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Abstract—Generative models, such as Variational Autoen-
coders, are being increasingly utilized for various acoustic
modeling tasks, such as anomaly detection from audio signals.
Motivated by this, in this work we propose a Convolutional
Variational Autoencoder (CVAE), in order to detect and predict
the appearance of relapses in patients with psychotic disorders,
such as schizophrenia and bipolar disorder. The proposed system
utilizes speech segments of patients, isolated from interviews
conducted with their clinicians containing spontaneous speech,
and represented as log-mel spectrograms. The results from
the analysis of each segment are then aggregated in a per-
interview basis. We explore the performance of our system in
both a personalized and a universal (patient-independent) setup.
Evaluation of our method in data from 13 patients and 375
interviews, with a total duration of 30509 sec of isolated speech,
indicate that the CVAE achieves similar results to a Convolutional
Autoencoder (CAE) baseline in a personalized setup. Further-
more, the proposed model significantly outperforms the CAE
baseline when considering a universal relapse detection setup.

Index Terms—Psychotic Disorders, Anomaly Detection, Vari-
ational Autoencoder, Spontaneous Speech, Relapse Prediction

I. INTRODUCTION

One of the many fields to have benefited from the rapid
progress in the field of artificial intelligence is clinical psychi-
atry [1]. Machine learning algorithms are increasingly being
applied in order to identify indicators of mental health severity,
in order to validate the subjective assessments of clinicians [2],
[3]. To this end, a number of modalities are being utilized,
e.g., physiological data, facial expressions, and social activity
information collected from smartphones.

Another modality that has been reported to contain cues
correlated with the appearance of relapses in a number of
mental conditions is speech. Indeed, spoken language has been
shown to be indicative of both the emotional state of a person
[4] and relapsing mental conditions [5], such as divergences
in pitch, formant frequencies and pauses between utterances.

This research has been financed by the European Regional Development
Fund of the European Union and Greek national funds through the Op-
erational Program Competitiveness, Entrepreneurship and Innovation, under
the call RESEARCH-CREATE-INNOVATE (project acronym: e-Prevention,
code:TIEDK-02890/ MIS: 5032797)

ISBN: 978-1-6654-6798-8

175

For instance, bipolar disorder can be characterized by longer
pauses in between utterances of the patients and increased
pitch and formant frequencies, while relapsing schizophrenic
patients show decreased pitch and formant frequencies, cou-
pled with a lower speech rate and longer pauses in between
utterances [5]. Supervised approaches towards determination
of relapses from speech segments include both traditional
hand-crafted features, either in a short-time basis [6] or ag-
gregated over whole interview sessions [7] and deep-learning
based approaches, usually utilizing convolutional or recurrent
neural networks [8], [9]. The connection of the appearance
of relapses in mental conditions with mood-related features
through transfer learning, by employing pretrained emotionally
imbued embeddings, has also been explored [10], [11].

An alternative approach to this problem, motivated by the
rarity of appearance of abnormal (anomalous) events, as well
the potential lack of strong labels concerns the development of
either weakly-supervised or unsupervised anomaly detection
algorithms [12]. This is especially significant in mental health
monitoring, where the availability of data corresponding to
relapsing states is scarce. Most recently deep neural networks
have been used to detect anomalies in various kinds of medical
settings, using for instance physiological signals [13], medical
images [14] and speech signals [15], [16]. In the case of
purely unsupervised algorithms, such as autoencoders, either
properties of the learned latent vectors, or their reconstruction
error, are usually used to evaluate their performance.

For the purposes of anomaly detection in audio signals, gen-
erative neural network architectures, such as the WaveNet [17],
have been successfully adapted [18]. Variational Autoencoders
(VAEs) [19], in particular, constitute a generative class of
models that has proven suitable for various acoustic modeling
tasks, as for instance speech enhancement [20], blind source
separation [21], or speech representation learning [22]. It has
also been leveraged in a mental health recognition context,
using for instance phonocardiogram data [23].

In this work, we introduce a Convolutional VAE (CVAE) for
the detection and prediction of psychotic patient relapses from
spoken word segments. To the best of our knowledge, this is
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the first work that uses generative models, such as VAEs, in
order to predict and detect relapses from speech. We explored
both the performance of the CVAE in a personalized setup and
its scalability to a universal (patient-independent) setting, by
applying patient-wise normalization techniques similar to [7].
Experimental results indicate that in the case of personalized
models, the CVAE-based models perform comparably to a
deterministic CAE baseline [24]. In the universal case, the
CVAE model significantly outperforms the CAE baseline, and
surpasses the performance of the personalized models when
patient-wise normalization is applied.

