For object tracking, we have performed both an objective
evaluation and a subjective evaluation to assess the performance
of the 3D visual tracking module.

During the objective evaluation, because it is difficult to an-
notate and obtain ground truth poses for 3D tracking, we have
placed two static objects on a table, along with obstacles, in order
to add occlusions. We have also moved a camera around the
objects with sudden movement bursts to establish the tracker’s
robustness. We have compared our method with an SDF (Signed
Distance Function) tracker [78]. Our results have showed that,
although the SDF tracker has produced a steadier output than
our tracker in cases of partial occlusions and slow camera move-
ments, when we have introduced sudden jolts and full occlusion,
the SDF tracker has been unable to continue tracking and has
failed, without recovering, even when the normal conditions (no
occlusion-jolts) were restored. On the other hand, our tracker
has been able to successfully track the object with low error,
even under full occlusion and fast movements, and recover in
rare cases where the tracking has been lost, without the need for
reinitialization proving its robustness. More information on these
objective evaluations can be found in [17].

We used the NAO robot as a supervisor for the Assembly Game
during the subjective evaluation, which is described in Section 4.
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Table 4
Statistics about the performance of the 6-DoF object tracking employed in “the
Assembly Game”.

Total connections Required connections

(Recall %) (Recall %)
Identification Time 5s 20s 5s 20s
Rectangle 70.00 80.00 50.0 56.25
Square 39.39 57.58 4324 59.46
Table 5

Examination of activity recognition modules performance (accuracy (%)) when
using different age groups for model training (adults, children, or mixed data).
Bold values denote the best obtained accuracy for each testing age group and the
activity recognition module (gesture, action). Scores shown were obtained after

the fusion of individual camera scores using MBH features and BoVW encoding.

Testing group Training group

Adults Children Mixed

Gesture recognition  Adults 92.19 62.08 95.10
J Children 56.25 83.80 80.09

Action recognition Adults 87.36 72.53 86.26
s Children 56.51 74.46 74.26

Of the 21 participants, six played the game on their own, while
the remaining children played in groups of five. The children were
required to complete two different rectangles and one square by
choosing and connecting items from six different brick objects.

In Table 4 we can see the results from the experiments in
the form of statistics for the different assemblies. We present
the percentage of the total and required connections that the
system recognized within a time interval of 5s and 20s, referred
to as identification time. The term “total connections” includes
both correct connections that the child completed and mistaken
connections, In contrast, “required connections" refers only to the
correct connections needed to complete the assembly.

Visual activity recognition

First, we have examined if the age group of the participants
(adults or children) impacts the accuracy of visual activity recog-
nition. For both visual activity recognition tasks, we trained sep-
arate models using as the training set: (a) children, (b) adults,
(c) mixed (both adults and children) and as the testing set: (a)
children, (b) adults. In Table 5, it can be noticed that the use of
children training data is imperative for achieving high accuracy in
children activity recognition, irrespectively of the task. This result
justifies our choice for collecting development data from children
movements. On the other hand, recognition models trained on
mixed age groups perform better for adult gesture recognition
since the diversity with which children perform the gestures
accommodates the model’s generalization. For the action recogni-
tion task, children employ a wider range of different movements
that adults do not use as they act stereotypically, and the mixed
age training models perform worse than the adults’ models.

Furthermore, Tables 6 and 7 summarize the evaluation of
gesture and action recognition respectively, for several combina-
tions of different features, encodings in both the single-view case
and multi-view case along with the multi-level fusion. Also, the
recognition models have been trained on children development
data and tested on both development and use-case related data
separately, using the leave-one-out cross-validation approach.

