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Abstract
Recent advances in sign language (SL) technologies, along with demand for SL education, have led to increased interest 
in developing tools that enable automatic assessment of learners’ SL video productions, helping both students and their 
instructors. At the very least, such tools should perform automatic SL recognition (SLR) of non-studio quality videos in a 
signer-independent (SI) fashion, thus providing simple binary feedback on learners’ signing under realistic usage scenarios. 
Motivated by the above and the lack of any such tools for the Greek SL (GSL), we have been developing the “SL-ReDu” 
education platform for both receptive and productive GSL learning and student assessment. In this paper, we present our 
SLR module for GSL, developed for and integrated to the “SL-ReDu” system. The module incorporates state-of-the-art 
deep-learning based visual detection, feature extraction, and classification, operates in an SI mode on web-cam videos, and 
accommodates a small-size vocabulary of isolated signs and continuously fingerspelled letter sequences. We train the module 
on collected GSL data and demonstrate its superiority over a number of alternative SLR algorithms. We then conduct its 
objective evaluation within the “SL-ReDu” system and carry out a subjective evaluation of the overall platform, obtaining 
very satisfactory results in both.

Keywords Sign language recognition · Greek sign language · Education tools · Sign language assessment · MediaPipe · 
MobileNet · ResNet · BiLSTM

1 Introduction

Sign languages (SLs) comprise a complex non-vocal form of 
communication, which occurs in the 3D visible space around 
the signer’s upper torso, encapsulating both manual and non-
manual articulation, each carrying gloss linguistic content 
[1]. Due to its intricacy, learning an SL as a second language 
(L2) constitutes a challenging and time-consuming process 
for both students and their instructors [2]. Importantly, stu-
dents need regular feedback on their SL productions during 
learning, which may not be available at all times by their 
instructors (e.g., at home and at a leisurely learning pace). 
Further, the currently used assessment procedures yield 
significant instructor workload, as they rely exclusively on 
manual inspection of large amounts of video files of learn-
ers’ productions or in vivo interaction with small groups of 
students, while also lacking both inter- and intra-instructor 
consistency and objectivity in grading [3, 4]. For example, at 
the Special Education Department at University of Thessaly 
(UTH-SED), the end-of-semester evaluation of L2 learners 
of Greek SL (GSL) that are enrolled in the corresponding 
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introductory curriculum compulsory course (typically 150 
students) requires an average of 30 h for the in vivo proce-
dure, while exam credibility suffers due to instructor fatigue 
during the process. In addition, the large student body forces 
the class focus to shift away from the resource-demanding 
instruction of GSL production, to the more manageable task 
of GSL perception at the expense of course coverage and 
quality. The above clearly demonstrate the demand for devel-
oping suitable automatic tools to support self-monitoring 
and objective evaluation for SL L2 learning.

Not surprisingly, there has been an increasing research 
activity to address such needs, enabled by continuously 
accelerating technological progress. For example, human-
computer interaction tools have been developed to assess 
learners’ perception of SL articulations [5, 6]. At the same 
time, recent deep-learning breakthroughs have propagated 
to automatic sign language recognition (SLR), allowing this 
technology to be incorporated into systems that address the 
need of assessing the validity of learners’ signed produc-
tions. For example, “SignTutor” [7] constitutes an SLR-
based system that enables teaching basic signs and evalu-
ating learners’ articulation, providing visual feedback on 
the correctness of the performed signs. In another work, 
“CopyCat” [8] comprises an educational adventure game 
for helping deaf children improve their language skills, and 
it is developed leveraging features from colored gloves and 
embedded accelerometers. The system introduced in [9] 
provides automatic feedback on handshape and movement 
correctness of Australian SL productions, based on input 
by a Kinect sensor. The work in [10] presents a game-based 
mobile application for sign vocabulary learning that pro-
vides immediate and appropriate feedback to the user based 
on machine learning and pattern recognition technologies. 

Further, another system is introduced in the context of the 
SMILE project [11], assessing productions of Swiss Ger-
man SL, relying on automatic SLR. Finally, a web-based 
fingerspelled alphabet learning application for Indian SL is 
developed in [12], employing an automatic SLR approach.

Overall, the number of such implementations is rather 
small, with most requiring “enrolled” signers (known to the 
system) and / or employing special visual depth sensors or 
gloves for signing data input. Clearly, to better exploit SLR 
technology in the automatic assessment of SL productions 
under realistic use-case scenarios and larger learner popu-
lations, the SLR system module should operate in a signer-
independent (SI) fashion and acquire video input from low-
end cameras captured in non-studio quality conditions.

Motivated by the above, as well as the lack of learning 
tools in GSL, we have recently commenced the “SL-ReDu” 
project [13]. The project intends to pioneer a GSL learning 
and assessment system in an attempt to address the need for 
standardized L2 teaching, supporting both self-monitoring 
and objective evaluation of receptive and productive GSL 
learning. Covering such lag in GSL is the primary goal of 
this project, while we employ techniques that in future can 
be easily transferable to other SLs as well.

Toward these goals, in earlier work [14] we have pre-
sented our first version of the SL-ReDu prototype. As shown 
in Fig. 1, the developed interactive platform involves theory 
presentation of appropriate GSL learning material [15, 16] 
and enables both practice and testing via passive- and active-
type exercises. Productive learning relies on our GSL recogni-
tion module presented in [14] that operates in an SI fashion on 
video input by a typical web-cam and provides binary feed-
back regarding the correctness of the signed productions. The 
module accommodates two recognition tasks, namely that of 

Fig. 1  Illustration of the SL-ReDu prototype system design
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isolated signs within a small-size vocabulary and continuous 
fingerspelling (a crucial component of SLs [1]), aiming to 
validate our approach through objective and subjective evalua-
tion, before broadening it in future to a richer GSL vocabulary 
and continuous signing. This article constitutes an extended 
version of [14] providing, in addition to our prior work:

• Extensive comparisons of the GSL recognition module to 
alternative SLR algorithmic approaches, demonstrating 
its superiority as evaluated on collected GSL data;

• A more detailed analysis of the module’s objective evalu-
ation and the SL-ReDu platform’s subjective evaluation, 
abstracting new findings and demonstrating the success 
of our approach.

