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Abstract
Navigating indoor environments poses significant challenges for in-
dividuals with mobility and cognitive impairments, impacting their
independence and quality of life.While robotic rollators have shown
potential in providing mobility assistance, existing systems often
rely on static navigation approaches that lack a capacity to dynam-
ically adapt to path changes and unforeseen deviations. This paper
addresses this gap by introducing a dynamic turn-by-turn naviga-
tion system designed to provide real-time, user-centered guidance.
The system aims to enhance spatial orientation and wayfinding
through online dynamic planning, addressing critical limitations
of current solutions. We present results from user trials in a simu-
lated environment, which show its potential to improve mobility.
Possible areas of improvement are also discussed, paving the way
for more effective assistive technologies in real-world settings.

CCS Concepts
• Human-centered computing→ Auditory feedback; Natu-
ral language interfaces; • Computer systems organization →
Robotics.
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1 Introduction
Navigating indoor environments can present a significant challenge
for individuals with mobility and cognitive impairments, particu-
larly in unfamiliar or complex spaces such as hospitals, malls, or
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care facilities. Effective navigation relies on maintaining a coherent
sense of spatial orientation along with localizing one’s self with
respect to the surroundings and constructing a mental map of the
premises. However, navigational skills tend to diminish with age
[10], a decline exacerbated by cognitive impairments prevalent in
geriatric populations, which affect a significant portion of patients
in nursing homes, rehabilitation centers, and acute care hospitals
[5, 11].

Difficulties in spatial orientation and navigation, often observed
in both familiar and unfamiliar environments, are among the earli-
est indicators of dementia [2, 3]. The loss of these essential skills can
have profound consequences, including reduced mobility, auton-
omy, and independence [1]. Robotic rollators are being increasingly
investigated as a tool to assist patients with everyday task, offering
various services such as proactive support, navigational assistance,
internet connectivity and more. Incorporating smart functionalities
to support spatial orientation and wayfinding could offer signifi-
cant benefits, particularly for frail older adults facing navigation
difficulties.

In this paper we present a turn-by-turn (TbT) navigation func-
tionality for a robotic rollator to assist the users navigate indoor
environments and guide them to the desired location using au-
dio commands. The algorithm uses a pre-built known map of the
premises and estimates the robot’s location using localization tech-
niques, fusing odometric and distance information from a Light
Detection and Range (LIDAR) sensor. It continuously monitors the
robot’s surrounding constructing an obstacle map, computes safe
directions of motion using the Dynamic Window Arc-Line (DWAL)
local planner [7] and uses Dijkstra’s algorithm for the overall path
to the goal position, issuing appropriate motion commands to the
user.

The functionality has been tested in a realistic virtual environ-
ment depicting a hospital floor. We have constructed a virtual rep-
resentation of the rollator, being guided by the user who sees the
world from a first person point-of-view. We conducted a series of
randomized experiments with real users to assess the effect of the
TbT navigational assistance on the way-finding performance of the
users. The results are presented and discussed in the following.

This work comes as a follow-up to a string of papers presented by
the authors [6, 9] describing a similar TbT functionality in robotic
rollators. The assisted navigation in that work used a predefined
set of guard point on the map, comprising fixed routes. When the
user entered a guard point, essentially a circle of a given radius, the
rollator voiced a predefined turning command. This setup limited
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the applicability of the TbT algorithm since the routes had to be de-
fined a priori and did not allow for any flexibility during navigation.
Our current work removes such limitations as it is purely dynamic,
without preset routes and accommodates the current position of
the user by on-line planning a safe route to the desired goal.

2 Methods
2.1 System Overview
As already mentioned, our algorithm considers navigation in an
indoor environment with a known map. The robot is equipped with
a LiDaR sensor, which scans the surrounding environment, as well
as wheel encoders which measure the distance traveled by the robot.
The evolution of the robot’s pose from its initial starting position,
i.e. the odometric information, is estimated using dead reckoning.
This involves the incremental integration of the differential wheel
motion over time. The estimation of the robot’s pose on the map,
the so-called localization problem, is computed online using the
Adaptive Monte Carlo Localization (AMCL) method [8]. AMCL is a
widely used probabilistic algorithm that employs a particle filter to
estimate the robot’s pose by fusing information from the odometry
and the laser scanner.

