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Abstract— The need for a robust visual SLAM system op-
erating in real human environments has led to the gradual
abandonment of the static world assumption and to the creation
of many dynamic SLAM algorithms. Even though there have
been many dynamic SLAM proposals, the vast majority of
them relied on point features. However, research in static
SLAM systems has demonstrated that the use of more complex
geometric shapes such as lines can improve performance.
Motivated by this we have created a new dynamic SLAM system
that estimates the camera poses and the motion of rigid objects,
by exploiting both static and dynamic points and lines. Line
segments have been incorporated in a novel way in every aspect
of our algorithm, by improving their correspondences through
optical flow refinement, and by introducing line error terms
in both camera and object motion, and in batch optimization.
Our proposal has been tested extensively in indoor and outdoor
datasets and has achieved significant improvement compared
to other state-of-the-art dynamic SLAM systems. Our results
demonstrated that line segments enhanced the robustness, thus
contributing towards a fully operational SLAM system.

Code is publicly available*.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is a
well-studied area of Robotics and Computer Vision, crucial
for many applications, including Augmented Reality, driver-
less cars, and house robots. SLAM aims to find the most
probable trajectory of a robot, building at the same time a
map of the environment. Map existence prevents accumu-
lation of pose drift caused by noisy sensor measurements,
while it also provides meaningful information about the
environment. Different sensors have been utilized to solve
this problem, such as cameras [1], in which case it is termed
as visual SLAM, IMUs [2] and LiDAR [3]. Advances in
camera technology and easier access to RGB-D cameras have
led to the development of many robust visual SLAM systems.

SLAM algorithms have diversified in many ways. For
example, various structural elements, such as sparse points
[4], [5], voxels [2], surfels [6] or other geometric entities like
lines and planes, are used for map representation. Likewise,
tracking in visual SLAM is performed either directly [7]
or by detecting features, like ORB [8] or more complex
geometric shapes such as lines [9], planes [10] or both [11].
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Fig. 1. Output of our system: Points and lines are tracked on both static
and dynamic objects. Features presented: static points (Red), static lines
(Blue), and dynamic lines (Green). Speed calculated from the estimated
motion of cars is shown.

Traditionally in SLAM research, the world was assumed to
be static and measurements on dynamic objects were handled
with generic outlier rejection techniques, such as RANSAC
[12], and robust loss functions, like the Huber loss function.
This approach, however, is error-prone in highly dynamic
environments, and due to the nonconvexity of the minimiza-
tion problem used in SLAM, persisting outlier observations
can prove detrimental to overall system accuracy. Therefore,
it becomes apparent that the development of robust dynamic
SLAM systems is vital for the operation of robots in real-
life environments, which are dominated by humans, cars, and
other moving objects.

Even though it has been proven that the use of more
complex geometric shapes such as lines increases the robust-
ness of SLAM [9], [13], especially in textureless and low-lit
areas, little research has been done on their use in dynamic
environments. Motivated by this and by the need for accurate
SLAM systems in human-centered environments, we propose
a SLAM system that tracks static and dynamic points and
lines to estimate camera positions and motion of dynamic
objects in the scene (see Fig. 1). Novelties are presented in
every aspect of our implementation and include the usage of
optical flow for richer line correspondences, the introduction
of line reprojection error terms for camera tracking and
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object motion estimation, with the concurrent optimization
of optical flow as a two-fold contribution, and, lastly, the
inclusion of lines in partial and global batch optimization.
Combining the advantages of dynamic and line SLAMs,
we developed a system that surpasses other state-of-the-art
systems and verified its performance on both outdoor driving
and dynamic indoor datasets.

II. RELATED WORK

Traditionally, points were the de facto features used in the
SLAM problem. PTAM [4] was such a system that divided
tracking and mapping tasks into two threads to ensure
real-time execution. ORB-SLAM2 [5] with the utilization
of ORB features and the use of a sparse pose graph for
Bundle Adjustment, achieved real-time performance, while
also providing robustness with the capability to close loops
and relocalize in cases of lost tracking.

However, points might provide insufficient correspon-
dences in some low-light or low-texture areas and sparse
point-based maps lack detailed information. On the contrary,
more complex geometry shapes, such as lines, are commonly
encountered and encapsulate more descriptive information
about the environment. This observation led to the rise
of many systems that utilized lines [9], [13], planes [10]
or both [11]. To avoid suboptimal solutions when using
these geometric entities in an optimization process, minimal
representations are used, such as the orthonormal represen-
tation [14] for lines in [15].

