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Abstract. The fresh food industry significantly depends on manual
labor, which can make up to 40% of total production costs. Until now,
implementing safe robotic automation for gently harvesting fresh produce
has been difficult due to the complex and delicate nature of these tasks.
The EU-funded SoftGrip Project aims to revolutionize the fresh food sec-
tor with technological advancements. By integrating artificial intelligence
(AI) and robotic automation, it is possible to achieve gentle harvesting,
enhance productivity, and lower labor costs for small and medium-sized
European mushroom farms. The innovative smart soft gripper, designed
to learn skills from expert harvesters through imitation learning, seeks to
provide an economically feasible, scalable, and environmentally friendly
solution, transforming the mushroom cultivation industry and the wider
fruit market.
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1 Motivation and Background

Robotic systems delicately handling items can be applied across various produc-
tion sectors, offering substantial economic advantages. For example, deploying
robots to manage pressure-sensitive products in the agri-food industry can lower
labor expenses, enhance productivity, and improve working conditions [1]. In
particular, the mushroom industry is particularly experiencing increasing pres-
sure due to high labor costs, which can make up 40% of the total production
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expenses [2]. The white button mushroom (Agaricus bisporus) is the fifth most
widely cultivated mushroom globally, comprising 11–15% of worldwide produc-
tion, amounting to 4.4–4.7 million tonnes between 2013 and 2018–19 [3]. In
Europe, A. bisporus production in 2020 was 1.24 million tonnes of which approx
65% was harvested by hand for the fresh market and 35% for the processed
market [4]. While mushrooms can be mechanically harvested and processed for
canning and freezing, more advanced automation is needed for picking and pro-
cessing mushrooms for the fresh market due to stringent quality standards.
Harvesting fresh mushrooms is a demanding task that requires the dexterity,
precision, and sensitivity of human hands to avoid damaging the mushrooms.
The conditions for harvesting can be challenging, often involving work in con-
fined spaces with high humidity, and these conditions can vary significantly from
one country to another. Despite some recent innovations, finding and retaining
labor for this demanding work has remained a significant challenge in Europe
and globally in recent years. As a result, the horticulture sector is increasingly
turning to automation and robotics to address labor shortages. The EU-funded
SoftGrip project, with its innovative approach to mushroom harvesting, offers a
reassuring solution to this pressing issue. Robotic harvesting systems for fresh
mushrooms have been developed in the past; however, none have yet met the
precise quality requirements of the market. Mushrooms have delicate structures
that are easily damaged or bruised by external forces. Conventional gripper
designs often struggle with this delicacy and face challenges due to the high
variability in orientation and attachment strength. Bruising and discoloration
of mushrooms can happen at multiple stages throughout the crop and supply
chain. Conventional rigid end-effectors are not well-suited for handling delicate
organic objects in dense environments, as they often damage both the target
mushroom and those nearby. Moreover, rigid end-effectors need high-resolution
position and force sensors and precise transmission systems to prevent harm to
the fragile mushrooms [5]. Previous efforts to replace rigid end-effectors with
robotic vacuum end-effectors [6] have shown only partial success. The primary
issue is that the gripping forces applied by suction cups can still be too strong
because of their limited contact area. Given the high variability in size, orien-
tation, and cluster density, improving traditional suction cup designs is unlikely
to prevent damage to mushrooms completely.

2 Objectives

To address the challenges associated with gently grasping delicate items, the
EU-funded SoftGrip project suggests using soft robotic structures made from
food-safe and recyclable elastomeric materials. The mechanical compliance of
these structures is a crucial benefit, as they can passively adapt and mold
around the object, thereby distributing contact forces more evenly and mini-
mizing damage [5]. Finger-based soft grippers, which mimic the high dexterity
of the human hand by allowing significant joint deformations and a broad range
of motion, have proven effective for harvesting vegetables and fruits [5]. The
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Fig. 1. Soft robotic platform installed at the level of cultivation shelves

SoftGrip project enhances these grippers with advanced modeling algorithms
to improve real-time control and learning capabilities. Additionally, SoftGrip is
developing a learning-by-demonstration framework that enables robots to learn
mushroom-picking techniques from human workers, potentially applying these
skills to similar tasks. This approach ensures safe and precise handling of delicate
and high-value agri-food products.