During navigation, the user’s position and the goal point they
want to reach are always known. A global planner running at 10Hz,
computes the path from the user to the goal point using Dijkstra’s
algorithm. To account for the local changes in the environment
and also provide general “directions of motion”, the DWAL local
planner is deployed. DWAL creates a local representation of the
obstacles around the robot crafting a 2D costamp from the LIDAR’s
readings. This results in an occupancy grid where each cell’s value
represents the cost of traversing through it. It is based on the well
knowDynamicWindowApproach [4] but instead of projecting arcs
ahead, it uses a combination of arcs and lines. These are checked
for collision up to a circle of set radius ahead, the so-called “level”.
The DWAL produces clusters of motion which are kinodynamically
feasible and safe.

Based on the intersection of the global path and the motion
clusters produced by DWAL, an appropriate turning command is
issued. The general architecture of our system can be seen in Fig.1.

We use three Levels for the DWAL, set at different distances
ahead; the “near” level (R=1.25 m), the “‘mid” level (R=2.5 m) and
the “far” level (R=4.0 m), as seen in Fig. 2. We also use a fourth back
up level at R=1.0 m in the case where the first three are “OFF”. These
levels produce a respective turning command based on their level
architecture. The commands are lexical tokens from a command vo-
cabulary {“continue straight”, “turn right”, “turn left”, “turn around”,
“You have arrived at your destination”}. Using a simple First-past-
the-post voting process, we produce a candidate command. If the
voting is a draw, then the candidate command occurs from the level
that is further away from the robot. If all the levels are “OFF”, then
the “Back up” level command will be considered.

To compute the final user command, we introduce the Command
Scheduler, which is responsible for determining which command
should be delivered to the user and when it should be played. The
primary principle guiding this process is that a new command
should only be issued if a significant change has occurred, such as
a turn, or if a substantial amount of time has passed. This approach

ensures the user receives timely confirmations about their direction
and avoids confusion through appropriate reminders.

To achieve this, the Command Scheduler maintains a buffer of
the last command issued to the user along with the timestamp of
its delivery. When a new candidate command is generated, the
scheduler evaluates its necessity based on the following criteria:
• Repetition of the Same Command: If the candidate command
matches the previous user command, the scheduler activates a
timer starting from the last issued command. If this timer reaches 10
seconds, the command is repeated to reinforce the user’s navigation
instructions and maintain clarity.
• Change in Command: If the candidate command differs from the
previous user command, the scheduler checks whether at least 2
seconds have elapsed since the last command. If this condition is
met, the new candidate command is issued to the user. This delay
prevents overwhelming the user with consecutive commands and
acts as a filtering mechanism to ignore transient or random events
that may not warrant a command.

The scheduler logic can be represented by the pseudocode in
Algorithm 1.

Algorithm 1 Command Scheduler
1: Given:
2: User Command 𝐶𝑢 (𝑇 − 1) at time T-1
3: User Command 𝐶𝑢 (𝑇 ) at time T
4: Candidate Command 𝐶𝑐 (𝑇 ) at time T
5: Time 𝑇𝑐𝑚𝑑 elapsed since last issued user command
6: Command-Repeat time threshold 𝑇𝑟 = 10𝑠𝑒𝑐
7: Command-Update time threshold 𝑇𝑢 = 2𝑠𝑒𝑐
8: Do:
9: if 𝐶𝑐 (𝑇 ) = 𝐶𝑢 (𝑇 − 1) then ⊲ same command arrives
10: 𝐶𝑢 (𝑇 ) ← 𝐶𝑐 (𝑇 )
11: if 𝑇𝑐𝑚𝑑 > 𝑇𝑟 then
12: 𝑇𝑐𝑚𝑑 ← 0
13: play audio of 𝐶𝑢 (𝑇 )
14: else
15: wait for next command
16: end if
17: else ⊲ new command arrives
18: if 𝑇𝑐𝑚𝑑 > 𝑇𝑢 then
19: 𝐶𝑢 (𝑇 ) ← 𝐶𝑐 (𝑇 )
20: 𝑇𝑐𝑚𝑑 ← 0
21: play audio of 𝐶𝑢 (𝑇 )
22: else
23: discard 𝐶𝑐 (𝑇 )
24: end if
25: end if

The use of timers in the scheduling process serves two purposes:
avoiding excessive or rapid command delivery and providing a
de-noising effect. Considering the slower walking speed of elderly
users, the 2-second delay ensures commands are deliberate and
contextually relevant. Whenever the Command Scheduler decides
to issue a command, it interfaces with an appropriate module which
which is responsible for playing the corresponding .wav audio file.
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Figure 1: General overview of the Turn-by-Turn navigation algorithm.