Dynamic SLAM systems can be divided into two cat-
egories. Systems in the first category detect dynamic ob-
jects in frames and remove them from tracking and opti-
mization procedures. DynaSLAM [16] leverages semantic
masks provided by Mask R-CNN [17] and reprojection error
checks to discard dynamic objects. In DS-SLAM [18] the
distance from epipolar lines is used in conjunction with
semantic segmentation to reject dynamic objects. StaticFu-
sion [6] performs a joint estimation of camera pose and
scene dynamicity, making use of a two-term energy error
function. According to the estimated dynamicity a weight is
attached to the observations, affecting their participation in
the optimization problem.

On the contrary, systems of the second category detect dy-
namic features and track them without discarding parts of the
frames, thus exploiting present information more efficiently
and bridging the problem of SLAM and Moving Object
Tracking. VDO-SLAM [19] utilizes semantic information
to distinguish dynamic objects from the static environment,
incorporates both in the SLAM framework, and calculates
egomotion and dynamic rigid objects’ independent move-
ment without prior knowledge of their geometric models.
DynaSLAM II [20] proposes a bundle adjustment problem
that includes both static and dynamic features, in addition
to providing and optimizing 3D bounding boxes of moving
objects. AirDOS [21] addresses nonrigid dynamic objects,
by including constraints in the motion of articulated objects.

In this paper, we propose a novel SLAM system of the
second category, which combines the advantages of dynamic
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Fig. 2. SDPL-SLAM (Static-Dynamic Point-Line SLAM) system
overview: Consists of three main components: pre-processing (Blue), track-
ing (Yellow), and batch optimization (Purple).

SLAM and the robustness of line SLAM systems, by tracking
points and lines on both static environment and dynamic rigid
objects, resulting in a highly accurate framework.

III. METHODOLOGY

The overview of our system can be seen in Fig. 2.
The system receives RGB-D images as input, which are
pre-processed to retrieve dense optical flow and semantic
segmentation. In the tracking stage, the camera pose is
calculated from the last frame using static point and line
observations. Once camera pose is obtained, dynamic objects
are tracked and their motion between two frames is retrieved.
In parallel, a local and a global map are maintained. For
every set number of time steps, a local batch optimization
is performed on the local map to refine the local trajectory,
whereas the global batch optimization is performed on the
global map to jointly refine the whole trajectory and map.

A. Notation

Coordinate systems are denoted by Ck and placed as
left superscripts for points and lines, excluding the global
reference frame 0 which is omitted where possible.

Points: The (in)homogeneous 3D coordinates of the ith

point at frame k, with respect to coordinate system Ck, are
denoted by CkMi

k ∈ P3 (and CkM̃i
k ∈ R3). Similarly,

2D coordinates with respect to coordinate frame Ik are
represented as mi

k ∈ P2 (and m̃i
k ∈ R2). We consider that

the last element of homogeneous coordinates is equal to 1.
Lines: A 3D line segment j at frame k can be represented

by its endpoints {CkAj
k,

CkBj
k}, while an infinite 2D line in

coordinate frame Ik is denoted by ljk. Plücker line coordi-
nates can be constructed as:

CkL j
k =

[
CkÃj

k × CkD̃j
k

CkD̃j
k

]
=

[
CkÑj

k
CkŨj

k

]
where CkD̃j

k is the directional unit vector of the line. It
can be observed that this is not the general definition of



Plücker coordinates, since we also impose the two constraints
||CkŨj

k|| = 1 and CkÑj
k · CkŨj

k = 0. These two constraints
reduce the Plücker coordinates degrees of freedom to four,
thus enabling a one-to-one transform to the orthonormal
representation. The orthonormal representation of the line
(U,W ) ∈ SO(3)×SO(2) can be calculated from the Plücker
coordinates as follows:

CkU j
k(θ) =

[
Ck Ñj

k

||Ck Ñj
k||

Ck Ũj
k

||Ck Ũj
k||

Ck Ñj
k×

Ck Ũj
k

||Ck Ñj
k×

Ck Ũj
k||

]
CkW j

k (θ) =

[
||CkÑj

k|| −||CkŨj
k||

||CkŨj
k|| ||CkÑj

k||

]
Matrix U is updated with θ and W with θ, as shown in [14].

