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Abstract—TIn this study, the application of deep learning models
for the detection of relapses in patients with psychotic disorders
(i.e., bipolar disorder and schizophrenia) is examined, using
physiological signals, collected by smartwatches. In order to
tackle the problem of relapse detection, which in our case is
handled as an anomaly detection task, four different autoencoder
architectures, based on Transformers, Fully connected Neural
Networks (FNN), Convolution Neural Networks (CNN) and
Gated Recurrent Unit (GRU), are implemented as personalized
and global models. In this work, time-scaled data of total
duration of 1569 days, segmented into five minutes intervals,
from ten patients suffering from psychotic disorders have been
examined yielding encouraging results. Furthermore, since the
patients’ relapses were appropriately annotated by clinicians as
low, moderate or severe, we conducted a post hoc analysis using
the models that performed best, to examine the importance of
the severity level among three participants who relapsed multiple
times with different severity level, providing important evidence.

Index Terms—Psychotic Disorders, Anomaly Detection, Time-
series, Autoencoder Architectures, Neural Network

I. INTRODUCTION

Digital phenotyping [1] is a nascent exciting interdisci-
plinary field motivated by the broad adoption of wearable
devices, such as smartwatches, in our daily lives. The term
encompasses the quantification of human behavior and traits,
by utilizing the sensors included in these devices. Such wear-
ables collect multimodal data, often including accelerometers,
gyroscopes and heart rate monitors, for measuring the user’s
physical activity, as well as autonomic function [2], [3].

This abundance of sensory data has kickstarted the develop-
ment of applications focused in general user and health moni-
toring, and other predictive analytic tasks, e.g., emotional well-
being [4], sleep tracking [5], and physical activity detection [6]
among others. Many works have also focused in identifying
behavioral and biometric markers, which can be extracted from
such data and provide insights into general medicine [7].

The success of these applications has increased the in-
terest in psychological health for human wellness, as well,
showing that such data could also be introduced into clinical
psychiatry [8]; employing them to examine depression [9],
bipolar disorder [10], and schizophrenia [11]. Especially for
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people having mental disorders, sensing biometric markers of
interest unobtrusively, through passive, continuous and long-
term monitoring could be proven effective in improving both
wellness and the course of the disorder.

Previous works have mostly used smartphones [12] and
focused mainly on social features such as text messages,
call duration, and sleep duration among others [13], [14];
lasting from some hours to a few weeks [13] with some
exceptions [14]. Compared to smartphones, wearable sensors
are unobtrusive, lightweight and can be used for monitoring of
daily activities [15]; it has been shown that people suffering
from psychotic disorders are comfortable and willing to inte-
grate them into their daily life, something that supports the fact
that by using smartwatches, we could go beyond feasibility and
underscore the novel physiological and activity data that can
be easily collected with low cost [16].

An approach that could be used for relapse detection in
patients suffering from psychotic disorders is the sensor-
based anomaly detection, the importance of which has been
highlighted during the last years, through the clinical mass
adoption of telehealth [17]. In previous works [14], encoder-
decoder models were built, so as to predict behavioral anoma-
lies that could indicate early warning signs of relapses. Such
methods are largely applied in natural language processing,
audio [18], video and time-series data [19].

This study is an ongoing work of the e-Prevention project
(http://eprevention.gr), targeting to innovative e-Health ser-
vices for patients’ effective monitoring [20]. In contrary to
aforementioned works, we use smartwatch data that provides
long-term continuous data, collected during two years. Specifi-
cally, we use physiological signals of movement and heart rate
to identify biomarkers that can assist the detection of psychotic
relapses. Therefore four architectures are built, such as Fully
Connected Neural Network (FNN), Convolution Neural Net-
work (CNN), Recurrent Neural Network (RNN) autoencoders
and Transformers, which are evaluated in both personalized
and global schemes showing promising results. Additionally,
we perform a post hoc analysis to evaluate the importance of
the relapse severity, providing important evidence.