In more detail, our GSL recognition module [14] in the case 
of isolated SLR is based on a 3D convolutional neural network 
(3D-CNN), namely the ResNet2+1D network [17], whereas 
in the case of continuous fingerspelling it relies on an effi-
cient 2D-CNN, namely MobileNet [18], in conjunction with 
a bidirectional long short-term memory (BiLSTM) encoder 
[19]. Here, we demonstrate the superiority of our SLR models 
by investigating a number of alternative approaches for pro-
cessing the input video and extracting visual spatio-temporal 
features. In particular, we explore various skeletal represen-
tations, such as the 2D skeleton of the signer derived using 
the HRNet model [20], 3D skeletal features extracted via the 
MediaPipe holistic model [21], and 3D expressive body pose 
and shape parameterization obtained by the ExPose algorithm 
[22]. Further, we investigate deep learning-based appearance 
representations extracted from the raw RGB video data, 
exploring two 2D-CNN image feature learners, namely the 
ResNeXt-101 [23] and the InceptionNet-V3 [18], as well as 
3D-CNN spatio-temporal feature learners, such as the Pseudo-
3D Residual Network (P3D) [24] and the 3D ConvNet (C3D) 
[25]. Finally, we extract motion representations via different 
optical flow models, namely the SpyNet [26], FlowNet2 [27], 
and PWC-Net [28]. In addition, we combine the resulting 
visual streams with a BiLSTM encoder for spatio-temporal 
feature extraction, before feeding them to the classifier. In the 
case of fingerspelling, apart from the BiLSTM, we also inves-
tigate the use of a bidirectional-GRU (BiGRU) encoder [29]. 
The various recognition networks are trained and evaluated 
under both multi-signer and signer-independent experimental 
paradigms on a suitable GSL corpus, collected in [14].

Moreover, we report the objective evaluation campaign 
results of the SL-ReDu platform for the GSL production exer-
cises (active-type) available in the system, as well as the sub-
jective evaluation based on user responses to a questionnaire. 
Finally, we split the participants evaluation pool into two groups 
according to the duration of their GSL learning exposure (less 
or more than five months), providing helpful insights concern-
ing both objective and subjective evaluation results.

The remainder of the paper is organized as follows: The 
SL-ReDu platform is described in Sect. 2; the SLR algo-
rithms are presented in Sect. 3; the GSL corpus and rec-
ognition experiments are covered in Sect. 4; the SL-ReDu 
prototype system user evaluation findings are discussed in 
Sect. 5; and the paper is concluded in Sect. 6.

2  The SL‑ReDu prototype system

The SL-ReDu platform integrates our GSL recognition 
module [14], together with an appropriate human–machine 
interface, into an innovative environment for evaluating the 
signing performance of GSL learners. As shown in Fig. 1, 
the system involves two main modalities: self-monitoring 
and objective evaluation of receptive and productive GSL 
learning, thus attempting to address the shortcomings of 
traditional practice and assessment procedures in GSL L2 
learning.

2.1  Platform Linguistic content

The material of the platform is inferred from the definition 
of the language material for levels A0-A1 of the Common 
European Framework for Languages (CEFRL) for GSL as 
L2. In particular, the linguistic content for both GSL percep-
tion and production of the initial system evaluation covers 
two subsets: (i) single word units, including both numerals 
and non-numerals, and (ii) GSL fingerspelling, including 
GSL alphabet units and continuous sequences of such.

2.2  Platform design

As shown in Fig.  1, the SL-ReDu interactive platform 
involves theory presentation of appropriate GSL learning 
material through videos and images, while enabling both 
practice and testing via passive-type assignments compris-
ing ordinary multiple-choice questions relying on images, 
videos, and text to elicit a response from the user, as well as 
active-type exercises based on video recordings of user GSL 
productions. In the latter case, the integrated SLR technol-
ogy provides a binary correctness assessment of the articu-
lated signs, assuring an objective, fast, and reliable testing 
process.

2.3  Platform architecture

The SL-ReDu prototype system comprises a web-based 
learning and assessment application that runs on a web 
server that is responsible for the end-user interaction. 
Our web-based application architecture integrates two 
basic components, the front-end user interface and the 
back-end data-server, with the latter involving the system 
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database and the file storage system that incorporates 
images and videos corresponding to the educational 
material. In addition, the system incorporates an admin-
istration framework that can be leveraged by the instruc-
tor to generate assessment tests. The dynamic web plat-
form is developed in the PHP programming language, in 
conjunction with HTML5, CSS3, and JavaScript, while 
the MySQL open-source database is employed for data-
base construction. The web-based application is hosted 
in an Apache web server. Figure 2 depicts the employed 
architecture.

The SLR component of the system constitutes a separate 
module that runs on the learner-side device. Such device is 
currently a laptop with an available web-cam that records 
the GSL production, as well as computation acceleration 
by a graphics processing unit (GPU) to speed up GSL 

recognition of the recorded video due to the use of compu-
tationally intensive deep-learning SLR models.1 The rec-
ognition results are sent from such device to the server that 
runs the web application, based on a protocol that involves 
an intermediate server, functioning as a “communication 
repository” between the two. Details of this process can be 
found in a related technical report of the SL-ReDu project 
[30]. Note that, in future, we plan to migrate the SLR mod-
ule to a suitable server with GPU acceleration, allowing the 
use of low-end devices on the learner side.

Fig. 2  Illustration of the SL-ReDu prototype system web-based architecture (Figure modified from [14])

Fig. 3  Algorithmic flow-chart of the GSL recognition module of the SL-ReDu platform: It first employs the MediaPipe framework [21], estimat-
ing the signer’s 3D pose to ensure correct positioning with respect to the camera and prompt for signer repositioning if necessary. Subsequently, 
the signer’s video is further processed for region-of-interest extraction, and it is then fed to a suitable recognition model depending on the GSL 
recognition task (isolated signs or continuous fingerspelling)

1 The currently used laptop is rather old (6-years) with only 12 GB 
RAM and a lower-end NVidia GeForce GTX 1050 Ti GPU with 
4  GB of memory. Note that in the absence of the SLR module 
(i.e. system operation for GSL receptive exercises only), user interac-
tion is possible via even lower-end computers or smartphones.
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3  The GSL recognition module

We next detail the GSL recognition module adopted in the 
SL-ReDu prototype system, also schematically illustrated in 
Fig. 3. In addition to its depicted components, a number of 
alternative algorithms are also considered in this paper and 
evaluated in Sect. 4.

3.1  Pre‑processing

The SL-ReDu recognition module commences with the 
detection of the signer in order to inspect the relative posi-
tion with respect to the field-of-view of the device camera, 
providing instructions for rectification in case of wrong 
positioning (e.g., occluded manual articulators). For signer 
detection and tracking, we employ the MediaPipe holistic 
framework [21], which is a multi-stage pipeline that takes 
as input an image frame and returns 543 whole-body land-
marks, namely 33 body pose keypoints, 21 joints for each 
hand, as well as 468 facial keypoints.

When the articulators are occluded, namely the detected 
landmarks of the two hands, face, and upper torso are miss-
ing for more than a specific number of frames (12 frames), 
the system prompts the signer to reposition, informing of 
incorrect hands, face, and body positioning with respect to 
the camera. If the positioning is acceptable, the detected 
landmarks are used to generate the region-of-interest (RoI) 
for the next stage, i.e. the visual representation generation 
(see also Fig. 3). Particularly, in the case of isolated signs, 
when multiple articulators may be involved in signing, the 
entire upper body is cropped in order to produce the RoI. In 
the case of fingerspelling though, the RoI is limited to the 
signing hand (as determined by its motion). In more detail, 
the x and y landmarks of the whole-body or hands with val-
ues ranging in [0.0,1.0] are normalized to the image plane 
based on the image width and height respectively and stored 
in a list. Afterward, the maximum and minimum values of 
the corresponding x and y landmarks of the list are employed 
for RoI cropping.