Optical Flow: We define the vector that corresponds to
the movement of a pixel m̃i

k−1 from Ik−1 to Ik:

ϕi
k = m̃i

k − m̃i
k−1

Optical flows that correspond to a start or end point of a line
j from Ik−1 to Ik are ϕj,a

k and ϕj,b
k , respectively.

Transformations: A transformation matrix from frame k′

to k is denoted by k′
Xk ∈ SE(3): Ck′Mi

k = k′
Xk

CkMi
k.

The transformation matrix 0
k−1Hk ∈ SE(3) denotes a

motion for points on dynamic rigid objects from frame
k − 1 to k with respect to the global reference frame 0,
i.e. 0Mi

k = 0
k−1Hk

0Mi
k−1. A transformation (R, t) can be

applied to a line represented in Plücker coordinates with:

Tline =

[
R [t]×R

03×3 R

]
(1)

B. Line Correspondences and Camera Pose Estimation
Lines are detected using the Line Segment Detector [22].

Lines that have a depth discontinuity, or whose endpoints
belong to different semantic masks are culled.

Optical flow is employed to acquire line correspondences
in consecutive frames in the same way point correspondences
are found in [19]. This tackles a big problem often present
in line-based SLAM systems that use line descriptors, as
lines cannot be detected consistently between frames or
are detected with different lengths. In the first case, the
correspondent line is not found, while in the second one
descriptors might not match due to different line appearance.
Utilizing optical flow, we have achieved a higher number of
line matches between frames ensuring long line tracklets.

An initial camera pose is estimated with a Perspective-n-
Point algorithm in a RANSAC scheme, using only points that
do not belong to objects. To refine this estimate, we propose
a novel minimization problem, which concurrently optimizes
the camera pose and optical flow, improving the initial point
and line correspondences. Specifically, the following error
term is proposed:

ej,l = ej(
0Xk,ϕ

j,a
k ,ϕj,b

k ) =

[
lj,obsk · π(0X−1

k Aj
k−1)

lj,obsk · π(0X−1
k Bj

k−1)

]
(2)

where lj,obsk is the observed infinite line given by:

lj,obsk =

λ0

λ1

λ2

 =
aj,obsk × bj,obs

k

||aj,obsk × bj,obs
k ||

0Xk

ã
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Fig. 3. 3D illustration of the line reprojection error term: Line
endpoints Aj

k−1 and Bj
k−1 project onto coordinate frame Ik at the

endpoints π(0X−1
k Aj

k−1) and π(0X−1
k Bj

k−1) that define the reprojected
line segment. Optical flows (ϕj,a

k , ϕj,b
k ) and the endpoints of the line

segment at frame k − 1 (ãj
k−1, b̃j

k−1) are added together to retrieve the
observed endpoints of the corresponding line segment at frame k. Error
term (2) corresponds to the orange lines and represents the distances of the
reprojected line endpoints (Teal) from the corresponding observed infinite
line (Olive).

π(·) is the projective function returning a homogeneous
vector, ϕj,a

k and ϕj,b
k are the optical flows corresponding to

the start and end points of line j from coordinate frame Ik−1

to Ik and ãj,obsk = ãjk−1 + ϕj,a
k , b̃j,obs

k = b̃j
k−1 + ϕj,b

k the
endpoints of the observed line in the current frame. This error
term (2) consists of the stacked distances of the reprojected
endpoints of line j at frame k−1 from the line defined by the
observed corresponding endpoints at frame k (see Fig. 3).
If the solution of the minimization problem results in an
error term that exceeds a set threshold, the corresponding
line is considered an outlier and is removed. This error term
resembles that of [9], [13], however, in our proposal it is also
dependent on the optical flow and new Jacobians had to be
calculated (see Appendix).