Specifically, Table 6 presents average accuracy results (%) for
the seven gestures and a background model. Results indicate
that the best multi-view model outperforms the best single-view
model by about 7%, underlining the need for a multi-view system
for unrestrained CRI. The development data shows that the com-
bination of different types of features performs better than HOF
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and MBH features individually. Among the single-sensor cases,
Kinect#1 (right side view) performs best as most of the kids are
right-handed and stood at approximately the same location while
performing the gestures. The best recognition accuracy of 85.19%
is noticed for the fusion in the final step of the procedure with
the VLAD encodings and the feature combination. As far as the
use-case related data are concerned, the accuracy for the single
streams is moderately lower than the previous ones, which re-
veals the difficulty that children faced while trying to perform the
gesture spontaneously. Also, as the children stand at a completely
different location, usually closer to the cameras, the best single
stream result appears for Kinect#3 (floor plan view). Regarding
the fusion of the different streams, recognition performance is
slightly better for the encodings fusion than the scores fusion, and
it approaches 74%. More generally, VLAD encodes more effectively
the visual information than the BoVW, since it contains rich
information about the distribution of the visual words. Finally,
we have to note that, as nodding requires a gentle movement,
it is usually confused with the background movement.

In order to verify the appropriateness of the proposed visual
activity recognition system in more challenging tasks, we eval-
uate the visual activity recognition system for the pantomimes.
Table 7 presents the average accuracy results (%) for the 12
pantomimes and the background model. The fusion of the single-
view information remarkably enhances the recognition’s perfor-
mance, as was observed in the gesture case. The highest accuracy
for testing on development data appears with VLAD encodings in
scores fusion since the visual information in these data is more
consistent than use-case related data, e.g. similar time duration
of a pantomime or similar children locations in the room. Re-
garding the single-view case, in both types of data, the right-side
view Kinect#1 appears to be the best perspective for the trained
models. It can be noticed that in use-case related data, MBH
yields slightly better results than feature combination. Moreover,
feature fusion, i.e. the fusion of the information at an early step
of the entire procedure results in the best performance regardless
of the type of the encodings.

In conclusion, the accuracy of the visual activity recognition
is lower in use-case related data since children act more spon-
taneously while they move around the room and interact freely
with the robots. Furthermore, since the variation of the visual
information in the pantomime task is larger than in the gesture
task, the early fusion of the features performs better for the
pantomime while the scores fusion is satisfactory for the “Show
me the Gesture” since only one camera is adequate to recognize
the gesture.

Distant speech recognition

Two sets of data have been employed for the offline evaluation
of the DSR task: the development data and the use-case related
data, both consisting of children data. As stated before, the DSR
system is grammar-based, namely depending on the context of
the application, and there is a specific set of commands that
the users adopt to communicate with the robot. Thus, we have
designed one set for the “Show me the Gesture”, the “Express
the Feeling”, and the “Pantomime” games and another one for
the cooperative game, i.e. the “Form a Farm” game. The grammar
size and other statistics concerning the two datasets can be found
in Table 8.

The development data have been used for adapting speech
models and testing them. Results are presented in Table 9 in
terms of word and sentence accuracies, denoted by WCOR and
SCOR, respectively. Four different adaptation schemes have been
tested for comparison: In the “No-adapt" case, the employed
models have been trained on the Logotypografia database, which
contains adult data. The available children data included in the
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Average classification accuracy (%) for the employed 8 gestures. Results on both development and use-case related data are shown for the different features, encoding,
and fusion methods of the activity recognition module. Bold values denote the best single camera score and the best fusion scheme scores.

Features Development data

Single camera Fusion

Kinect #1 Kinect #2 Kinect #3 Kinect #4 Features Encodings Scores

BoVW BoVW VLAD BoVW VLAD BoVW VLAD
HOF 70.83 70.37 69.21 63.43 71.76 74.07 77.78 81.48 75.93 81.94
MBH 76.85 67.82 68.29 65.28 76.39 76.85 81.02 81.48 82.87 83.80
Traj.+HOG+HOF+MBH 77.78 73.84 73.61 75.00 81.48 82.87 82.87 83.80 82.87 85.19
Features Use-case related data

Single camera Fusion

Kinect #1 Kinect #2 Kinect #3 Kinect #4 Features Encodings Scores

BoVW BoVW VLAD BoVW VLAD BoVW VLAD
HOF 56.92 54.49 57.10 51.97 54.56 71.61 58.01 74.73 63.26 74.83
MBH 62.70 56.47 60.15 54.25 65.32 72.70 67.72 72.52 66.73 72.72
Traj.+HOG+HOF+MBH 57.96 54.08 67.03 59.16 61.51 69.85 63.38 73.95 64.82 73.35

Table 7

Average classification accuracy (%) for the employed 13 pantomimes. Results on both development and use-case related data for the different features, encoding and
fusion methods of the activity recognition module are depicted. Bold values denote the best single camera score and the best fusion scheme scores.