3.2  Feature extraction

In the case of isolated signing, our GSL recognition module 
[14] adopts a 3D-CNN model for spatio-temporal feature 
extraction, namely the ResNet2+1D network [17], while 
in the case of continuous fingerspelling it relies on the 
MobileNet 2D-CNN-based feature learner [18] combined 
with a BiLSTM encoder [19]. Here, we demonstrate the 
superiority of our SLR models by investigating a number 
of alternative approaches for processing the input video 
and extracting visual spatio-temporal features, focusing on 
articulator shape or appearance and static or motion patterns. 

Specifically, we first investigate 2D and 3D skeletal features, 
as well as 3D expressive body pose and shape features. Fur-
ther, we explore deep learning-based appearance representa-
tions, considering various 2D- and 3D-CNN image feature 
learners. Finally, we investigate motion representations via 
different optical flow models. All these different feature 
extraction models are detailed next.

3.2.1  Pose features in 2D and 3D

Here, we exploit the HRNet framework [20] to detect the 
human skeletal joints of the signer’s body, face, and hands in 
2D. In addition, we investigate Google’s MediaPipe holistic 
framework [21] for simultaneous perception of 3D human 
body pose, face and hand landmarks, yielding the corre-
sponding 3D human skeletal feature representations. Moreo-
ver, we obtain 3D shape, pose, and facial expression features 
of the signer from single RGB images using the ExPose 
method [22]. Further details follow next.

HRNet [20]. The HRNet full-body pose estimator relies 
on a high-resolution CNN that preserves the high-resolution 
representation by combining high- and low-resolution con-
volutions in parallel and repeating multiscale fusion across 
parallel convolutions. The adopted parallel processing strat-
egy allows HRNet to maintain high resolution throughout 
the neural network, resulting in more accurate representa-
tions. HRNet estimates in total 133 2D whole-body land-
marks from the RGB images, namely 23 body-pose skeletal 
joints, 21 joints for each hand, as well as 68 facial keypoints 
(see also Fig. 4b). Since manual and non-manual SL articu-
lation occurs around the signer’s upper-body, we disregard 
10 lower body joints, as well as 68 facial keypoints of the 
133 skeletal joints returned by HRNet. Specifically, in the 
isolated sign recognition task we employ 13 body-pose skel-
etal joints and 21 joints for each hand, all provided in 2D 
coordinates on the image plane, generating a 110-dimen-
sional (dim) feature vector, while in the fingerspelling task 
we obtain a 42-dim (21× 2) feature vector.

MediaPipe [21]. The MediaPipe holistic pipeline inte-
grates separate models of the pose, face, and hand compo-
nents, optimized for their respective domains. MediaPipe 
holistic estimates 543 3D whole human body joints (see also 
Fig. 4c). Specifically, 33 3D joints of these correspond to 
the body skeleton, 21 to the 3D joints of each hand, while 
the remaining 468 correspond to the 3D coordinates of the 
facial region. Note that x and y landmark coordinates are 
normalized to the [0.0,1.0] range based on the image width 
and height respectively, while the magnitude of the depth 
landmark, z, uses the same scale as x with the midpoint of 
the hips being the origin. Here we exploit only 67 of the 543 
MediaPipe 3D coordinates, removing 8 human body joints 
associated with the invisible lower body parts of the signer, 
as well as the 468 facial landmarks. In particular, we retain 
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25 body-pose and 42 hand-pose ones, all provided in 3D 
coordinates on the image plane, thus resulting in a 201-dim 
feature vector for the isolated sign recognition task and a 
63-dim (21× 3) vector for continuous fingerspelling.

ExPose [22]. ExPose obtains expressive 3D body pose and 
shape of the signer, operating directly on image pixels (see 
also Fig. 4d). The ExPose framework extracts the 3D joint 
rotation parameterization generated using 3D whole body 
reconstruction. In particular, both shape and expression are 
described by 10 coefficients derived from the principal com-
ponent analysis space, while the body pose includes 53 joints 
with 6 degrees of freedom, i.e. 22 body-pose joints, 15 joints 
per hand, and 1 for the jaw, yielding a 338-dim feature vector 
for the isolated recognition task. In the case of fingerspelling, 
we employ only the 15 joints with 6 degrees of freedom of the 
signing hand, resulting in a 90-dim feature vector.

Note that in case of 2D and 3D skeletal joint estimation 
failure, the missing features are substituted by the previ-
ous existing ones. Further, to achieve translation and scale 
invariance, we normalize all extracted human skeletal 
joints derived from the HRNet and MediaPipe frameworks 

by converting the image to a local coordinate system with 
the neck keypoint being the origin, and apply further nor-
malization based on the distance between the left and right 
shoulder keypoints.

3.2.2  Appearance features

Further, we adopt deep learning-based appearance repre-
sentations extracted from the entire RoI, as generated by 
the pre-processing phase (see also Sect. 3.1). Specifically, 
we first investigate three 2D-CNN based neural networks, 
namely the ResNeXt-101 [23], the MobileNet [18] that 
is employed for the continuous fingerspelling recogni-
tion task, and the Inception-V3  [32]. In addition, we 
consider three 3D-CNN models in our experiments, i.e., 
the ResNet2+1D [17], which is also incorporated in our 
isolated SLR module, the Pseudo-3D Residual Network 
(P3D) [24], as well as the 3D ConvNet (C3D) [25]. Note 
that their 3D convolutions extract both spatial and tempo-
ral components relative to signing motion, thus not being 
limited to purely appearance representation as in the case 

Fig. 4  Various feature extraction components considered in this 
paper: a Sample frame from the ITI GSL corpus [31], b 2D human 
pose regression via HRNet [20], c 3D human skeleton representation 
using the MediaPipe holistic pipeline [21], d 3D human body shape, 

pose, hand articulation, and facial expression representation via the 
ExPose regression model  [22]; and optical flow motion informative 
images generated by e the SpyNet [26], f the FlowNet [27], and g the 
PWC-Net [28] optical flow models
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of 2D-CNNs. More details of these feature learning mod-
els follow next.

ResNeXt-101 [23]. ResNeXt-101 is a neural network that 
requires less hyperparameters than a traditional ResNet. 
This is accomplished through the use of cardinality, which 
is an additional dimension on top of the width and depth 
of ResNets. The network is pre-trained using the ImageNet 
corpus [32], which contains around 1 k tagged images for 
each of 1 k categories. The input RoI to the network must be 
rescaled to 224×224 pixels. Feature maps are constructed 
by using the output of the last global average pooling layer 
to produce 2048-dim representations. A linear layer is 
employed to reduce dimensionality, resulting in a 512-dim 
feature vector.