The rest of this paper is organized as follows: in Sec. II
data collection, the preprocessing and the final dataset used
for the evaluation of relapse detection in psychotic patients
are presented. In Sec. III our unsupervised deep learning
approach is described; while in Sec. IV a thorough analysis
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TABLE I
DEMOGRAPHICS INFORMATION

Male/Female 6/4

Age (years) 30.60 + 7.31
Education (years) 13.8 £1.99
Illness dur. (years) 7.3+ 7.06

for the performance of the examined architectures is presented.
Finally, Sec. V concludes our work and gives future directions.
II. DATA COLLECTION AND PREPROCESSING

A. Data Collection

Twenty-four (24) patients with a disorder in the psychotic
spectrum (12 with Schizophrenia, 8 with Bipolar I disorder,
2 with Schizoaffective disorder, 1 with Schizophreniform
disorder and 1 with Brief Psychotic episode) were recruited
at the University Mental Health, Neurosciences and Precision
Medicine Research Institute “Costas Stefanis” (UMHRI) in
Athens, Greece. The protocol regarding the recruitment of the
patients in the project is detailed in [18].

The raw data of patients are recorded on 24/7 basis by
a Samsung Gear S3 Frontier smartwatch (which includes an
accelerometer, a gyroscope and a PPG-based (Photoplethys-
mography) non-invasive heart rate monitor) and are stored to
a cloud-based platform [20]. Linear acceleration and angular
velocity are sampled at 20Hz, while heart rate at SHz. The total
data collection period lasted from 11/2019 to 09/2021, varying
for each patient, with a total of 1569 days after preprocessing.

The patients undergo monthly assessments of their mental
health symptoms by the clinicians, providing this way valuable
annotations indicating their condition as either healthy or
relapsing (also denoting the specific period of the relapse
and its severity as low, moderate or high). Depending on
these annotations, we split the data into three categories:
normal data, where the patient was stable; relapse data
corresponding to time periods when a relapse had occured
and near-relapse data, thus data recorded up to 21 days
prior to the appearance of each relapse. The determination
of the relapse was multifaceted and was evaluated by the
clinicians through the following: 1) Monthly assessments that
assisted in quantifying the duration and severity of the relapse
2) the use of questionnaires that gives information for the
general psychopathology and the relapse itself, and through
communication with 3) the attending physician, 4) the family
and 5) the hospital, when the patient had to be hospitalized.

B. Data Preprocessing

Before training, we created sequences of features found to
contain significant information as shown in [21]. The extracted
features are: the mean energy of the accelerometer and gyro-
scope norm, the mean heart rate and R-R interval, the mean
frequency in the LF and HF bands of the heart (0.04 —0.15Hz
and 0.15 — 0.40Hz, respectively), and the value of the width
of the ellipse in the Poincare recurrence plot. Three additional
features are included: the percentage of correctly identified
pulses in the given interval (which corresponds to a measure
of how well the patient is wearing the watch) and the sine and
cosine representations of corresponding seconds to model the
chronological order of the time-series. Afterwards, the features
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Fig. 1. Number of days used in our experiments after preprocessing.

are transformed into a more dense representation of 5-minutes
intervals. The chosen interval length is small enough to capture
micro-scale patterns [19], and it also allows us to have an
adequate amount of data for our deep learning architectures.

In cases of missing data up to 10 consecutive hours (e.g.,
when the patient was charging or did not wear the watch), we
filled the data with the median values of a given feature. Two
other filling methods were examined, i.e., mean, or neighbor;
however, we experimentally confirmed that “median” yields
better results. In cases that we had more than 10 consecutive
hours of missing data, we completely disregarded the interval,
since we experimentally found that this is the maximum of
hours to be filled, while not inserting false values.

After preprocessing, the data are considered as a multi-
variate time-series Xy x4, wWhere L denotes the total length
(varying for each patient) and d the number of features. Each
point in the timeseries corresponds to a 5-minute timestamp.
Then, we apply an [-length rolling window with stride 1,
creating a total of N = L —[+ 1 subsequences, thus, resulting
in a Myx;xq tensor for the data of each patient.

As a final step, we split the data in subsequences of 24
hours examining this way the patients’ daily patterns, as
in [14]. After preprocessing the number of relapsed subjects
with adequate data, meaning missing values for less than 10
hours and consecutive data to construct the subsequences was
reduced to 10, of which 2 with Schizoaffective Disorder, 4
with Bipolar I Disorder, 1 with Brief Psyhcotic Episode, 1
with Schizophreniform Disorder and 2 with Schizophrenia (see
Table I). We have to note that for the analysis in this work,
we did not include NR data. Figure 1 shows the number of
days used in our experiments after the preprocessing.

III. METHODOLOGY
A. Autoencoder Architectures

We created four different architectures based on encoder-
decoder schema [22], [23] that learned to reconstruct an input
time series. The models were implemented as follows.