2.2 Level Commands
Each DWAL level produces a turning command which is introduced
to the voting process as a possible candidate command. To calculate
this turning command we compute the intersection of the global
pathwith the front of the available level clusters (essentiallywith the
cluster arcs on the level’s circumference). Since the DWAL clusters
signify feasible, and safe, directions of motion, this ensures that
the turning command points the user to a, similarly, safe direction.
If the global path does not intersect any clusters or no available
clusters exist, then this level is considered “OFF”.

Technically, since both the global path and the cluster arcs consist
of a sequence of 2D points, there intersection is computed iteratively
by considering their Euclidean distance. If this distance is below a
preset, small, threshold, then we mark the corresponding cluster
point as the intersection point.

To create a prompt that is understandable by the user, the in-
tersection point is translated to a lexical command selected from
the vocabulary. This is performed by observing the central angle
of the ray to the intersection point and theX-axis (see Fig. 2-Right).
Depending on the specific intervals the angle falls in, it is assigned
to a corresponding command. Note that these intervals are different
for each level since the sense of what is considered “left”, “straight”
or “right” depends on the distance. The intervals used in this work
are given below:

Table 1: Intersection angle 𝜙 to lexical command

Level Straight Left (Right) Turn Around

Far {−22◦, 22◦} −(+){22◦, 135◦} {−135◦, 135◦}
Mid {−28◦, 28◦} −(+){28◦, 135◦} {−135◦, 135◦}
Near {−33◦, 33◦} −(+){33◦, 135◦} {−135◦, 135◦}

Backup {−18◦, 18◦} −(+){18◦, 120◦} {−120◦, 120◦}

The lexical level commands are produced at a rate of 10Hz. Since
the geometry of the clusters is dependent on the configuration of
the surrounding space, as the user walks through the premises, the
intersection point can present frequent switching. To prevent his
behavior and produce a stable outcomes, we feed the commands
to a persistence filter. This is essentially a queue of 15 places. Each
command is pushed to the top, discarding the oldest one at the
bottom. A stable level command is produced only if the last (oldest)

10 commands in the queue are identical. Otherwise the level is
considered OFF.

The introduction of three different levels, each some distance
ahead from the other, ensures that the required direction of motion
presents spatial persistency and is not sensitive to fast or frequent
switching. For example, in the turn depicted in Fig. 2, the intersec-
tion of the global path with “Far” level implies a turn to the right;
however the “Mid” and “Near” levels might suggest a further move-
ment ahead, before turning. This anticipatory behavior is served
by the use of multiple levels.

In the case where all levels are OFF, the system falls back to the
“Backup Level”. This is a simplified level without clusters, which
is very close to the user (R=1 m). Its utility is to produce a motion
command to allow the user to re-orient and face towards open
space, where the other levels can produce directions of motion.
This behavior has been experimentally observed in cases where the
user is very close to obstacles (walls, furniture etc) and the “backup
level” instructs them to turn around. Since no clusters exist, the
intersection point with the path is calculated with the level’s front.

2.3 Simulation Environment
To perform the experimental evaluation of our algorithm, we used
an open source Gazebo simulated Hospital World developed by
Amazon Web Service Robomaker 1. The creation of the world’s
ROS map was achieved via a Gazebo plugin (ros 2Dmap), which can
automatically generate a 2D occupancy grid map from a Gazebo
3D simulated world. To emulate the rollator, the geometry of the
MOBOT rollator [7] was imported and augmented with differen-
tial drive kinematics. The users had control over the linear and
angular velocities of the robot through the keyboard, via a custom
teleoperation node.

Our goal was to have a complete simulation of the human capa-
bilities and thus a camera node was added to emulate the human
point of view. The camera was attached to a fixed distance above
the robot, matching the position of the user’s head in the virtual
environment. It allowed two rotational degrees of freedom; pitch
and yaw. The user could control the camera with the mouse while
the image was streamed to a window via a ROS topic, encoded with
the ‘theora” codec. Damping and friction were also added to all
robot joints to make the simulation more stable and realistic.