MobileNet [18]. This is a CNN-based architecture that is 
based on an inverted residual structure with residual connec-
tions between bottleneck layers. The MobileNet architecture 
consists of an initial fully convolutional layer with 32 filters, 
followed by 19 bottleneck layers. The model is pre-trained 
on the ImageNet database [32] and requires the input image 
to be rescaled to 224×224 pixels. The model yields 1024-
dim output that, following a linear layer, results to a 512-dim 
feature vector.

Inception-V3 [32]. This network is a 48-layer deep CNN 
pre-trained on ImageNet [32], and it requires data rescaling 
to 299×299 pixels. Feature maps are generated by taking 
the output of the last global average pooling layer, yielding 
2048-dim representations. To reduce dimensionality, a linear 
layer is used, resulting in 512-dim features.

ResNet2+1D [17]. The ResNet2+1D feature learner is a 
18-layer model that separates 3D convolutions into spatial 
2D convolutions followed by temporal 1D convolutions. The 
ResNet2+1D network comprises five (2+1)D convolutional 
blocks, with each composed of one spatial and one temporal 
convolution, and a 3D average pooling layer that operates on 
both space and time for nonlinear downsampling of the out-
put tensor. The model weights are pretrained on the Kinetics 
dataset [33]. The network uses 16 frames with size 112×112 
as input clips and yields a 512-dim feature vector.

Pseudo-3D Residual Network (P3D) [24]. In this network, 
3D convolutions are decoupled into 1 × K × K convolutional 
filters on the spatial domain and t × 1 × 1 convolutions tai-
lored to the temporal domain. Specifically, the architecture 
consists of 199 layers involving different variants of pseudo-
3D convolution blocks. In the first one, temporal 1D convo-
lutional filters follow spatial 2D convolutional filters in a 
cascaded manner, while in the second one both filter types 
operate in a parallel fashion. The network uses a 16-frame 
clip and 160×160 input resolution, yielding 2048-dim repre-
sentations. To reduce dimensionality, a linear layer is used, 
resulting in 512-dim features.

3D ConvNet (C3D) [25]. C3D is a deep 3D-CNN with an 
homogenous architecture containing 8 convolutional and 5 

pooling layers, followed by 2 fully connected layers. The 
C3D model is given an input video segment of 16 frames 
and 112×112 input resolution and results in a 4096-dim fea-
ture vector. For dimensionality reduction, a linear layer is 
used, resulting in 512-dim features.

3.2.3  Optical flow features

In addition to the above, we also adopt optical flow fea-
tures, which play a crucial role in SLR. To acquire them 
we employ three approaches, namely the SpyNet [26], the 
FlowNet2 [27], and the PWC-Net [28] that extract motion 
information of the RoI using deep-learning models. More 
details follow next.

SpyNet [26]. The optical flow is computed by combining 
an image-pyramid formulation with deep learning. This opti-
cal flow method is based on warping the second image of a 
pair of image frames at each pyramid level using the current 
flow estimate and producing an optical flow update. At each 
pyramid level, one deep neural network is trained in order 
to estimate the flow that is upsampled to the next pyramid 
level. SpyNet is “lean” in terms of model parameters with 
1.2M in total.

FlowNet2 [27]. FlowNet2 adopts a stacked architecture 
involving different types of networks in order to compute 
both large and small displacements of optical flow. More 
precisely, large displacement of optical flow is computed by 
stacking two adjacent image frames as input to a network 
and warping the second image toward the first in the pair 
using the current flow, while in a second network the two 
image frames are separately convoluted for small displace-
ment optical flow estimation. Finally, the outputs are fused 
by a correlation layer. The FlowNet model is “heavy,” having 
almost 160 M parameters.

PWC-Net [28]. This method follows three main princi-
ples: pyramidal processing, warping, and the use of a cost 
volume. Initially, it warps the CNN features of the second 
image of the pair, employing the current optical flow esti-
mate. Subsequently, a cost volume is generated, using the 
warped features of the second image, as well as the features 
of the first one. Finally, the cost volume is further processed 
by a CNN for optical flow estimation. PWC-Net is small in 
size, having 9.7M model parameters.

Once the optical flow is estimated using any of the afore-
mentioned models, it is scaled to the input image size and 
stored as a 2-band float image for both horizontal and verti-
cal flow components in an optical flow file. Subsequently, 
motion informative images are generated by colorizing 
the displacement vectors acquired by the optical flow files 
(see also Figs. 4(e)-(g)). It should be noted that the optical 
flow informative image frames are then fed to a 2D-CNN 
MobileNet [18] image feature learner, yielding 512-dim 
motion features.
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3.3  SL recognition

As mentioned in Sect. 1, the SLR module accommodates 
two recognition tasks, namely that of isolated GSL signs 
within a medium-size vocabulary, developing separate 
models for numerals and non-numerals, and that of con-
tinuous sequences of fingerspelled letters of the Greek alpha-
bet. Specifically, for the isolated SLR task we employ the 
ResNet2+1D network, whereas for the continuous finger-
spelling recognition task the 2D-CNN MobileNet architec-
ture is adopted as the visual feature learner of each video 
frame, as well as a BiLSTM encoder [19]. Next we describe 
the two SLR modes and we provide their implementation 
details.

3.3.1  Isolated sign recognition

For isolated GSL recognition, the SL-ReDu prototype sys-
tem [14] employs the ResNet2+1D network for spatio-tem-
poral visual feature extraction (see also Fig. 3). As discussed 
in Sect. 3.2.2, ResNet2+1D is a 18-layer model that includes 
five (2+1)D convolutional blocks coupled with a 3D pool-
ing layer that is employed for nonlinear downsampling of 
the output tensor in both spatial and temporal dimension. 
The pooling layer is followed by the classifier, i.e. a fully 
connected layer coupled with a softmax layer, which pro-
duces the desired probability scores. For label prediction, the 
cross-entropy loss function is employed with label smooth-
ing [34]. Model training (fine-tuning) is carried out via the 
Adam optimizer [35] with initial learning rate set to 0.0001 
and weight decay 0.0001. The mini-batch size is fixed to 16.

We compare the above with a multitude of networks 
described in Sect. 3.2 employed for visual stream extrac-
tion, namely the 2D and 3D skeletal joints, the 3D body 
pose and shape information, as well as the appearance- and 
motion-based representations, with a BiLSTM encoder [19] 
for spatio-temporal feature modeling and the classifier. Note 
that, in the case of 3D-CNN feature learners, which allow 
sign classification from the spatial and temporal encoded 
information of RGB sequences, we abstain from using an 
additional encoder in an attempt to retain a light-weight SLR 
model for the SL-ReDu prototype system. The models are 
trained employing a dropout rate of 0.1 with a mini-batch 
size fixed to 32. All models are implemented in PyTorch 
[36], and experiments are carried out using GPU accelera-
tion for both training and evaluation.