In the transformer model as seen in Fig. 2, the input se-
quence is first imported into a positional encoding layer where
information about their chronological order is kept through
the application of sine and cosine functions. Afterwards, four
transformer encoder layers are stacked. Each encoder layer is
made up of two sub-layers. Both sub-layers are followed by
a normalization layer. After encoding the input sequence is
reversed and piped into the decoder, which consists of four
decoder layers, with similar architecture with the encoder.
Finally, we apply a linear layer after the decoder.

For the gated recurrent unit (GRU) sequence-to-sequence
model with attention (Fig. 3), we input a subsequence of data

1259



reverse—> Output

Linear

Add & Norm

(=]

reverse Forward

> Add & Norm

( Feed
| Forward |

‘ Add & Norm
T

Multi-Head
Attention

x4

> Add & Norm

Add & Norm
Multi-Head ‘
L Masked
Attention Multi-Head
Ar A Attention
A A A /

O—b O—bD
Input T ?
Fig. 2. Transformer architecture.
X' X2 X

Attention

Vector
contextt LI L [T T
vector

A4

attention

weights AA

‘f? i i
| orU H GRU }» GRU GRU ——> GRU —p---—> GRU
EIJ Rl

X X1 X2 X
Encoder Decoder

Fig. 3. GRU with attention AE architecture.

into an encoding layer of a GRU with a specified hidden unit
of size 100. We then pass the weighted average of all encoded
outputs (attention vectors) from all time-steps as inputs into a
GRU decoder layer that reconstructed the subsequence.

The fully connected neural network autoencoder (FNN)
model (Fig. 4), comprised 2 fully connected encoder and
decoder layers that compressed an input subsequence to a
lower dimension and then endeavor to reconstruct the initial
subsequence. Each fully connected layer is followed by a ReLu
non-linearity, where the last layer contains also a dropout layer
in order to avoid over-fitting.

The convolutional neural network autoencoder (CNN)
(Fig. 5) consists of an encoder that learns to map a high-
dimensional input into a low-dimensional latent representation
and a decoder, which attempts to reconstruct the original
input from a latent representation. The encoder consists of 4
successive downsampling convolutional blocks, each of which
includes a 1D-Convolution layer, a Bach Normalization layer
and a LeakyReLu activation function. Similarly, the decoder
consists of 4 successive upsampling convolutional blocks,
which in turn incorporates Upsampling layers, so as to restore
the initial dimensions of the input time-series, followed by 1D
Convolution layers. LeakyReLu activations were applied after
each block as well, except for the final layer. Also, we apply
a dropout layer in order to avoid over-fitting. At the top of the
network, we apply a fully connected layer.

B. Training and Evaluation of Anomalies

In our analysis, we separate the normal data in three sets,
i.e., train, validation and test set, with a split of 60-20-20(%),
respectively. We normalize all data in the [0, 1] range, except
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Fig. 4. FNN AE architecture.
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from the time features that are already in [—1,1]. The train
set, contains only “normal” data, while the validation and test
sets contain both data without and with anomalies (relapses).

First, we train each architecture using only “normal” data.
To access the performance of our models, we evaluate it to
“unseen” normal and relapse data. Intuitively, we expect to
observe small reconstruction errors in “unseen” normal data
and larger errors in relapse data. The reconstruction error
vector with size [ x d of each point ¢ is calculated as the
mean absolute error (MAE), between the predictions 2@ and
the given data 2(*). The error vectors e(*) in the validation
set, are used to compute the mean (u) and covariance (X)
of a multivariate normal distribution that is the expected
error distribution. Then, we extract the Mahalanobis distance
referred to as the “anomaly score” between the predicted
points in the test set and the Gaussian distribution that was
calculated in the validation set, as follows [24]:

a® = \J(e) — ) TE1 (e — p) ()

In our work, the anomaly scores and the performance are day-
averaged similarly to [14]. According to related literature [14],
[24] the maximization of a performance metric, such as F-beta
score or ratio of True Positive and False Positive Rates, i.e.,
TPR/FPR, can be used for choosing the threshold. In our study,
we evaluate the performance of our models under multiple
thresholds using Receiver Operating Characteristic Area Under
Curve (ROC AUC) and Precision-Recall Area Under Curve
(PR AUC). In our experiments we performed a 5-fold cross
validation and the median of this procedure is reported as the
final score.