The rest of the paper is organized as follows: In Sec. 2 we
describe in brief the database we use, and the preprocessing
applied upon it, while the architecture of the network we
developed is introduced in Sec. 3. We outline our experimental
protocol in Sec. 4, and present and discuss our results and
findings in Sec. 5. Finally in Sec. 6 we draw some final
conclusions and present potential avenues for future research.

II. DATA COLLECTION AND PREPROCESSING

Data Collection: A total of twenty-four (24) patients with
a disorder in the psychotic spectrum (12 with Schizophrenia,
8 with Bipolar I disorder, 2 with Schizoaffective disorder, 1
with Brief Psychotic episode, and 1 with Schizophreniform
disorder) were recruited at the University Mental Health, Neu-
rosciences and Precision Medicine Research Institute “Costas
Stefanis” (UMHRI) in Athens, Greece. The protocol regarding
the recruitment of the patients in the project is detailed in [24].

During the course of the project, the clinicians have con-
ducted monthly in-person clinical assessments with all pa-
tients. These assessments were used as the basis for the
annotation of the patient’s mental condition by the clinicians
as either stable or relapsing. In particular, the appearance and
severity of relapses were evaluated by the clinicians through
the following: 1) The monthly assessments that assisted in
quantifying the duration and severity of the relapse, and
in determining the reason leading to it, 2) the usage of
psychopathological scales that provide valuable information
for the relapse itself, and communication with 3) the attending
physician, 4) the family or the patient’s carer and 5) with
the hospital, upon the patient’s hospitalization. In addition, a
number of weekly unstructured interviews, of an average dura-
tion of 5-10 minutes, was conducted with all patients, These
interviews were recorded anonymously through a dedicated
tablet application, and stored into a secure cloud server [25].

Our goal in this work is to identify and predict the appear-
ance of relapses in these patients. To evaluate this, we used
interview data from 13 patients (1 with Schizoaffective disor-
der, 1 with Schizophreniform disorder, 7 with Schizophrenia
and 4 with Bipolar I disorder), out of whom 8 had experienced
a relapse during the course of the study, and the rest were
selected on the basis of the available data amount. Table I
contains information on the patient demographics and the
collected data at the time of writing this paper. The expert
annotations were used as the basis for splitting the data. In
particular, we split the interviews into three categories: clean

TABLE I
DEMOGRAPHICS INFORMATION AT THE TIME OF RECRUITMENT, AND
AMOUNT OF RECORDED AND ANALYZED DATA UTTERANCES.

Demographics

Male/Female 8/5
Age (years) 275 £ 6.7
Education (years) 135+ 1.9
Illness dur. (years) 79 £7.6
Recorded Data

Num. of Interviews (total) 375
Num. of Interviews (mean-std) 28.8 + 8.7
Diarized speech duration (in sec) 30509
Diarized speech duration (in sec, mean=std) | 2347 £ 1550
Num. of Utterances (total) 12107
Num. of Utterances (mean=std) 931 4+ 527
Num. of Utterances (clean, mean-std) 754 + 425
Num. of Utterances (pre-relapse, mean-+std) 119 + 126
Num. of Utterances (relapse, mean=std) 169 £ 162

data, which correspond to time periods the patient’s condition
was stable, relapse data, where a relapse has been detected by
the clinicians, and pre-relapse data, which include interviews
conducted up to 30 days prior to the appearance of a relapse.

Preprocessing & Feature Extraction: Regarding the pre-
processing of the interviews, in order to extract meaningful
representations of the patients’ speech, we follow the same
procedure as in [24]. In brief, we extracted the audio from the
interview videos, and downsampled it to 16 kHz. Afterwards,
the speech segments corresponding to the patients were iso-
lated using the x-vector [26] diarization recipe from kaldi [27],
and were then manually checked for correctness. This process
resulted in a total of 12107 utterances (30509 sec), distributed
into each category as presented in Table I.

Afterwards, we computed the log-scaled mel-spectrograms
corresponding to each utterance, using Librosa [28]. For this
computation, we used a frame size of 512 samples (approx. 30
ms), an overlap of 256 samples, and 128 mel bands. Finally,
the per-utterance spectrograms were cut along the temporal
axis into slices of 64 frames (approx. 1 sec), resulting in an
128x64 representation for each 1 sec. of speech.