1https://github.com/aws-robotics/aws-robomaker-hospital-world
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Figure 2: LEFT: Snapshot of the DWAL planner in action. The four levels (“Far”, “Mid”, “Near”, “Backup”) can be seen. The
motion clusters are arc-line paths which start from the robot and reach the level front, grouped in similar color. The intersection
point with the global path for each level is also depicted. RIGHT: Translation of the intersection point to lexical command.

3 Simulation Experiments
3.1 Experimental Setup
During the experimental session, each user was seated in front of
a monitor which streamed the virtual simulation of the hospital
environment from the Gazebo simulator. The user controlled the
motion of the rollator via keyboard, and the virtual head POV with
the mouse. In total, 6 users were used for the algorithm evaluation.
Each one ran 6 trials, amounting to a total of 6 × 6 = 36 trials for
all users.

For the experiments, we defined three pairs of starting and ending
positions (called points “A” and “B” resp.) on the hospital map. The
tasks of the user was to navigate to the goal point (point B”) while
starting from the initial point “A”, following the audio commands
of our TbT navigation algorithm. When the user approached the
ending position, an appropriate audio message was heard (“you
have reached your destination”), marking the completion of the
trial. Each pair appeared twice during the session, while the trial
sequence was randomly generated and not known to the user.

Before starting the trials, each user was given 5 minutes to drive
the robot around the world to get familiar with the controls. Each
trial was recorded with ROS in bag files and the results were ana-
lyzed in post processing. The users were 3 males and 3 females with
their age ranging from 22 to 67 years old. Each pair corresponded to
a plausible real-life scenario in the hospital e.g. go from the bed in
the hospital ward to the floor kitchen. This semantic interpretation
was unknown to the user. Thus, during the trials the users did not
know for example that they were searching for a kitchen. The three
pairs are described in the following list:

• Pair 1: User should go from the hospital’s reception to their
room and find their bed.
• Pair 2: User should go from their bed to the kitchen room
• Pair 3: User should go from their bed to floor’s reception

Figure 3: Top-down view of the virtual hospital floor envi-
ronment.

To assess the performance of the TbT algorithm, we calculated
the outcome measures described in Table 2, also used in similar
studies [6, 9]. The results are presented in the following section.

3.2 Results
To calculate the outcome measures, we extracted the path each user
traversed during each trial. This is essentially the positions of the
user/robot pair on the map, as given by the localization algorithm.
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Table 2: Description of the Outcome Measures of the experimental evaluation

Outcome measure Details

Path Completion Time - T (sec) The time each user takes to go from the starting position to the ending position
Number of Stops - K The number of the time intervals where the user has a velocity less than 0.1 m/s, for at least 1 s
Total Stop Time - T𝑠𝑡𝑜𝑝 (sec) The sum of all time intervals where the user has a velocity less than 0.1 m/s, for at least 1 s
Walking Distance - S (m) The geometrical distance a user travels to go from the starting position to the ending position
Walking Velocity - Vm (m/sec) The average user velocity calculated as the Walking Distance over the Total Walking Time. The Total

Walking Time is computed as the sum of all time intervals in which the user has a velocity ≥ 0.1 m/s

To have similar starting and stopping conditions across the trials,
the actual paths that were considered started a distance of 1 m from
the starting point and ended when the remaining length of the
global path segment from the user to the ending position, was less
than 2 m.

When discussing the distance, velocity, and time associated with
a user during a trial, it is important to clarify that these measure-
ments actually correspond to the respective quantities of the robot.
This is because, in the simulated environment the user is rigidly
attached to the robot. In real life however, the user walks while
holding the robot by its handles, causing the two to move together
as a single, unified entity. The user’s instantaneous walking velocity
was estimated during post-processing from the odometric data us-
ing the Euler approximation. Specifically, this involved calculating
the difference between two consecutive localization measurements
and dividing it by their corresponding time interval. To reduce the
noise, the velocity was filtered using a robust locally weighted scat-
terplot smoothing (RLOWESS) filter. The user paths for all three
pairs are seen in Fig. 4. The results are presented per pair, to have a
similar reference between trials.