It should also be noted that separate models are built for 
the recognition of isolated numeral signs (with a vocabu-
lary size of 18) and the recognition of isolated non-numeral 
signs (with a vocabulary size of 36). As already stated in 
Sect. 1, in the first phase of SL-ReDu evaluation the isolated 
SLR module serves for a small-size vocabulary, while in 

the second phase of the project we plan to extend the sign 
vocabulary to about 400 (numerals and non-numerals).

3.3.2  Continuous fingerspelling recognition

For continuous GSL fingerspelling recognition, the 
SL-ReDu prototype system [14] employs the 2D-CNN 
MobileNet architecture [18], serving as visual feature learner 
of each video frame, and a BiLSTM encoder [19], which 
learns their temporal relations (see also Fig. 3). The output 
feature maps are propagated to a last fully-connected layer 
followed by a softmax, yielding the probabilities distribution 
for aligning the signing videos to letter sequences, modeled 
via the connectionist temporal classification (CTC) decoding 
model [37]. We also add a label smoothing term equal to 0.2, 
in order to penalize low-entropy distributions. Specifically, a 
two-layer BiLSTM encoder is employed with 512-dim hid-
den states, followed by CTC decoding for letter sequence 
prediction.

In this work, we compare this approach with recent state-
of-the-art techniques in SLR. Specifically, we substitute the 
MobileNet architecture with a number of additional net-
works described in Sect. 3.2. To this end, we exploit 2D and 
3D skeletal representations, and we also extract expressive 
3D pose and shape information of the signer. Further, we 
adopt deep learning-based appearance and motion repre-
sentations of the signing activity. Apart from the BiLSTM 
encoder, we also investigate the contribution of a bidirec-
tional-GRU (BiGRU) encoder [29]. In particular, the model 
constitutes a 2-layer BiGRU encoder with 512 hidden units.

All aforementioned models are trained employing a drop-
out rate of 0.1 with a mini-batch size fixed to 16. During 
training the Adam optimizer is used with an initial learning 
rate of 0.001 decreased by a factor of 0.1, if the validation 
score remains consistent for 9 steps. During inference, the 
beam search strategy is employed with a beam width of 3. 
Note also that no letter language model is employed. For 
model implementation, PyTorch [36] is employed, and all 
experiments are performed on GPU acceleration for model 
training and inference.

4  GSL data and experiments

To accomplish the development and evaluation of the GSL 
recognizer, a suitable database has been collected and pre-
sented in [14]. We describe it next, followed by the adopted 
experimental framework and our GSL recognition experi-
ments on it.
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4.1  The GSL database

To enable isolated GSL recognition of numerals (18-sign 
vocabulary) and isolated SLR of non-numerals (36-sign 
GSL vocabulary), as well as continuous recognition of fin-
gerspelled sequences of the 24 Greek alphabet letters, sign-
ing data from numerous volunteer informants (both native 
and non-native in GSL) have been collected, as presented 
in [14]. The data were captured by a Logitech C615 web-
cam indoors, under realistic, non-studio conditions with 

varying background and lighting, at a frame rate of 30 Hz, in 
YUV411 video format, and a resolution of 640×480 pixels.

Regarding numeral signs, video data from 20 signers have 
been gathered (see also Fig. 5). Each signer articulated the 
18 numerals 5 times in a row, yielding a total of 1,800 video 
snippets. In the case of non-numeral signs, data from 17 
signers have been collected (see again Fig. 5). The 36 signs 
were articulated 5 times by each informant. Further, videos 
from the publicly accessible ITI GSL corpus [31] have been 
added to these data, resulting in 7 more informants sign-
ing the same set of 36 signs 5 times (see also Fig. 6). It is 

Fig. 5  Sample video frames from the non-studio data collected for isolated GSL recognition of numerals and non-numerals
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important to note that the latter were recorded in a studio 
environment with an Intel RealSense D435 RGB-D camera, 
but just the RGB stream is used here. Thus, there are a total 
of 24 signers (17 + 7) and 4,320 videos in the combined 
dataset.

Finally, video data from 12 informants has been collected 
while fingerspelling (see Fig. 7). Specifically, all 24 Greek 
alphabet letters were signed by each signer once, as well 
as another 50 fingerspelled words (unique to each signer) 
composed of 4–5 letters. In addition, 3 signers performed 
an additional 71 words with a letter sequence length of 4 or 
5, as well as 16 words with a letter sequence length of 3–7. 
Note that each informant has signed each letter at least 4 
times. To summarize, 1071 videos have been collected in 
this process.

4.2  Experimental framework

Since SL-ReDu platform learners are often “unseen” dur-
ing GSL model training, signer-independent (SI) SLR is of 
particular interest to us. We also report multi-signer (MS) 
recognition results for comparison; in this scenario, data 
from all signers are used in both training and test sets (with 
the sets remaining disjoint).

For the MS case, we adopt ten-fold cross-validation, with 
80% of all videos used for training (1440 for numerals, 3456 
for non-numerals, and 857 for fingerspelling), 10% for vali-
dation (180 for numerals, 432 for non-numerals, and 107 
for fingerspelling), and the remaining 10% for testing (same 
number of videos as in validation).

For the SI scenario, we use cross-validation with 20-folds 
in the numerals case, 24 folds in the non-numerals case, and 
12 ones for fingerspelling. Each fold comprises one “test” 
signer, while the rest are used to train the model.

In addition to these paradigms, our GSL recognition mod-
els are trained for use by the SL-ReDu platform in its user-
evaluation. To that end, 1620 numeral videos, 3888 non-
numeral videos, and 964 fingerspelling videos are employed 
in training, while the remaining 1000 are used for validation 
(numerals: 180; non-numerals: 432; fingerspelling: 107).

4.3  Recognition results

For the task of isolated GSL recognition, we evaluate the 
performance of the various networks described in Sect. 3, 
reporting experimental results on the isolated GSL datasets 
of Sect. 4.1 under both MS and SI experimental paradigms. 
Results are reported in word accuracy (WAcc), %.

Fig. 6  Example video frames from the publicly accessible ITI GSL corpus [31]
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Fig. 7  Sample video frames from the non-studio fingerspelling data

In our first experiments, reported in Table 1, we employ 
the feature representations of Sect. 3.2 individually, namely 
the 2D human skeletal features, the 3D human skeleton rep-
resentation, the 3D human pose and shape parameterization, 
the 2D-CNN based appearance representation, and the opti-
cal flow motion features. These streams are fed to a BiLSTM 
encoder and a cross-entropy based decoder for word predic-
tion. Note that the BiLSTM inclusion does not seem to help 
our 3D-CNN models, and thus is not integrated to our SLR 
pipeline. For example, we evaluated the performance of the 
proposed R(2+1)D model coupled with a 2-layer BiLSTM 

encoder with 512-dimensional hidden units, and the MS 
WAcc on non-numerals degraded from 99.44 to 97.89%.