The minimization problem, based on the reprojection
errors of points and lines, is thus the following:

{0X∗
k ,Φ

∗
k} = argmin

{0Xk,Φk}

np∑
i

{ρh(e
⊤
i,rΣ

−1
ϕ ei.r)+

ρh(e
⊤
i,pΣ

−1
p ei,p)}+

nl∑
j

{ρh(e
⊤
j,raΣ

−1
ϕ ej,ra)+

ρh(e
⊤
j,rbΣ

−1
ϕ ej,rb) + ρh(e

⊤
j,lΣ

−1
l ej,l)}

(3)

where “*” denotes the optimal solution, np and nl are the
number of static point and line correspondences, ei,p is the
well-known reprojection error term for points [5], [19], [21],
ei,r, ej,ra and ej,rb are regularization terms for the optical
flows that correspond to the points [19], and the start and
end points of lines, respectively, Σϕ is the covariance matrix
for the regularization error terms, and Σp and Σl are the
covariance matrices associated with the reprojection error



terms of points and lines, respectively. The set Φk contains
all optical flow vectors from coordinate frame Ik−1 to Ik
that correspond to the points and line endpoints participating
in the minimization problem. This problem is implemented
using the g2o library [23], and is solved with the iterative
Levenberg-Marquardt algorithm.

C. Object Tracking and Motion Estimation

After determining the camera pose, optical flow is em-
ployed to correlate semantic masks of the same objects
in consecutive frames. Subsequently, scene flow analysis
is utilized to separate dynamic objects from static ones.
Specifically, the estimated camera pose is used to align
corresponding observations of consecutive frames, hence
obtaining an approximation of point motions. Taking into
consideration that scene flow should be negligible for static
objects, those with a high number of points that do not meet
this requirement are deemed as dynamic.

Once the dynamic objects are identified, their motion is
estimated by slightly modifying the minimization problem
of the previous subsection with the introduction of a similar
error term to (2):

ej,l = ej(
0

k−1Gk,ϕ
j,a
k ,ϕj,b

k ) =

[
lj,obsk · π( 0

k−1GkA
j
k−1)

lj,obsk · π( 0
k−1GkB

j
k−1)

]
(4)

where the variable to be estimated is 0
k−1Gk

= 0X−1
k

0
k−1Hk

and, thus, the minimization problem maintains the form of
(3). It must be noted that even if a static object is initially
incorrectly labeled as dynamic, during this stage it will be
identified to have no relative motion and function as static.

D. Partial and Global Batch Optimization

A graph optimization formulation is proposed to jointly
refine the trajectory of the camera, the motion of dynamic
rigid objects, and the map which consists of points and lines
on both static and dynamic objects. This graph encapsulates
constraints on the variables to be estimated, in the form of
error terms, which participate in a nonlinear least square
problem, as in [23]. Specifically, two types of novel line
constraints are proposed, (i) 3D line measurement constraints
and (ii) constraints on the motion of lines that belong to
dynamic rigid objects. The rest of the constraints, created
by point and odometry observations, remain as in [19]. The
novel constraints (i) and (ii) are presented as orange and
magenta factors, respectively, in Fig. 4, which contains only
line observations. Line representations have to be minimal
in order to avoid numerical instability problems during
their optimization and extra computational costs caused by
extra degrees of freedom. Orthonormal representation [14] is
chosen as a minimal representation for 3D lines.

The 3D line measurement error is defined as:

ej,k(
0Xk,L

j
k ) =

[
||CkÃj,obs

k × CkŨj
k − CkÑj

k||
||CkB̃j,obs

k × CkŨj
k − CkÑj

k||

]
(5)
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Fig. 4. Factor graph representation for line landmarks: Showcases
only static and dynamic line features and the constraints imposed by them.
Translucent Circles: 3D static lines (Green), poses (Blue), 3D dynamic
lines (Red), object motion transform (Cyan). Opaque Circles: 3D line
measurement constraints (Orange), constraints on the motion of lines that
belong to dynamic objects d (Magenta), pose constraints (Black).

which represents the distances [25] of the observed 3D
endpoints CkAj,obs

k , CkBj,obs
k from the Plücker line j at

frame k.
The following two notes are considered necessary. For

static lines, subscript k of Plücker line elements CkŨj
k and

CkÑj
k is chosen as the first frame line j was observed,

whereas for dynamic lines it is actually the current frame
k. Secondly, Plücker coordinates are used in the error cal-
culation, however, the update parameters are calculated for
the orthonormal representation of the lines, as can be seen
in the calculation of the Jacobian with respect to the line
parameters ϑ = (θ, θ) (see Appendix).