3 Soft Robotic Platform Overview

3.1 Architecture

The overall architecture of the SoftGrip system is depicted in Fig. 1. The robot
comprises two devices: (1) a Cartesian robot mounted over the shelve that moves
in the x-y-z axis and (2) the soft gripper which is attached to the end-effector
of the Cartesian robot and faces the mushroom cultivation. The Cartesian with
the gripper will be installed over the cultivation and will be able to reach any
position in the workspace. A central computer hosts the SoftGrip supervision
module, which generates the sequence of grasping tasks and supervises their
execution. The input to the supervision system is the estimation of mushroom
size, position, and orientation. This estimation is generated by the vision mod-
ule, which processes the information captured by low-cost environment cameras
installed on the shelves. The supervisor generates a sequence of grasping tasks,
which is fed to the grasp planner module, which in turn computes the trajectories
of the robot and the grasping primitives of the soft-gripper. Then, the low-level
closed-loop controllers generate the actuation commands, which are fed to the
drivers of the robotic devices to execute the grasping primitives. The commands
are adjusted based on feedback signals generated by the sensors, both proprio-
ceptive and exteroceptive, embedded into the soft gripper and the encoders of
the Cartesian robot actuators.
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3.2 Grasping Control Strategy for Outrooting

The grasping strategy is outlined through the following sequence of steps:

1. Mushroom detection, identification, part segmentation (stem, cap), localiza-
tion, and pose estimation of the cap. The information on position, orientation,
and characteristic lengths of the cap of the mushroom is sent to the grasp
planner.

2. The Cartesian robot positions itself above the mushroom target. The soft
gripper assumes the angle of attack of the mushroom, i.e., its orientation is
aligned with the orientation of the axis of the cap.

3. The fingers of the gripper are preshaped to fit the cap. The Cartesian robot
moves in x-y-z until the mushroom cap is within the grasping space of the
gripper. Closure of the preshaped fingers is actuated to grasp the mushroom
cap.

4. The soft gripper is driven along a small curve in space to provide a combina-
tion of bending and twisting. The set of predefined movements may depend
on the specific mushroom, indeed some adjustment may be required to adapt
the current strategy to induce a final result that a portion of the roots is
broken while the cap and the stem remain connected.

5. The soft gripper applies a small torsion on the cap and stem. This torsion
results in the transfer of the tensile forces (generated in the previous step) to
the rest of the roots and breaks them. Hence, the mushroom is outrooted.

6. The Cartesian robot executes a fast transfer of the mushroom in the allo-
cated bin. The gripper releases the mushroom in the bin and returns to the
workspace. The steps are repeated for the next mushrooms to be picked.

3.3 Skill Transfer Through Imitation Learning Framework

The complexity of mushroom picking, as demonstrated by the fact that it takes
about 12 weeks for an adult human to master makes it impossible to pre-program
grasping and force control strategies that can carry out the task reliably. This
challenge is common in various other tasks involving the handling of delicate
deformable objects. Thus, within SoftGrip, we aim to develop a learning-by-
demonstration framework that will allow the robot to capture the mushroom-
picking skill in a way that is extensible to other similar tasks. The control layer
will be able to cope with the variations presented in the environment or even in
the object’s configuration, reinforcing the adaptability and improving the learn-
ing speed of our implementation. It will be based on the concept of probabilistic
movement primitives, which constitutes a probabilistic framework that allows
the exploitation of the properties of trajectory distributions for representing and
learning movement primitives.

4 Conclusion and Perspectives

The Robotics 2020 Strategic Research Agenda by the European Commission
underscores the strategic importance of Europe’s robotics market. SoftGrip’s
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introduction of a soft robotic system to automate mushroom harvesting is a
crucial step in enhancing Europe’s AI and Robotics capabilities. This innovation
represents a shift in the industrial use of soft robotics, positioning Europe as a
leader in this promising field with wide-ranging industry applications. Focusing
on agriculture, SoftGrip addresses critical challenges in this sector through a soft
robotic platform that performs sensitive tasks with a learn-by-demonstration
method. This approach will accelerate robotic adoption in mushroom picking
and similar sectors, marking a new era in robotic automation in the agriculture
and food industries.

Acknowledgement. The authors thank all the members of the SoftGrip consortium
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Horizon 2020 through the SoftGrip project (contract 101017054).
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