III. NETWORK ARCHITECTURE
A. Variational Autoencoders

Variational Autoencoders (VAEs) are a family of autoen-
coder architectures first developed in [19], and can be viewed
as a probablistic variant of the classical autoencoders. Sim-
ilarly to those, they consist of two parts, an encoder and a
decoder. In more detail, the encoder (inference model) takes
as input a tensor X, and encodes it into a latent representation
z € RP, that is assumed to follow an isotropic Gaussian
distribution, conditional on the input tensor X:

qs(2:|X) = N(pi, 07),i=1,..., D, (1)
where the parameters pu;,0; are learned via backpropagation
and ¢ denotes the posterior parameters of the encoder. The
decoder (generative model), on the other hand, samples an
element from the above distribution, and attempts to learn a
set of parameters 6, so that the marginal likelihood py(X) is
maximized. The marginal likelihood can be factorized as:

po(X) = po(2)pe(X|2), (2)
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Fig. 1. An overview of the proposed

where py(z) corresponds to the prior distribution of the latent
variable z. Thus, maximizing the marginal (log-)likelihood
equates to maximizing the quantity:

argmaxy ,[Eq(1x)(In(pe(X]2)) — DKL(Q¢(Z|X)ap0(Z))(]3)

Assuming a spherical isotropic Gaussian prior, pgy(z)
N(0,7), for the latent vector z, maximizing the first term
equates to minimizing the mean square error (MSE) between
the true data X and the observed through inference data X:

Luse = || X — X|]% 4)

while maximizing the second term of (3) minimizes the
Kullback-Leibler (KL) divergence between the learned poste-
rior gy (2|X) and the assumed prior py(z) of the latent vector.

B. Architecture Details

The anomaly detection model used in this paper is a 2D
Convolutional Variational Autoencoder (CVAE), trained to re-
construct input spectrograms. An overview of the architecture
is given in Table II. The encoder receives as input log-mel
spectrograms, and consists of 3 downsampling convolutional
blocks, which alternately extract intermediate features from the
input spectrograms using Convolutional layers with ReLUs as
the respective activation function and reduce the resolution
of these feature maps with Max Pooling layers. These are
followed by two parallel layers that estimate the parameters
(1, ) of the Gaussian distribution of the latent vector z.

The decoder samples a latent vector Z from the learned
latent distribution through the reparameterization trick, to
enable backward propagation of the gradients during training:

Z=p+eo? e~ N(0,I). 5)

This latent vector is then propagated forward through 4
upsampling convolutional blocks (Conv_US in Table II),
each of which upsamples the feature map it receives, and
then processes the upsampled feature map through a 2D-
Convolutional layer. ReLU activation functions are applied
after each Convolutional layer, with the exception of the last
one where no activation function is applied.

IV. EXPERIMENTAL PROTOCOL

We train models for both the personalized case, where a
unique model is trained for each patient, and the universal
case, where a single model is trained using data from all
patients. We follow a 5-fold cross-validation protocol, with
data from segments both during and prior to the appearance of

z e N{p, a®)

Sampler Decoder

variational autoencoder architecture.

TABLE I
ARCHITECTURE PARAMETERS OF THE CVAE, INCLUDING THE NUMBER
OF FILTERS, N f;;;, THE KERNEL SIZES, (kz, ky), AND THE POOLING
(pz,Py) OR UPSAMPLING (uz, Uy ) FACTORS FOR EACH LAYER.

Net. Block H Nfilt [ (kzvky) [ (pzvpy) [ (Uzvuy)
Conv_DSI N (5.5 (2,2) -
Conv_DS?2 2N (5.5) (4.2) -
Conv_DS3 4N (5.5) (4.4) -
Conv_DS4(11) 8N 4.4) 4.4 -
Conv_DS4(o) 8N 4.4) 4.4 -
Sample - - - -
Conv_US1 4N (5.5) - 4.4)
Conv_US2 2N (5.5) - 4.4)
Conv_US3 N (5.5) - 4,2)
Conv_US4 1 (5,5) - (2,2)

arelapse being considered as anomalous. In particular, for each
fold, the data corresponding to stable time periods were split
into training, validation and testing data by a 3:1:1 ratio, and
the test set was afterwards injected with the data corresponding
to both relapses and pre-relapse periods. We further note that
the data were split so that spectrograms corresponding to the
same interview session belonged in the same fold. In contrast
to [24], we noted that feature-wise min-max normalization
led the model to collapse its posterior into the uninformative
isotropic Gaussian prior — thus, feature-wise standard scaling
was applied to the log spectrograms. All models were trained
using Keras, using Adam with a learning rate equal to 0.0003,
and a batch size of 8. Training took place for a maximum
of 200 epochs, with early stopping applied after 10 epochs
with no improvement on the validation loss. After preliminary
experiments, the loss weights corresponding to the MSE loss
and the KL divergence were set to & = 1 and 8 = 0.01.