The constraint of motion of a line j that belongs to a
dynamic rigid object d is divided into a distance and angular
cost and is defined as:

ej,d,k(L
j
k ,

0
k−1H

d
k ,L

j
k−1) =

[
dist(L j

k ,L
j,H
k )

1− Ũj
k·Ũ

j,H
k

||Ũj
k|| ||Ũj,H

k ||

]
(6)

where 0
k−1H

d
k is the line motion transformation matrix for

the object d. The superscript “H” on a line j at frame
k belonging to an object d is used to denote that it has
undergone a motion transformation 0

k−1H
d
k:

L j,H
k = 0

k−1H
d
kL j

k−1 =

[
Ñj,H

k

Ũj,H
k

]
Note that to simplify the notation for dynamic lines, we

imply that they belong to an object d. The function dist is
given by the formula for the distance of two Plücker lines:

dist(L j
k ,L

j,H
k ) =

|Ũj
k·Ñ

j,H
k +Ñj

k·Ũ
j,H
k |

||Ũj
k×Ũj,H

k ||
if Ũj

k × Ũj,H
k ̸= 0

||Ũj
k×(Ñj

k−Ñj,H
k /s)||

||Ũj
k||2

if Ũj,H
k = sŨj

k for some s ̸= 0

The Jacobians of (6) are discussed in the Appendix.



TABLE I
KITTI Raw Dataset results (Et[m] and ER[deg]). “–” = Result not reported in [20], “-” = Ground truth missing from [24]. *FO = Flow Optimization.

Average Length of DynaSLAM II VDO-SLAM Ours (w. FO*) Ours (wo. FO*)
Sequence Static Line Tracklets Camera Camera Objects Camera Objects Camera Objects

w. FO* wo. FO* Et ER Et ER Et ER Et ER Et ER Et ER Et ER

0926-0001 5.1 3.1 – – 0.051 0.056 0.410 0.439 0.050 0.056 0.353 0.423 0.051 0.056 0.450 0.426
0926-0002 5.1 3.0 – – 0.061 0.067 0.178 1.528 0.055 0.066 0.490 0.674 0.055 0.066 0.425 1.142
0926-0005 6.2 3.0 – – 0.059 0.083 0.378 1.988 0.051 0.071 0.462 1.799 0.054 0.071 0.264 1.878
0926-0009 5.6 3.1 1.870 0.573 0.110 0.065 0.217 0.188 0.095 0.066 0.211 0.165 0.101 0.060 0.211 0.164
0926-0011 8.0 3.1 – – 0.043 0.057 0.623 1.169 0.034 0.057 0.265 0.325 0.037 0.057 0.593 0.816
0926-0013 4.6 3.2 0.930 0.000 0.076 0.059 0.139 0.390 0.074 0.058 1.465 0.355 0.079 0.058 1.465 0.369
0926-0014 4.8 3.3 1.350 0.573 0.108 0.070 0.988 2.853 0.110 0.069 0.811 3.060 0.110 0.069 0.811 3.229
0926-0051 8.3 3.1 1.140 0.000 0.065 0.058 1.067 1.029 0.061 0.058 0.644 0.415 0.072 0.059 0.644 0.416
0926-0091 6.1 3.1 – – 0.069 0.063 - - 0.066 0.062 - - 0.067 0.062 - -
0926-0093 6.7 3.0 – – 2.295 0.085 0.869 1.207 2.284 0.084 0.669 0.391 2.285 0.083 0.672 0.393
0926-0101 5.2 3.3 15.020 2.292 0.570 0.072 - - 0.585 0.073 - - 0.647 0.078 - -
0926-0106 6.9 3.0 – – 0.047 0.062 - - 0.039 0.058 - - 0.033 0.057 - -
0929-0004 5.4 3.1 1.410 0.573 0.071 0.058 - - 0.065 0.057 - - 0.062 0.057 - -

IV. EXPERIMENTAL EVALUATION

To verify the performance of our proposed system we
tested both outdoor and indoor scenarios. Specifically, the
two following datasets were used: (i) KITTI Raw Dataset
[24] and (ii) the Oxford Multimotion Dataset (OMD) [26].
In the results, we report and compare the accuracy of
both the camera’s egomotion and all dynamic rigid objects’
poses. Adding line segments naturally increases computa-
tional complexity compared to VDO-SLAM, but our system
still achieves close to real-time performance.

A. Preprocessing

For the semantic segmentation in KITTI Raw Dataset, an
implementation of Mask R-CNN with pre-trained weights for
MS COCO is used. For the OMD dataset, a simple color-
based HSV segmentation method implemented by us is used,
followed by morphological filtering for refinement.