Features Development Data

Single camera Fusion

Kinect #1 Kinect #2 Kinect #3 Kinect #4 Features Encodings Scores

BoVW BoVW VLAD BoVW VLAD BoVW VLAD
HOF 68.31 56.31 48.62 53.85 66.77 67.08 68.00 69.23 68.62 75.50
MBH 70.77 60.92 61.85 55.22 76.00 76.69 76.92 76.92 74.46 76.50
Traj.+HOG+HOF+MBH 73.85 63.38 60.00 61.45 75.08 76.92 77.23 77.85 75.08 79.00
Features Use-case related data

Single camera Fusion

Kinect #1 Kinect #2 Kinect #3 Kinect #4 Features Encodings Scores

BoVW BoVW VLAD BoVW VLAD BoVW VLAD
HOF 46.34 46.19 25.50 47.70 63.08 61.02 49.87 56.17 52.59 57.99
MBH 61.42 46.28 31.59 45.57 70.25 67.97 57.70 59.04 62.18 62.49
Traj.+HOG+HOF+MBH 52.59 46.74 36.62 48.16 63.52 69.37 60.75 61.55 55.00 64.90

development data have been used for testing. In the “Adults" case,
speech models have been adapted to a small amount of adult data
and tested both with adult and children data. In the “Children”
case, data from 20 out of 28 participants of the development data
have been used to adapt speech models globally, i.e. data from
the Kinect arrays have been used to adapt a single model. The
remaining eight participants form the testing set. The adaptation
and testing have been four-fold cross-validated. Finally, in the
“Mixed" case, we have used both adult and children data to adapt
the models and then test them separately on adult and children
data.

Speech recognition achieves satisfactory performance for adults
even without adaptation. However, adaptation indeed improves
performance for all cases, even when performed in a different age
group than testing. Results indicate that the best performance
is obtained for adapting and testing on the same group, which
was expected. The best achieved results are 98.87% for adults
and 95.50% for children in terms of SCOR. The results concerning
children underline the need and importance of collecting children
data. Performance is boosted, from 75.3% to 97.8% for WCOR and
from 71.2% to 95.5% for SCOR, when children data have been used
for adaptation and testing, who are indeed the target group of the
system. All the above results refer to the development data where
data collection was controlled and guided. On the other hand,
use-case related data contain data collected in the wild, i.e., while
children were playing with the robots. Although the children had
received some instructions concerning the utterances they could
use, it is obvious that they were not followed in most cases. Thus,
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after the data annotation, new grammar sets have been formed
in order to incorporate new phrases.

The use-case related data results are depicted in Table 10,
in terms of WCOR, SCOR, and LabelCOR. LabelCOR refers to the
percentage of correct recognition of the semantic content. For
example, there can be various ways to express a negation: “no",
“no, I don’t know", “no, I did not find it", etc. All similar phrases
in terms of content are given a specific label, and after speech
recognition data post-processing calculates the score of the cor-
rect recognition of labels. Adaptation has been performed using
the development data. We notice that adaptation boosts the
performance, achieving a percentage of 59.64% for the gesture
and pantomime games and 78% for the farm game in terms
of WCOR. Both results indicate that children speech recognition
is very challenging in real conditions, because children voice
and articulation can be unintelligible and unclear when they are
speaking in a spontaneous, continuous way. The lower percentage
of single games can be attributed to the larger grammar size,
the distance between the speakers and the microphones, and the
relatively large variations of speaker orientation.

5.2. User experience study

Objective Statistics: Regarding the individual tasks (“Show me
the Gesture”, “Express the feeling”, “Pantomime”), where each of
the 31 kids participated alone, all of them were able to complete
the games successfully. The average duration of completion, in-
cluding the introduction by the robots, is nine minutes, with a
variance of two minutes.
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Data statistics for the children DSR task. Number of children speakers, utterances recorded, and grammar size in the development and use-case related data for each

group of games.