We compare the performance of the CVAE to the determin-
istic CAE presented in [24], using the same hyperparameters
for both networks (/N = 32 filters and standardized log-scaled
mel spectrograms). During evaluation, each element of the
testing set is assigned an anomaly score. In the case of the
CAE, the anomaly score is derived from the mean square
reconstruction error (MSE) of the spectrogram. On the other
hand, the performance of the CVAE is evaluated by either the
KL divergence between the distribution of spectrogram’s latent
representation and its assumed prior, or its reconstruction
MSE. To characterize each session as clean or anomalous,
we aggregate the anomaly scores over all spectrograms corre-
sponding to this session. As our evaluation metric, we report
on the mean ROC-AUC over the per-session anomaly scores,
since it is independent of threshold values [29].
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TABLE III
AVERAGE OF THE PER-PATIENT ROC AUC SCORES FOR THE
DISCRIMINATION BETWEEN SESSIONS THAT CORRESPOND TO STABLE, OR
ANOMALOUS (PRE-RELAPSING OR RELAPSING) CONDITION, FOR BOTH
CVAE AND CAE PERSONALIZED MODELS.

Pooling CAE [24] CVAE

Function MSE [ KL
AP 0.668 £+ 0.035 | 0.673 £ 0.055 | 0.653 £ 0.052
MP 0.608 £ 0.060 | 0.617 £ 0.051 0.659 £ 0.045
NP 0.627 £ 0.058 | 0.640 £ 0.049 | 0.678 & 0.049

In the subsequent experiments, we want to examine the
following:

+ How does the CVAE model compare to the deterministic
AE used in [24], in both personalized and universal cases?

o In the universal case, how is the performance affected
by whether the spectrogram normalization is applied
globally (using the same transform parameters for all
patients) or in a per-patient basis (computing separate
transform parameters for each patient)?

e What type of temporal pooling is the most suitable
for aggregating the anomaly scores of each spectrogram
belonging to a specific session? With regard to this point,
we examine average pooling (AP), max pooling (MP)
and a non-learned variant of norm pooling (NP) [30],
behaving similarly to softmax pooling and defined as:

Y Pl
S = — N (6)

where x is defined as the vector of per-spectrogram
anomaly scores, and p is a positive integer. After pre-
liminary experiments, we used the value p = 10.

V. RESULTS AND DISCUSSION

Personalized Models: In the case of personalized models,
we train a unique model for each patient that has experienced a
relapse during the course of the study. In Table III, we present
the macro-average of the per-patient ROC-AUC scores of the
baseline model (CAE) [24], as well as the proposed CVAE,
and all three potential temporal pooling functions. The results
indicate that in the personalized case, the CVAE-based models
perform equally well to the original CAE, with no statistically
signifcant difference (p > 0.05) found between the tested
models. In addition, while in both the CAE and MSE-based
CVAE models the average temporal pooling outperforms both
max pooling and norm pooling-based variants, when using
the KL divergence as an anomaly measure, we obtain better
results when using the norm pooling. The per-patient ROC-
AUC scores, using the best performing temporal aggregation
function for each model, are presented in Table IV. We observe
that for 6 out of the 8 patients, the personalized CVAE models
based on the KL-divergence record a ROC-AUC score above
0.65, and for 3 out of the 8 patients, above 0.75.

Universal Models: In the case of the universal models,
we train one model using spectrograms from all patients,
regardless of whether they have experienced a relapse. In
Table V, we present the ROC-AUC scores depending on 1)
whether the normalization procedure was applied globally or

TABLE IV
PER-PATIENT ROC AUC SCORES FOR THE DISCRIMINATION BETWEEN
SESSIONS THAT CORRESPOND TO STABLE, OR ANOMALOUS, CONDITION,
FOR BOTH CVAE AND CAE PERSONALIZED MODELS.