The dense optical flow is retrieved by the PyTorch version
of PWC-Net model without fine-tuning the weights [27],
[28].

B. Error Metrics

To compare our results directly with VDO-SLAM, the
error metric provided in their paper and implementation is
used [19]. For each frame, the error is defined as E = T̂−1T ,
where T̂ is the estimated motion transform for either the
camera or an object and T is the corresponding ground truth
motion. The translational error Et is the L2 norm of the
translational part of E, while ER is the rotation angle in an
axis-angle representation of the rotational component of E.

C. KITTI Raw Dataset

The KITTI Raw Dataset consists of many sequences in
real outdoor driving environments with given ground truth
camera and object poses. To test our system in a variety of
environments, a set of 13 sequences with different levels
of dynamicity and geometric presence were chosen. The
results of our proposed system are presented in Table I. We
compare the effectiveness of our system, which enhances
the point-only approach of VDO-SLAM by incorporating

line segments, against VDO-SLAM itself and the reported
results of DynaSLAM II [20], which are both considered
state-of-the-art dynamic SLAM systems.

Regarding the camera’s egomotion, our implementation
outperforms the other two systems in almost all sequences in
Et, while it is on par or better in ER. DynaSLAM II seems to
achieve a lower rotational error in two sequences, however,
it must be noted that its authors provided these results in
radians, resulting in a loss of decimal accuracy when they
are transformed into degrees.

To conduct a more comprehensive analysis, we have
incorporated in our table of results a metric corresponding to
the average number of frames static lines are tracked in. Our
system demonstrates the most significant improvement in
sequences 0926-(0009, 0011, 0093, 0005, 0106), which have,
except 0926-0011, a strong presence of nearby buildings pro-
viding a lot of high-quality line segments for detection. This
translates directly to higher values in the aforementioned
metric, underscoring the importance of high-quality lines that
provide consistent tracking. Interestingly, the significantly
improved performance in sequence 0926-0011 is justified,
despite the absence of nearby buildings, through the exhibi-
tion of one of the highest metric values (8.0). Conversely,
our system underperforms slightly in sequences 0926-0014
and 0926-0101, which are characterized by open spaces and
lack of buildings. Line features are mostly detected on the
road and on tree leaves that are located far from the camera,
thus causing a degradation in the results. This is reflected in
the metric values of these sequences, with their average static
line tracklet length (4.8 and 5.2) being significantly below
the overall average (6), highlighting the correlation between
low-quality line features and reduced accuracy.

Regarding the tracking accuracy of dynamic objects, the
inclusion of lines enhances the results in the majority of
sequences tested, which may be attributed to most dynamic
objects being automobiles that provide a lot of line segments
for detection in parts such as windows and license plates.
The only sequences in which our implementation does not
improve are 0926-(0002, 0005, 0013). A detailed qualitative
analysis revealed, that in two of these (0926-0002, 0926-



TABLE II
OMD results (Et[m] and ER[deg]).

VDO-SLAM Ours
Et ER Et ER

Full Sequence: Camera 0.038 0.578 0.022 0.507
Full Sequence: Box Mean 0.032 1.286 0.029 1.231

500 frames: Camera 0.017 0.466 0.014 0.453
500 frames: Top Right 0.033 1.369 0.032 1.367
500 frames: Bottom Right 0.030 1.166 0.029 1.164
500 frames: Top Left 0.036 1.494 0.031 1.452
500 frames: Bottom Left 0.027 1.601 0.027 1.605
500 frames: Box Mean 0.032 1.407 0.030 1.397

0005), the majority of the dynamic objects detected and
tracked are moving bikes with humans, which do not follow
the underlying rigidity assumption. Therefore, lines inside
the bicycle wheels or lines at the feet of the cyclists con-
tribute to the deterioration of the results in these two cases.
However, it must be highlighted that even in these, the object
ER is improved greatly.

Finally, to assess the impact of optical flow optimization
on system accuracy, we have conducted an ablation study
(see last column of Table I) through modifications in (2)
and (4), by excluding the optical flow dependence from the
error terms. This resulted in less consistent line segment
matches, with a clear decrease in the average length of static
line tracklets and a performance deterioration in both camera
Et and object ER metrics. The fact that sequences 0926-
0002 and 0926-0005 perform worse in object pose accuracy
when the flow is concurrently optimized, actually supports
the findings of the previous paragraph, since more line
correspondences in nonrigid objects are retained, therefore
magnifying the problem.