In Table  1, it can be observed that the 3D human 
pose and shape feature stream yields the best results on 
all skeleton-based sequence learning models among all 
tasks and experimental paradigms, showcasing the robust-
ness of 3D pose and shape parameterization. Further, the 
ResXt-101 performs well, but our 3D-CNN model turns 
out superior to the considered alternatives in both isolated 
SLR tasks and experimental paradigms. Moreover, optical 
flow representations seem to constitute a more powerful 

Table 1  Word accuracy (%) 
of isolated SLR (of numeral 
and non-numeral signs) on 
the corresponding datasets 
of Sect. 4.1, under both 
MS and SI training/testing 
paradigms, employing various 
networks of Sect. 3. Model size 
(approximate parameters in 
millions) and inference time (in 
seconds) are also shown.

The proposed R(2+1)D model is in bold

Visual representations SLR task ⟶ Numerals Non-numerals

Models ↓ MS SI MS SI Size Time

Pose 2D skel HRNet/BiLSTM 93.33 86.67 91.67 78.33 32 M 3.54
3D skel MediaPipe/BiLSTM 94.44 88.89 92.13 81.67 11 M 2.89
3D pose/shape ExPose/BiLSTM 95.56 90.00 93.75 86.11 11 M 12.25

RGB 2D-CNNs ResXt-101/BiLSTM 96.67 93.33 97.45 88.40 56 M 1.14
MobileNet/BiLSTM 94.44 91.11 95.14 86.67 15 M 1.01
Inception/BiLSTM 95.56 92.22 96.06 87.78 38 M 1.09

3D-CNNs P3D 91.11 87.78 97.45 73.28 66 M 0.55
C3D 94.44 90.00 98.38 81.64 78 M 0.62
R(2+1)D 97.78 94.48 99.44 96.20 42 M 0.30

Flow 2D-CNNs SpyNet/BiLSTM 95.56 91.11 92.36 84.44 12 M 2.28
FlowNet/BiLSTM 94.44 90.00 91.20 82.22 50 M 3.29
PWC-Net/BiLSTM 96.67 92.22 94.44 85.56 20 M 2.35
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representation than the skeletal features and in some cases 
outperform the 2D- or 3D-CNNs. Note also that perfor-
mance is worse in the SI case as compared to the MS one, 
which can also be readily observed in Figs. 8a, b, where 
WAcc for the isolated tasks in the SI case is lower but 
remains nevertheless well above 80%, even for the worse 
performing ones, demonstrating the potential of utilizing 
our model in learning platforms like SL-ReDu. Finally, 
it can be observed that the proposed model is the fast-
est model among the considered alternatives,2 albeit at a 
considerable increase in model size as compared to leaner 
ones. 

In Table 2, we evaluate the performance of the various 
sequence learning models described in Sect. 3 and report 
the recognition performance of the continuous fingerspelling 
task on the aforementioned dataset (see Sect. 4.1), under 
both MS and SI training/testing paradigms. Results are 
reported in WAcc, %, taking into account the number of sub-
stitutions, deletions and insertions in the predicted hypoth-
eses. It may be observed that the BiLSTM encoder-based 
recognition model turns out superior to the considered alter-
natives in terms of WAcc, revealing the power of exploiting 
BiLSTMs in continuous SLR. It is obvious that our model 
(MobileNet and BiLSTM) outperforms all considered 
alternatives. Moreover, relying on skeletal representations 
performs the worse. Surprisingly, 3D-CNN feature repre-
sentation do not seem important contributors to the system 
performance. In all cases, performance degrades in the SI 
case, compared to the MS scenario, which is not surprising. 

It should be noted that the R(2+1)D with a BiGRU encoder 
is the fastest model (0.30 s) among the considered alterna-
tives,3 but we employ the MobileNet feature learner with 
BiLSTM encoder as our recognizer, since it provides a trade-
off between accuracy and speed. 

Finally, in Fig.  8c the WAcc, % and letter accuracy 
(LAcc), % for the fingerspelling task in both MS and SI 
cases is shown. The performance suffers at the WAcc level, 
which is natural since letter recognition errors (including 
insertions and deletions) accumulate at the word level, espe-
cially for longer letter sequences. This effect is exacerbated 
due the lack of a language model in the recognizer, as well as 
the significantly smaller amount of collected data and num-
ber of signers compared to the isolated tasks. As expected, 
LAcc results are higher, but clearly further improvement is 
needed.

5  User evaluation of the SL‑ReDu platform

Next, we proceed with the user-based system evaluation dur-
ing a campaign conducted at UTH-SED, reporting both the 
GSL recognition results obtained (objective evaluation), as 
well as the subjective assessment of the SL-ReDu proto-
type as a whole, based on user responses to a questionnaire. 
Before reporting our results, we briefly describe the pool of 
the evaluation participants.

5.1  Volunteer users

The evaluation campaign involved two student groups from 
UTH-SED, as well as two professional volunteers. A total 

Table 2  Word accuracy (%) of 
continuous fingerspelling on 
the dataset of Sect. 4.1, under 
both MS and SI training/testing 
paradigms, employing various 
networks of Sect. 3. Model size 
(approximate parameters in 
millions) and inference time (in 
seconds) are also shown.

The proposed SLR model is marked in bold (MobileNet & BiLSTM)

Visual representations Models ⟶ ( &BiLSTM) ( &BiGRU)

↓ MS SI Size Time MS SI Size Time

Pose 2D skel HRNet 62.62 42.22 32 M 3.54 58.22 41.07 29 M 3.53
3D skel MediaPipe 64.49 45.56 11 M 2.89 59.53 43.76 8 M 2.89
3D pose/shape ExPose 64.77 50.28 11 M 12.25 62.43 48.87 8 M 12.25

RGB 2D-CNNs ResXt-101 73.29 62.22 56 M 1.14 71.96 62.80 53 M 1.13
MobileNet 75.22 65.30 15 M 1.01 73.83 60.00 12 M 1.01
Inception 74.76 64.86 38 M 1.09 72.90 61.98 36 M 1.08

3D-CNNs P3D 70.09 37.84 77 M 0.56 65.79 36.20 74 M 0.56
C3D 71.96 61.11 89 M 0.64 70.28 61.07 87 M 0.63
R(2+1)D 73.83 63.33 54 M 0.31 70.56 60.88 51 M 0.30

Flow 2D-CNNs SpyNet 71.02 62.16 12 M 2.28 70.65 60.45 10 M 2.27
FlowNet 68.22 59.46 50 M 3.29 66.82 57.52 47 M 3.29
PWC-Net 72.89 63.51 20 M 2.35 71.96 61.99 17 M 2.34

2 Reported times in Table  1 refer to model inference on a 30  Hz 
video of length 5  s, as run on an NVidia GeForce RTX3090 GPU, 
thus all models are faster than real time, except the ExPose-based 
one. It should be noted that the older laptop used in the evaluation of 
Sect. 5 is about 8.9× slower, but still acceptable to users in terms of 
speed.