The results for the outcome measures are presented in Table 3,
expressing the average value and standard deviation across all 12
trials for each pair. Note that the Number of Stops (K) presents the
number of trials for each pair where the users stopped “K” number
of times during their trial. These metrics provide a comprehensive
assessment of user performance and system behavior during the
navigation experiments.

As a general comment, we first note that all users were successful
in reaching their intended goal. Thus the primary objective of
the TbT algorithm was fulfilled. Analyzing the results, we can see
the following; the “Path Completion Time (T)” reflects the overall
duration users took to traverse each path, accounting for walking
distance, stops, and system guidance. The variability in completion
times across trials, as indicated by standard deviations, highlights
the impact of user-specific behavior and environmental interactions
on navigation performance.

The “Number of Stops (K)” and “Total Stop Time (Tstop)” offer
insights into user-system interaction dynamics and the complexity
of the process. While some trials exhibited smooth navigation with
minimal stops, others showed more frequent or prolonged pauses,
suggesting challenges in interpreting commands or adjusting to
unexpected situations.

The “Walking Distance (S)” aligns with the geometry of each
path, showing consistent results across trials. The stable “Walking
Velocity (Vm)” across all paths (0.3 ± 0.01 m/s) suggests that users

maintained a steady pace, regardless of the path length or com-
plexity. At first glance, this indicates that the navigation system
effectively guided users without causing excessive hesitation or dis-
ruptions in their walking behavior. However, this measurement is
highly affected from the experimental setup, where users controlled
the robot via a keyboard, and the way the custom teleoperation
node works (maximum linear velocity was limited to 0.31 m/s). In
a real-world scenario where users interact with a physical robot,
we expect greater variation in average velocity between users and
a higher standard deviation.

3.2.1 Outliers. Out of all trials, 9 were labeled as outliers due to sig-
nificant deviations in the user’s trajectory, compared to other trials
of the same pair. The main causes of these outliers are summarized
below:

(1) Global Path Initialization Variability In three trials, (Pair 1-
green,cyan, Pair 2-cyan) the global planner produced a differ-
ent initialization path despite seemingly identical conditions.
This variability, likely caused by factors such as sensor noise,
floating-point precision, and costmap updates, but did not
significantly impact the algorithm’s performance.

(2) Computational Overloading Hardware overloading due to
running the simulation and the TbT algorithm concurrently
on the same cpu, caused a significant delay in processing
"intersection points" in one trial (Pair 1-blue), leading to
desynchronization of the simulator with the turning mo-
tions. However, the system recovered after 27 seconds and
navigated the user correctly afterwards.

(3) DWAL’s sensitivity and Backup System Limitations In one
trial (Pair 3-purple), all primary navigation levels temporar-
ily went OFF, due to DWAL’s sensitivity in closed and narrow
space, activating the backup system that issued one incorrect
command. This rare event, likely related to environmental
constraints, revealed limitations in the backup system’s tun-
ing for such scenarios. Despite this, the algorithm corrected
the commands dynamically and navigated the user to the
goal without any further issue.

(4) Users Misunderstanding Commands In two trials (Pair 1-red,
Pair 1-orange), users misunderstood the audio command
“turn left”, assuming it referred to a door in their line of sight
rather than their immediate position. This caused initial devi-
ations, but the algorithm immediately adapted dynamically,
issued corrective commands, and successfully guided users
to a U turn and finally to the goal.
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Figure 4: Paths of the users during the trials for all the start/goal pairs. From left to right: Pair 1 to Pair 3.

Table 3: Results of the experimental evaluation

Outcome measure Pair 1 Pair 2 Pair 3

Path Completion Time - T (sec) 173.89 (24.19) 142.11 (35.83) 131.62 (12.10)

Number of Stops - K

K=0 2 4 3
K=1 3 1 2
K=2 2 1 2
K=5 3 3 2
K>5 2 3 3

Total Stop Time - T𝑠𝑡𝑜𝑝 (sec) 13.06 (11.93) 14.17 (15.69) 8.10 (7.86)
Walking Distance - S (m) 48.42 (5.03) 37.94 (7.94) 37.32 (2.89)
Walking Velocity - Vm (m/sec) 0.3 (0.01) 0.3 (0.01) 0.3 (0.01)
*results are presented as mean (sd)