This evaluation is performed for each patient separately,
aiming in a personalized scheme, since it is a logical starting
point for the specific task [13]. However, we explored the
potential of the suggested models to scale in a global scheme
as well; thus, we train our models on data corresponding to all
patients and evaluating them either globally (global scheme,
tested to all patients) or individually (global scheme evaluated
individually, thus per patient).

Finally, we used Pytorch for the implementation of the
architectures, which were trained using the Mean Square Error
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TABLE II
RESULTS FOR PR-AUC (PERSONALIZED SCHEME).
Patients || FNN | CNN | Transformer | GRU || Random

#1 0.94 | 0.95 0.97 091 || 0.1
) 0.05 | 0.04 0.02 0.03 || 0.03
B 0.54 | 0.46 0.43 044 || 0.53
# 026 | 0.34 0.18 0.19 || 0.18
# 0.63 | 057 0.60 0.61 || 0.63
#6 0.70 | 0.72 0.63 0.67 || 0.68
# 0.82 | 0.86 0.87 0.85 || 0.86
3 0.83 | 0.87 0.65 0.81 || 085
# 0.79 | 0.80 0.45 0.75 || 0.68
#10 0.97 | 0.95 0.94 0.97 || 097

Median || 0.75 | 0.76 |  0.61 | 0.71 || 0.68

TABLE III

RESULTS FOR ROC-AUC (PERSONALIZED SCHEME).
Patients || FNN | CNN | Transformer | GRU || Random

# 0.94 [ 0.96 0.97 0.93 ]| 0.1
(7 0.49 | 0.40 0.22 0.36 || 0.28
# 0.57 | 0.53 0.49 049 || 052
# 0.39 | 0.39 0.35 029 || 022
# 0.44 | 0.28 0.45 040 || 042
# 0.49 | 0.49 0.39 0.42 0.48
# 0.56 | 0.69 0.69 0.64 || 0.62
#3 0.72 | 0.78 0.64 0.60 || 0.72
#9 0.78 | 0.75 0.28 0.58 || 0.42
#10 0.91 | 0.88 0.81 094 || 0.1

Median || 057 | 0.61 | 047 | 0.54 || 0.50

(MSE) as a loss function and a batch size of 64. For the
Transformer and the FNN AE we used Adam optimizer [25],
while RMSprop optimizer was used for CNN AE and GRU
AE. All models had learning rate of 0.0001, except for the
Transformer that had 0.001. The training has been performed
for 50 epochs, while early stopping was applied to monitor
the model’s performance, using the validation loss.

IV. RESULTS AND DISCUSSION

Tables II and III depict the results of our experiments for the
personalized scheme. With bold are shown the best results for
each patient and each architecture. We observe that the best
performance is obtained by the CNN AE model, while patient
#1, who suffered a moderate relapse of about 11 days, has
the best performance with PR and ROC AUC score at 0.97
in the Transformer model. In order to have a baseline for our
experiments we implemented a random classifier, where we
classify the data without training the models. Specifically, we
calculate the mean and the covariance in the validation set
and then the anomaly scores in the test sets. The last column
(Random) of the aforementioned tables presents this baseline
results for each patient, showing that all personalized models’
results surpass it. In Fig. 6, we present the anomaly score of
the test set for patient #1. The anomaly score to the right
of the dividing line regards the relapse days and to the left
the normal days. We observe that the anomaly score during
relapse days is higher than in normal days. Note that the Days
on the x-axis are not continuous.

In Table IV we present the results of our experiments for the
global scheme and the global scheme evaluated individually.
We observe that the FNN AE model, which was evaluated
individually has the best performance with PR and ROC AUC
of 0.77 and 0.62, respectively. As observed, the global scheme

Anomaly score

0] 5 10 15 20

Days
Fig. 6. Anomaly score of Patient #1.

TABLE IV
RESULTS FOR PR AND ROC AUC (GLOBAL SCHEME (GLOBAL) AND
GLOBAL SCHEME EVALUATED INDIVIDUALLY (MEDIAN)).
|| FNN | CNN | Transformer | GRU || Random

PR AUC
Median || 0.77 | 0.71 0.76 0.73 0.68
Global 0.48 | 0.49 0.47 0.52 0.50
ROC AUC
Median || 0.62 | 0.58 0.52 0.57 0.50
Global 0.47 | 0.51 0.45 0.53 0.50

in general presents lower performance than the models that
were evaluated individually.