3 Reported inference times in Table 2 are reported for a 30 Hz, 5  s 
long fingerspelling video.
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of 10 university students at the so-called “A0” level who 
had been exposed to GSL for less than five months made 
up the first user group, whereas a total of 11 students at 
the “A1” level with more than five months of experience 
were part of the second group. The third group consisted 
of the two GSL professionals (experts), involved in GSL 
instruction. The volunteer demographics were in line with 
those of the student/instructor population at UTH-SED, with 
females outnumbering males (21 females and 2 males) and 
ages ranging from 19 to 22 years old for the undergraduates, 
a 35-year old graduate student, and two experts in the 40-45 
year old range. Note that all volunteers had signed consent 
forms prior to the evaluation.

5.2  Objective evaluation of the GSL recognizer

Objective evaluation was conducted by means of active sign-
ing, where learner SL productions were captured by a cam-
era of a specially equipped laptop at the user side (see also 
Fig. 2) and were subsequently recognized by the on-laptop 
SLR module, providing feedback to the learner through the 
SL-ReDu platform, as well as feedback in case of incorrect 
placement with respect to the camera. A small number of 
tests were made available for each recognition task for the 
evaluation participants to choose from, each including few 
production exercises. In particular, for isolated GSL rec-
ognition of numerals three tests with six GSL production 
questions each were integrated in the platform, while for 
non-numerals six corresponding six-question production 
assignments were incorporated. In addition, continuous fin-
gerspelling tests were also available, namely six six-question 
exercises that included letters in addition to words (the latter 
were absent from the fingerspelling training set of Sect. 4.1). 
The participants were permitted to perform each exercise 
up to twice (the second time in case of negative feedback 
by the system) within the time duration constraints of the 
selected tests (slightly different per task), and the system 
automatically graded their efforts providing the cumulative 
test scores.

A subset of the volunteers of Sect. 5.1 was used for the 
active GSL production and recognition evaluation. This 
included a total of 12 users (all females), with 7 users being 
students at the “A0” level (referred to as group “G1”), as 
well as 4 of the “A1”-level students and 1 expert (referred 
to as group “G2”). Each subject completed three six-
question assignments, one for each of the three GSL tasks 
stated above, performing 18 exercises (216 in total for the 
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12 volunteers). Table 3 lists specifics of the scores they 
attained (incorrect recognitions by the GSL recognizer are 
shown in bold). Further, Table 4 provides a cumulative and 
task-specific summary of the results (over all users). Bold 
emphasizes the correct signings that have been recognized 
as incorrect by the GSL recognizer on all 3 tasks during the 
objective SL-ReDu system evaluation of SLR.

As it can be observed in Table 4, out of the 216 exer-
cises in total, 200 correct GSL productions were deter-
mined by the system to be valid and 16 to be invalid at 
the first user attempt. The latter 16 exercises include 10 
correct GSL productions that were wrongly recognized 
as incorrect by the system and 6 incorrect GSL produc-
tions that were accurately determined as incorrect by the 
system. In the second user attempt, all 16 exercises were 
correctly signed, but the system inaccurately recognized 
10 of those as incorrect. These included 1 numeral, 2 non-
numerals, and 7 fingerspelling exercises (see also Table 3), 

demonstrating that the last task is the most challenging due 
to its continuous nature. Note that there is a very small 
number of instances in which the user signed correctly but 
the system incorrectly identified the sign. It is interesting 
that this did not occur in the opposite scenario, where an 
inaccurate user signing was recognized by the system as 
correct. This is primary due to the fact that the incor-
rect signings happened to be very different to valid ones, 
i.e. the signings that were employed to train the GSL rec-
ognition model.

Further, in Table 5, we compare the above results between 
the less experienced (group “G1”) and more experienced 
GSL volunteers (group “G2”) defined earlier, reporting SLR 
results in terms of Wacc (all tasks) and LAcc (fingerspelling 
only) with best scores in each task being shown in bold. 
We observe that the results of “G2” users are clearly better 
than those obtained by “G1” volunteers. This is likely due to 
the more careful and clearer signing performed by the more 
experienced GSL users. This difference becomes even larger 
in the fingerspelling task, due to the additional fact that the 
corresponding exercises require the production of continu-
ous sign sequences.

Table 3  Scores achieved 
on the six-question GSL 
production assignments by the 
12 volunteers in the objective 
SL-ReDu system evaluation of 
SLR

Task Isolated numerals Isolated non-numerals Fingerspelling

User id Selected test Score Selected test Score Selected test Score

1 test5.php 6 / 6 testSignRecog1.php 6 / 6 activefstest1.php 5 / 6
2 test6.php 6 / 6 testSignRecog2.php 6 / 6 activefstest2.php 6 / 6
3 test7.php 6 / 6 testSignRecog3.php 5 / 6 activefstest3.php 5 / 6
4 test5.php 6 / 6 testSignRecog4.php 5 / 6 activefstest4.php 5 / 6
5 test6.php 5 / 6 testSignRecog5.php 6 / 6 activefstest5.php 6 / 6
6 test7.php 6 / 6 testSignRecog6.php 6 / 6 activefstest6.php 6 / 6
7 test5.php 6 / 6 testSignRecog1.php 6 / 6 activefstest1.php 5 / 6
8 test6.php 6 / 6 testSignRecog2.php 6 / 6 activefstest2.php 6 / 6
9 test7.php 6 / 6 testSignRecog3.php 6 / 6 activefstest3.php 6 / 6
10 test5.php 6 / 6 testSignRecog4.php 6 / 6 activefstest4.php 6 / 6
11 test6.php 6 / 6 testSignRecog5.php 6 / 6 activefstest5.php 6 / 6
12 test7.php 6 / 6 testSignRecog6.php 6 / 6 activefstest6.php 3 / 6

Table 4  A summary of the objective SL-ReDu system evaluation of 
SLR, cumulatively presented for all GSL recognition tasks and each 
task separately for both first and second (if required) sign production 
attempt

Attempts First attempt Second attempt

(#216 first, #16 s) System response System response

Task User sign Correct Incorrect Correct Incorrect

All 3 tasks Correct 200 10 6 10
Incorrect 0 6 0 0

Isolated
Numerals

Correct 69 1 2 1
Incorrect 0 2 0 0

Isolated
Non-numerals

Correct 69 2 1 2
Incorrect 0 1 0 0

Continuous
Fingerspelling

Correct 62 3 3 7
Incorrect 0 7 0 0

Table 5  GSL recognition performance for all three SLR tasks during 
the SL-ReDu system objective evaluation, reported for the two user 
groups (“G1”-less experienced, “G2”-more experienced) and overall. 
Results are shown in word accuracy (WAcc, %) for all tasks, as well 
as letter accuracy (LAcc, %) for fingerspelling

GSL recognition task Metric User groups All users

“G1” “G2”

Isolated numerals WAcc 95.56 100.00 97.33
Isolated non-numerals 91.11 100.00 94.67
Continuous fingerspelling WAcc

LAcc
76.00 93.75 82.93
86.92 91.04 88.51
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5.3  Subjective assessment of the platform

Following the completion of the self-monitoring and GSL 
production sessions on the SL-ReDu platform, participants 
were given an anonymous subjective experience question-
naire. This questionnaire measures eight aspects related to 
ease of use, usefulness, design, and user trust on a Likert 
scale that ranges from one to five.