(5) User Errors and Assumptions In two trials (Pair 2-purple,
Pair 3-orange), users deviated from the given commands due
to personal errors. In the first case, the user ignored a “turn
left” command and continued forward for unknown reasons.
In the second, the user disregarded navigation instructions
near the goal and turned to the wrong direction. However

in a real life such a scenario could have been avoided given
that users know what they are searching for. Both errors
caused temporary deviations, but the algorithm adapted and
successfully guided users back to the correct location.
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4 Discussion
The results of this study demonstrate the effectiveness of TbT nav-
igation in a known static map with audio commands for robotic
rollators, in guiding users through an indoor virtual hospital envi-
ronment. It is important to note that all participants successfully
navigated from the start to the goal point, demonstrating high level
of reliability and robustness of the system in achieving its primary
objective. This achievement reinforces the potential for dynamic
on-the-fly planning for assistive navigation, which addresses the
limitations of previous work that relied on predefined routes and
guard points.

Despite the presence of outliers and occasional user or system
misunderstandings, the system managed to adapt to deviations in
user behavior, provide updated corrective navigation commands
and successfully redirect users. This adaptability is critical for assis-
tive navigation and indicates the potential of the algorithm archi-
tecture to be applied in real world scenarios, where environmental
changes are unpredictable and user behaviors are inevitable.

However, the study also revealed areas for improvement. In some
of the trials, users experienced significant confusion and difficulties
interpreting audio commands, leading to particular wrong turns and
navigation errors. This issue was particularly evident in scenarios
where users misunderstood or ignored commands, highlighting
the importance of precise, context-aware instructions and spatial
references. For example, commands such as “turn left” could be
enhanced with spatial clarifiers like “turn left in 3 meters”. This
improvement couldmitigate confusion and reduce the time required
for corrective navigation.

The metrics also showed that there were users who navigated
faster and with fewer stops than others, indicating that not all users
interacted with the system in the same way or found it equally
intuitive. This variation suggests that individual differences, such
as cognitive abilities, familiarity with technology, or hearing sensi-
tivity, can influence the effectiveness with which users can follow
the instructions provided. It is also important to note that the study
was conducted in a simulation environment in Gazebo, which likely
introduced factors that could affect user performance. For exam-
ple, users ability to interact with the computer and it’s external
components, navigate the simulation setup, and adapt to virtual
environments, may have influenced the metrics recorded during the
trials. These factors highlight the need to test the system in real-life
environments, where users would physically push the rollator and
interact with tangible surroundings. Such testing would provide a
more accurate assessment of the system’s usability and effectiveness
under realistic conditions, accounting for human-environment and
human-robot interactions. In such case, more certain conclusions
will be extracted.

5 Conclusion & Future Work
The results of this study validate the feasibility of audio-based
TbT navigation for robotic smart rollators in indoor environments,
offering a promising solution to enhance mobility for older adults
and individuals with disabilities. By leveraging dynamic planning
and robust adaptability, the system demonstrated the potential to
overcome challenges associated with static predefined routes.

Future improvements should focus on making the navigation
system even more intuitive and user-friendly in all terms. Refining
audio commands to make them more specific, clearer and easier to
understand could reduce confusion in some cases, but we should
consider that in real world noisy environments will be met, where
elderly users have a high probability of struggling to hear the au-
dio commands. A solution to this problem could be incorporating
additional feedback methods, as well as multimodal navigation.
Such could be vibrations on the handgrips of the robot which in-
dicate additional turns, adding haptic shared-control functionality
by modulating the resistance or “heaviness” of the robot when the
user deviates from the intended path, or simple visual indicators
like arrows via augmented reality. Finally, an appropriate display
in a good placement on the robot to be seen from the user, might
also help users who struggle with audio instructions. At this point
it is important to mention that adding more interactions and giving
extra information to the user has a trade off, as it could potentially
lead to cognitive overload and distract users attention from the
environment, ultimately reducing the effectiveness of the naviga-
tion system. Balancing the quantity and complexity of information
delivered is crucial to ensure that assistive cues enhance, rather
than hinder, the user’s situational awareness and ability to safely
navigate their surroundings. Thus, any added feature or integra-
tions with other technology systems, should be thoroughly tested
in order to draw clear conclusions about the overall effectiveness
of the system.

These enhancements would build on the strengths of the current
system and address its limitations, paving the way for its use in
real-world settings to improve mobility and independence for older
adults and individuals with disabilities.
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