D. Oxford Multimotion Dataset

The Oxford Multimotion Dataset consists of frame se-
quences captured in an indoor environment with moving toy
cars or levitating cubes. This dataset is characterized by a
strong geometric structure, as both the static environment
and the moving cubes provide many quality line segments for
detection; an ideal scenario to showcase the effect of lines.
System performance is evaluated exclusively in the swinging
box sequence, and specifically in the unconstrained camera
movement case, a challenging realistic scenario. We tested
our system both in the initial 500 frames for comparison
with [19], as well as in the entirety of frames to evaluate our
system’s robustness in a long-running sequence.

As shown in Table II, our system outperforms VDO-
SLAM both in egomotion and four moving boxes’ pose
accuracy, which is a natural outcome considering that the
test is run indoors and dynamic objects in the sequence are
cubes. Namely, in the full sequence (and in the first 500
frames), a ∼42% (∼18%) and ∼12% (∼2.8%) improvement
is achieved in camera Et and ER, respectively, compared to
VDO-SLAM. Furthermore, the inclusion of lines enhanced
the accuracy of the moving boxes’ pose estimation in the

full sequence and had marginal improvements in the first
500 frames, reducing their average Et by ∼9.4% (∼6.3%)
and ER by ∼4.3% (∼0.7%).

E. Result Summary

We demonstrated that the inclusion of lines resulted in
an enhancement to overall performance, on both egomotion
and dynamic object tracking, in outdoor driving (Table I)
and indoor (Table II) scenarios. Additionally, we introduced
the average length of static line tracklets, which quantifies
the quality and robustness of line segments. A thorough
analysis verified a high correlation between this metric and
the improvement in accuracy of our implementation com-
pared to the other state-of-the-art systems. The utilization of
optical flow for line matching provides better and more line
correspondences, resulting in long-lasting and consistent line
tracklets, a benefit that was proved to be further amplified
by the concurrent optimization of optical flow in the tracking
stage.

V. CONCLUSIONS

In this work, we have presented a novel SLAM system,
which exploits line features detected on both static and
dynamic objects, in order to estimate camera trajectory and
object motions. We have demonstrated our contributions
with novel optimization formulations, which employed line
observations to refine camera tracking, dynamic object tra-
jectories, and static and dynamic feature positions in the map.
Our experimental evaluation showed that leveraging the line
structure of the environment resulted in an overall increase
in the accuracy and robustness of the SLAM algorithm com-
pared to other state-of-the-art point-based dynamic systems.
In future work, we seek to address the existence of humans
who significantly contribute to nonrigidity within dynamic
environments, by extending our implementation to handle
the independent movements of their linear skeleton parts.

APPENDIX

Jacobian of the Line Reprojection Error Term

The Jacobian of Eq. (2) with respect to the optical flow
of the start point (similarly for the end point) is:

∂ej,l

∂ϕj,a
k

= π(0X−1
k Aj

k−1)
⊤ ∂lj,obsk

∂ϕj,a
k

where ∂lj,obsk

∂ϕj,a
k

is calculated analytically with a symbolic
language, and with respect to the pose parameters Ξk is:
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The Jacobians

∂π(0Xk,A
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k−1)

∂Ξk
and

∂π(0Xk,B
j
k−1)

∂Ξk
can be found

in [15], [29], in which the reader may gain a deeper insight
into the mathematical background.



Jacobian of 3D Line Measurement Errors

The Jacobian of Eq. (5) with respect to orthonormal line
parameters ϑj

k of L j
k can be broken down via chain rule:
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The first factor can be calculated analytically, the second
factor is equal to a transform (see Eq. (1)) that converts the
Plücker line from the local coordinate system of frame k to
the global reference frame, and the third factor is known [15].

Jacobians of Motion of Lines Errors

The Jacobian of Eq. (6) with respect to ϑj
k is computed

as:
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The calculation of the first factor, apart from the fact that dist
is a piecewise function, is quite straightforward and is con-
ducted by differentiating with respect to Plücker elements.

The Jacobian with respect to parameters ϑj
k−1 can also be

broken down into simpler factors:
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Finally, the Jacobian with respect to pose parameters Ξd
k

of 0
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k can be broken down into the following factors:
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