Development data

Use-case related data

# speakers # utterances grammar size # speakers # utterances grammar size
Single games 28 642 75 31 426 157
Cooperative game 28 335 58 9 pairs 215 113

Table 9

Evaluation of the DSR recognition on the development data. Accuracy (%) of the average Word recognition (WCOR) and Sentence recognition (SCOR) for the different
adaptation schemes and each testing age group. Bold values denote the best recognition results for each testing age group.

Test DSR-Adaptation scheme
No-adapt Adults Children Mixed
WCOR SCOR WCOR SCOR WCOR SCOR WCOR SCOR
Adults 97.54 91.25 99.58 98.87 96.73 93.20 99.50 98.43
Children 79.06 69.95 75.31 71.20 97.81 95.50 90.71 82.06
Table 10
Accuracy (%) of the average word (WCOR), sentence accuracy (SCOR), and Label accuracy (LabelCOR) for the children DSR task on the use-case related data.
No-adapt Adapt-all
WCOR SCOR LabelCOR WCOR SCOR LabelCOR
Single games 56.68 29.52 55.12 59.64 43.77 55.12
Cooperative game 72.95 61.02 63.16 78.00 67.69 70.51

In 32% of the cases, a human (verbal) intervention was re-
quired up to two times during the experimental flow when the
children became confused or had questions about the procedure.
For example, some children asked for a confirmation about what
to do or needed a prompt in order to act. Such possible deviations
from the designed scenario have been overcome by enabling
the dialog manager to recognize these cases (e.g., if the child is
silent for a reasonable time) and getting the robots to prompt the
children or ask them to repeat their utterance/activity. In cases
where children were expected to say something or their speech
was not recognized, robots requested for repetitions up to two
consecutive times, while in the case of a child’s action, the robots
asked for repetition only once.

For the collaborative “Form a Farm” game, played by two
children, it was observed that younger children faced difficulties
with the game’s rules, even though primary school children are
familiar with the animals of a farm. As a result, kids aged six
and seven played the game following the guidelines offered by
one adult. The rest of the children played the game without any
guidance. The average duration of the game was eight minutes.
In total, children assumed the role of the guesser for 24 rounds
and found the correct answer using 2.4 guesses on average and
four guesses maximum. On the other hand, the robot assumed
the guesser role for 22 rounds and found the correct answer in
2.2 guesses on average, with a maximum of six. Children did
not identify the picked animal in 4% of the guesses, while the
robot in 32%. Generally, the children managed to guess the picked
animal more easily since the robot was programmed to always
reveal more general animal characteristics in the beginning and
proceeding with more specific details.

We have also performed a user experience study which in-
cluded a pool of 52 children, from six to eleven years old, par-
ticipating in the designed interaction described in Section 4.2.
The purpose of this study is to collect objective statistics and
insights and get a measure of the system’s ability to accommodate
a complete CRI.

User experience assessment: Regarding subjective evaluation
of the experience, children were asked to complete a question-
naire containing the subjective statements that can be seen in
Fig. 11. Each statement was accompanied by a 5-point Likert type
ordinal scale labeled from “disagree” to “agree”, using smiley
faces [79].
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We also included two multiple-choice questions asking chil-
dren to justify which use-case was the most preferable and why,
and which perception ability of the robots makes them popular to
the kids to get more insight into their preferences. In general, the
favorite use-case of the children, with 12 out of 31 preferring it,
was “Pantomime” because they liked the robot’s movements. As
we can see in Fig. 11, most of the children (27/31) stated that they
like playing with the robots, while 22 enjoyed playing because
robots understood both their movements and speech. Many of
them (21/31) also found the interaction and use-cases easy to fol-
low, without external help (19/31). Furthermore, children tended
to agree (20 positive answers out of 31) that robots behave like
humans. By analyzing the questionnaire responses, we noticed
that older children stated that they did not need prior knowledge
to play with the robots, compared to younger children who stated
that they did.