Concluding, we note that the global scheme has lower
performance than the personalized schemes. This may be due
to the fact that several of the relapses (regarding all patients
that were evaluated) had low severity, causing difficulty to
the global models in detecting them. To verify this claim,
we performed a post hoc analysis, presented next. Finally, we
observe that the patients that had moderate and severe relapses
yielded better results than the others patients. The difference
of the personalized CNN AE and the global FNN AE model
that was evaluated individually is relatively small (by 0.01).

Generally, we observe that in the personalized CNN AE
and FNN AE models that were evaluated individually, patients
#1 and #10 had the best performance with a moderate and
a severe relapse, respectively. Both patients also recorded an
increased performance in the case of the baseline, since the
features had significant differences between the normal and
the relapse periods in comparison to other patients with lower
performance. We have to note that patient #2 had only 2
relapse days of low severity thus, our models assume that
almost all data are normal, and cannot detect the relapses.
Moreover, in cases of limited data of normal and relapse
periods, the performance of our approach is slightly low. Fi-
nally, we contacted t-tests for statistical significance to observe
differences between the results of our architectures and the
random classifier, where we noticed statistical significance for
6/10 patients, with p-value lower than 0.05, while patients
with more relapse days and data, i.e., patients #6 and #7 had
better results related to the statistical significance tests.

In our study, a total of 3 patients relapsed multiple times
with different severity levels (Low and Moderate). We per-
formed a post hoc analysis using the best-performing models
(personalized CNN AE model and global FNN AE model
that was evaluated individually) to compare the reconstruction
errors between the severity levels. Table V presents the median
of the reconstruction error of the personalized CNN AE model
and the global FNN AE model that was evaluated individually.
Specifically, on both models, we observe that for patient #7
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TABLE V
RECONSTRUCTION ERROR OF THE BEST PERFORMING MODELS FOR LOW
AND MODERATE RELAPSES.

CNN AE FNN AE
Patients Low | Moderate Low [ Moderate
#5 0.007824 0.006617 0.004493 0.004342
#6 0.005098 | 0.005481 0.003960 0.003824
#7 0.006257 | 0.006515 0.005915 0.005951
TABLE VI

RECONSTRUCTION ERROR OF THE BEST PERFORMING MODELS (GLOBAL
SCHEME) FOR LOW, MODERATE AND SEVERE RELAPSES.
Patients H FNN AE [ CNN AE

Low 0.002598 0.003650
Moderate 0.002629 0.003759
Severe 0.002796 | 0.004076

(who had 148 normal days and 38 and 35 low and moderate
relapse days, respectively) the moderate relapse reconstruction
error is higher than the low relapse. On the other hand, for
patient #5 the reconstruction error of the moderate relapse
is slightly lower compared to the reconstruction error of the
low relapse days. This is probably due to the fact that for
this patient we had limited low relapse data (2 hours), 6
moderate relapse and 73 normal days, respectively, thus, our
results may not be reliable. Lastly, for patient #6 (having
143 normal days, 12 hours and 32 days of low and moderate
relapse, respectively) the moderate relapse reconstruction error
is higher than the low relapse reconstruction error for the
personalized CNN AE model, while for the global FNN AE
model that was evaluated individually the reconstruction error
for the low relapse is slightly higher than the moderate.

We further examined the reconstruction errors of the global
FNN AE and CNN AE for low, moderate and severe relapses,
separately. Specifically, we collected relapse data per severity
category for all patients together. As shown in Table VI in
both models there is a gradual increase of the reconstruction
error in relation to the severity of the relapse.

V. CONCLUSIONS

In this work, we provide promising results for relapse de-
tection of patients suffering from various psychotic disorders,
exploiting smartwatch data. Personalized autoencoder models,
which are more appropriate due to the peculiarity of the
specific task, have been evaluated for each patient obtaining
encouraging results for the CNN AE model. Moreover, we
experimented with global models as well as global models
evaluated individually, obtaining the best performance for the
latter and specifically the FNN AE model. In the proposed
work, CNN AE and FNN AE architectures have shown to
perform more robustly compared to the others. In addition,
we notice statistical significance of our results between our
architectures and the random classifier for most of the patients.
Furthermore, we observed that the more severe the relapse
is, the easier it is to detect. Concluding, for future work
we aim to include more patients, experiment with other and
possible more informative feature representations and examine
the differentiations that could be found when the patients are
awake or asleep. Finally, we intent to utilize and experiment
with more advanced architectures.
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