Patient CAE [24] CVAE
ID MSE | KL
# 0.546 £ 0.069 | 0.547 £ 0.081 | 0.523 £ 0.134
(7 0.448 £ 0.093 | 0.418 £ 0.182 | 0.388 & 0.120
#3 0.711 £ 0.119 | 0.700 £ 0.159 | 0.656 & 0.187
# 0.676 £ 0.066 | 0.660 £ 0.034 | 0.768 L 0.066
# 0.781 £ 0.053 | 0.800 £ 0.095 | 0.774 £ 0.040
#6 0512 £ 0.067 | 0.520 £ 0.173 | 0.696 & 0.083
# 0.877 £ 0.076 | 0.940 £ 0.074 | 0.720 * 0.186
#3 0.800 £ 0.187 | 0.850 £ 0.292 | 0.900 £ 0.200

[Average || 0.668 & 0.035 | 0.673 £ 0.055 | 0.678 & 0.049 |

in a personalized manner, and ii) the temporal pooling function
used to aggregate the per-spectrogram anomaly scores.

Upon inspection of the results, we can observe that in
this case, the CVAE consistently outperforms the CAE when
the KL divergence is used to compute the anomaly score,
irrespective of the temporal pooling function used. Application
of the paired t-test between the CAE baseline and the two
CVAE-variants showed statistically significant (p < 0.05) dif-
ference in the performance of the baseline and KL-divergence
based CVAE model when per-patient normalization was ap-
plied to the input spectrograms. Moreover, in this case, the
performance of the universal CVAE is at least comparable to
the personalized models. The usage of the average pooling
function as an aggregator yields the worst results, while the
best results are given when using norm pooling with the KL-
divergence scores, approaching a ROC-AUC score of 0.7.
The superior performance of the CVAE in the universal setup
indicates that the CVAE is able to learn subject-independent
features at its bottleneck, a finding that is in agreement with
VAEs being able to extract speaker-invariant representations
from speech signals [22]. On the other hand, the dependence of
both models to per-patient normalization indicates a limitation
regarding their performance in a setting with unseen subjects.

Qualitiative Analysis: In Fig. 2, we display the log-scaled
per-spectrogram KL loss for two session excerpts of the same
patient, one corresponding to stable (dashed blue) and one
to relapsing (orange) condition, as estimated by a universal
model. We observe that the relapsing session does not record
consistently higher anomaly scores, with the exception of
a few peaks, highlighted in red. Upon observation of the
respective audio segments, we notice that these correspond
to temporary disruptions of the patient’s speech flow, during
the same utterance.

VI. CONCLUSIONS

In this work, we explored the potential of CVAEs, a class
of generative models, in detecting and predicting relapses in
patients with psychotic disorders from spontaneous speech.
The results indicate that in the personalized case, these models
work equivalently to a deterministic CAE baseline. In the
universal case, they achieve at least comparable performance
to the personalized ones when a per-patient normalization

178



TABLE V

ROC AUC SCORES FOR THE DISCRIMINATION BETWEEN SESSIONS THAT
CORRESPOND TO STABLE, OR ANOMALOUS, CONDITION, FOR BOTH CVAE
AND CAE UNIVERSAL MODELS, DEPENDING ON THE NORMALIZATION

PROTOCOL AND POOLING FUNCTION USED.

Pers. Pool. CAE [24] CVAE
Norm | Func. MSE [ KL
X AP 0.504 £+ 0.032 | 0.502 £+ 0.016 | 0.532 + 0.023
X MP 0.542 £ 0.024 | 0.551 £ 0.023 | 0.592 + 0.031
X NP 0.531 £ 0.034 | 0.527 £+ 0.024 | 0.581 + 0.036
v AP 0.552 4+ 0.036 | 0.585 £ 0.021 | 0.646 + 0.035
v MP 0.541 £+ 0.027 | 0.622 £ 0.034 | 0.685 + 0.040
v NP 0.542 £+ 0.028 | 0.618 £ 0.030 | 0.698 + 0.042
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Fig. 2. Per-spectrogram visualization of the KL divergence scores for two
sessions of the same patient, one corresponding to stable (dashed blue) and
one to relapsing (orange) condition.

protocol was followed, significantly outperforming the CAE
baseline, while using norm pooling to aggregate the per-
session results further improves performance. Future work
could focus into utilizing multimodal information for the
detection and prediction of relapses, such as text transcripts
of the interviews or biosignals, or taking advantage of longer-
term dependencies in the interviews.
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