The analysis of the subjective experience questionnaires 
that the participants submitted at the conclusion of their 
evaluation sessions yielded insightful data in the form of 
both statistical patterns and textual comments. As deduced 
from Table 6, for four of the eight subjective evaluation 
questions, the majority of participants gave the best rat-
ing (“very much”) in their responses. The majority of 

participants, in particular, expressed complete satisfaction 
with the amount of time the platform gave them, a sense 
of safety while using it, a conviction that they will use it 
to enhance their GSL performance, and an overall posi-
tive experience. Additionally, only six questions had one 
or more “medium” answers, which are the lowest ratings 
returned. These observations lead to the conclusion that 
the subjective evaluation findings are very satisfactory.

In addition, we divide the 23-volunteer evaluation pool 
into users with GSL experience less than 5 months (“A0” 
level) and those with more than 5 months GSL exposure 
(“A1” level). As can be deduced from Fig. 9, in all cases the 
mean opinion score of both groups remained within the 4-5 
range. The fact that there are some ratings that differ between 
the two groups is interesting to note. Due to extended GSL 
exposure of the “A1” volunteers, one anticipates that such 
users will be more confident utilizing the platform. Indeed, 
as it can be observed, this group provided more positive 
feedback in all questions, whereas the first group participants 
(“A0” volunteers with shorter GSL exposure) showed some 
reluctance and gave less favorable answers to most ques-
tions. Further, in Table 7 we provide median values of ques-
tionnaire responses to four questions computed separately 
over the “A0”- and “A1”-level participants. As it can be 
deduced, responses varied across the two groups: the latter 
were more confident using the platform and gave the highest 
positive feedback in questions regarding level of difficulty, 
performance improvement, and educational support, while 
“A0”-level students showed a small degree of reservation.

Finally, personal free-text written comments were pro-
vided by 16 volunteers at the bottom of the subjective evalu-
ation form. Table 8 provides a list of these remarks. In our 
future work, the SL-ReDu prototype human-computer inter-
face will benefit from the comments highlighted in bold.

6  Conclusion

In this paper we report our ongoing work on the SL-ReDu 
GSL education tool, which is built for both self-monitor-
ing and objective evaluation of GSL perception and pro-
duction. Specifically, we present the SL-ReDu prototype 

Table 6  Median, maximum, and minimum values of the subjective 
evaluation of the SL-ReDu platform for each of the eight questions 
over all 23 evaluation participants

Subjective question Values of answers over all subjects

Median Maximum Minimum

User-friendly platform Much Very much Much
Adequate time Very much Very much Medium
Difficulty level meets user 

needs
Much Very much Medium

Satisfaction with platform 
design

Much Very much Medium

Feeling safe using platform Very much Very much Medium
Performance improvement Very much Very much Medium
Signing educational support Much Very much Medium
Positive signing experience Very much Very much Much
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Fig. 9  Mean values (on the 1–5 Likert scale) of the platform subjec-
tive user assessment along eight aspects over the “A0”-level (“GSL 
experience ≤ 5 months”) and “A1”-level (“GSL experience > 5 
months”) groups and both (“GSL experience > 0 months”)

Table 7  Median values of questionnaire responses to four questions 
computed separately over the “A0”- and “A1”-level groups of evalu-
ation participants

Subjective question “A0”-level “A1”-level

Difficulty level meets user needs Much Very much
Using platform for performance 

improvement
Much Very much

Signing educational support Much Much/very much
Positive signing experience Much Very much
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system, overviewing its built-in interface, linguistic con-
tent, and architecture design. Most importantly, we present 
the GSL recognizer that is integrated to the prototype, and 
which is capable of recognizing isolated signs within a small 
vocabulary and continuous fingerspelled letter sequences. In 
addition, we provide comparative evaluation results of the 
developed recognition models against state-of-the-art SLR 
approaches. In particular, the experimental results demon-
strate that our recognition module performs well under a 
signer-independent framework in non-ideal visual settings, 
outperforming alternative architectures that rely on skel-
etal, appearance, and motion features. Finally, we present 
the evaluation campaign of the prototype, discussing results 
concerning objective assessments of the GSL production 
aspects of the system, as well as a subjective assessment of 
the entire platform based on an appropriate questionnaire. 
The findings of the evaluation can be regarded as very satis-
fying, validating our approach and the viability of the system 
design. A larger evaluation campaign is planned in future 
concerning the next version of the SL-ReDu prototype cur-
rently under development, aiming to facilitate significantly 
richer GSL material and enable continuous GSL production 
assessment.
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Table 8  Subjective evaluation comments returned by 16 evaluation participants (in addition to the questionnaire ratings) in the SL-ReDu system 
evaluation. Comments in bold will lead to improvements in the human-computer interface of the SL-ReDu system

Subjective evaluation comments

“Easy to manage application with a variety of exercises and a very friendly environment.”
“I think this is a very pleasant platform that will help students who want more practice and contact with GSL outside the UTH-SED course.”
“The platform is very good and gives us the ability to practice and fill any gaps we may have.”
“The platform is quite supportive and enables practice.”
“It was a pleasant and unique experience.”
“Very nice experience; it helps you a lot.”
“It was an interesting experience. The platform is useful and easy to use.”
“It was a pleasant experience that I would try again.”
“Great program, easy to use and simple. Maybe it would be better to not scroll down to the page bottom to view the exercise response.”
“I liked the platform functionally. Some points need a better design. The numbering 1/6 is placed on the bottom right, while personally I 

was looking for it between the navigation arrows where there is the exercise indication.”
“The platform seems pretty easy to use, however when I stood in front of the camera the system could not detect my face. I made several 

attempts, but only in 1-2 cases it detected me.”
“Letter “E” was not distinct enough as rendered in the fingerspelling signing section. The environment was very friendly. The time was 

not clear enough as it was confused with the number of exercises.”
“Fingerspelled letter “ Π ”  needs to be corrected. Exam time is too long. Reduce the exercises from 50 to 25 in the general perception 

exam.”
“I would like more colors in the main menu, where we select the sections. Also, when it shows me the correct or incorrect answer, I 

would like the box to turn green or yellow respectively.”
“Some videos play in low quality.”
““Numbers → Numbers 1–10.000 → Summarization”. It is not clear which button to click on. I would have liked exercise descriptions. 

Images accompanying the exercises are unnecessary. Numbers should be included in the “Thematic Vocabulary” menu tab.”
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need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.
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