Similarly, in the assembly task that was evaluated in the
primary school, 21 children were asked to express their opinion
for the interaction. The questions are presented in Table 11, and
the available responses were a 3-point Likert scale (Disagree-
Neutral-Agree). The Table also presents the questionnaire results
after being mapped to a scale of 0-2, with 0 being the most
negative. Their answers indicate that children were pleased with
the interaction (1.81 MOS on whether they would like to play
again with the robot and the comfortableness of the interaction).
However, clearly the robot supervision for the assembly task
has room for improvements, since although the instructions of
the robot were very clear (1.95 MOS), children were neutral on
whether they were helpful (1.10 MOS), or wrong (0.95 MOS).

It is important to note that the questions presented in Fig. 11
and Table 11 are not translated precisely from the Greek language
in English (we use more formal language in this text), and the
original ones were adapted to the children’s knowledge level.
Rarely, younger children (mainly those of six to seven years
old) were helped by their parents in explaining to them if some
question seemed to be fuzzy.

Discussion: In general, the evaluation of user experience dur-
ing interaction with our multi-robot, multi-tasking, and multi-
sensor robotic system provided encouraging results. It is found
that the system is technically capable of accommodating a com-
plete CRI experience, with some adult intervention needed in
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Fig. 11. User experience of the entire ChildBot system. After each completed interaction, children were asked to fill a questionnaire with the shown questions on a
5-point Likert-type scale labeled from “Disagree” to “Agree" as shown with color codes.

Table 11
Questions and results of the questionnaire presented to the children, following
their “Assembly Game” with the robot. (Opinion scale 0-2)

Question Mean opinion score
Were you comfortable working with the robot? 1.81
Would you play with a robot again, sometime? 1.81
Was the robot helpful? 1.10
Did the robot make a lot of mistakes? 0.95
Were the robot’s instructions clear? 1.95

certain instances and mainly for the collaborative task. Of course,
there is room for improvement since many children stated that
robots frequently made mistakes (18/31). In the future, we also
aim to conduct a subjective evaluation focused on the pedagogical
aspect of the system, based on the insights collected during this
initial study.

6. Conclusion

In this paper, we have presented ChildBot, a multimodal per-
ception framework that is the culmination and the extension of
several earlier works by the authors in multimodal perception
and CRI ChildBot constitutes a CRI framework with multiple
robotic agents that can be successfully used for edutainment
purposes, and its perception system includes several different
modules: audio-visual active speaker localization, and 6-DoF ob-
ject tracking, visual activity recognition, and distant speech recog-
nition. The architecture of ChildBot follows a modular approach,
allowing the user to easily switch on and off its modules, ac-
cording to the target application, without critically affecting the
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functionality of the system. The system dialog is also decoupled
from specific details and follows a robot-independent scheme,
thus allowing new social robots to be easily added to the system.
The effectiveness and successful interconnection of the modules
has been demonstrated via five indicative edutainment CRI use-
cases, each using a different subset of the various perception
modules.

In order to validate the performance and the capabilities of
our system for CRI, we have carried out an extensive, objective
evaluation of the developed perception modules, as well as a user
experience study that provides valuable initial insights for the in-
teraction with ChildBot. The experiments took place in a specially
designed area that was decorated to resemble a child’s room.
We collected both development data necessary for training the
individual system modules, and use-case related data essential for
testing the system performance during actual CRI.

Our results have shown that the individual perception tech-
nologies successfully capture the environment surrounding the
interaction with high accuracy, while the user experience study
showed that children enjoyed playing with different robots.

For future work, we would like to extend ChildBot for other
applications. It would be interesting to see how some of the novel
perception methods we presented can generalize to other fields,
such as rehabilitation or assistive applications for ASD children.
Further, we aim to conduct a more thorough subjective evaluation
of the pedagogical aspect of the system.

In conclusion, our work shows that through the integration
of multiple robots, sensors, and modalities, we can achieve a
high level of unconstrained and autonomous CRI, opening up
new prospects for future educational and entertainment social
robotics.
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