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Abstract: Inspection of ultra-high voltage substations (UHVS) plays a crucial role for ensuring
the stability of power grids and preventing damage that can potentially lead to serious power
loss. Automating the inspection process provides early detection of equipment faults, improved
safety and cost efficiency. This paper presents an automated visual inspection system, using an
RGB and thermal camera mounted on an autonomous ground robot. Our approach leverages
component detection in RGB images with YOLOv11n, followed by multi-modal image matching
to locate components in thermal imagery and a rule-based anomaly detection algorithm.
Experimental results in an operational power substation demonstrate the system’s ability
to detect early-stage thermal anomalies, highlighting its potential for improving substation
reliability and operational safety.

Keywords: thermal inspection, autonomous robot, RGB - thermal image matching, ultra-high
voltage substation

1. INTRODUCTION

The reliable operation of ultra-high voltage substations
(UHVS) is critical for the stability of electrical transmis-
sion networks, necessitating advanced inspection methods
to monitor equipment integrity. To this end, condition-
based instead of time-based inspection can significantly
minimize equipment faults. However, condition-based mon-
itoring requires cost-effective technology that enables sys-
tematic inspection of equipment and automatic processing
of the acquired data to achieve early fault diagnosis.

Automated robotic inspection offers an effective solution
by enabling continuous, precise assessments of essential
components while minimizing risks associated with human
intervention in high-voltage environments. Utilizing high-
resolution RGB and thermal imaging, these systems can
detect early signs of insulation degradation, overheating,
or structural wear in transformers, circuit breakers and
other critical equipment. By identifying potential failures
before they escalate, automated inspection enhances sys-
tem reliability, improves safety, optimizes maintenance
scheduling, and reduces long-term operational costs.

This paper introduces an automated visual inspection
system, equipped with an RGB and thermal camera on
an autonomous ground robot. Our work is part of the
ENORASI project (www.enorasi-insight.com) regard-
ing the automation of the inspection process in Ultra-High
Voltage Substations using autonomous ground vehicles.
The robot is given a list of selected electrical components
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Fig. 1. View of the inspection robot in the field. RGB and
Thermal images, as seen from the camera, are also
presented on the left.

for inspection, based on factors such as past thermal or
optical wear, time interval since the last inspection and
the criticality of each component. Our system creates an
optimal visitation plan for the components using a 3D
map of the UHVS, identifies key visibility points for each
component and deploys the robot to the field in order to
capture RGB and thermal images. The entire inspection
process is streamlined, supporting an inspection schedule
with minimal human involvement.

Our robotic system is the Summit-XL mobile robot
(Robotnik Automation S.L.) equipped with the ViewPro
Z10TIR thermal camera, mounted on an appropriate mo-
torized gimbal platform (Fig. 1). Various other sensors are
also utilized, such as LIDAR, IMU and wheel encoders,
that are used for navigation, perception of the environ-
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Fig. 2. Overview of the proposed thermal inspection pipeline.

ment, localization on the map etc. In the following, we
present an overview of our thermal inspection algorithm,
analyzing the various components, along with experimen-
tal results from actual images collected from an UHVS in
Greece.

2. RELATED WORK

Modern electrical equipment detection leverages both
visible-light and infrared imaging techniques to identify
and assess components in power systems. Traditional ap-
proaches (Wu and An, 2014; Reddy et al., 2013), mainly
rely on texture analysis to detect insulators and esti-
mate their condition. On the other hand, Deep Learning
architectures, especially Convolutional Neural Networks
(CNNs) (Khan et al., 2020) have been shown to be ex-
tremely effective in many tasks, including detection and
evaluation of electrical equipment. Therefore, most recent
works build upon well-known deep learning models, espe-
cially object detectors, to identify electrical components
in RGB or infrared images. Gong et al. (2018) modify
the YOLO object detector by introducing an additional
term in the loss function to enforce orientation consistency
among the estimated bounding boxes. Liu et al. (2020)
also use YOLO to detect four types of insulators in RGB
images. Miao et al. (2019) proposed an insulator detection
method based on the SSD object detector, customized for
aerial imagery through a two-stage fine-tuning scheme.
Similarly, Qi et al. (2023) modify the SSD object detector
using compression strategies employed in squeezenet, to
detect 5 electrical substation instruments. Wang et al.
(2020) use Mask-RCNN for instance segmentation of in-
sulators in infrared images, and use a rule-based approach
for fault detection based on past temperature data. Zheng
et al. (2021) design a multi-scale version of the FSSD de-

tector for insulator detection in thermal images, by fusing
feature maps at different levels of the network.

Automatic hot-spot detection on electrical equipment from
thermal images has also received significant attention. Due
to the lack of large annotated datasets, many works rely
on traditional approaches like K-means clustering (Salazar
and Macabebe, 2016; Mohd et al., 2017), or thresholding
methods (Alajmi et al., 2019), such as Otsu’s method (Afi-
fah et al., 2021). In Ali et al. (2022) the authors use hand-
crafted descriptors, such as HOG, LBP, RGB, contrast,
correlation and energy descriptors as well as SURF coupled
with classifiers, such as SVMs and k-NN to classify thermal
images of photovoltaic cells into 3 health conditions. Song
et al. (2023) use SURF features, Bag-of-Words and SVMs
to classify circuit board images as normal or having faults
that manifest as hot-spots.

Recently, deep learning approaches have also been pro-
posed to address this problem. Ahmed et al. (2023)
use pre-trained models like ResNet18, SqueezeNet, and
GoogleNet for feature extraction coupled with traditional
classifiers, such as SVMs and k-NN. In addition, many
widely used object detection architectures like VGG16
(Ukiwe et al., 2024) and YOLO (Sun et al., 2022; Hamid
et al., 2024; Pérez-Aguilar et al., 2024) have been repur-
posed to detect hot-spots in thermal images. Goyal and
Rajapakse (2024) introduce 2-step approach for hot-spot
detection: a) they classify thermal images as “anomalous”
and “normal” using a self-supervised approach involv-
ing a modified SimSiam framework with an XceptionNet
backbone and a modified loss to include a cross-entropy
function, and b) they use GradCam (Selvaraju et al., 2017)
to generate heatmaps showing the contribution of each
image area to the classifier’s output.



3. METHODOLOGY

Early damage of electrical components usually manifests
as irregular heat distribution across the instruments, the
conductors or their connection, implying that inspection
should be carried out mainly using thermal imagery.
However, components’ detection in thermal images is not
favorable due to the lack of large annotated thermal
datasets and efficient methods. Therefore, we propose to
detect electrical components using the RGB channel, and
identify potential damage on the thermal image, after
matching the two. Figure 2 shows an overview of our
proposed pipeline.

3.1 Electrical instrument detection

Object detection is extensively studied in the computer
vision literature, often serving as reference to benchmark
new methods. Deep neural networks, especially Convo-
lutional Neural Networks (Khan et al., 2020) and lately
Transformers (Shehzadi et al., 2023) have revolutionized
the field. This progress has also been driven by the ex-
istence of large image datasets, such as the well-known
ImageNet (Deng et al., 2009) for image classification, the
COCO dataset (Lin et al., 2014) for object detection and
segmentation and others (Everingham et al., 2010; Geiger
et al., 2013). However, these large multi-category datasets
usually concern general classes that are not suitable for
robotic applications. Specifically, many robotic applica-
tions, such as automatic inspection, require the detection
of a small set of specialized objects in cluttered and heavily
occluded scenes (De Gregorio et al., 2020). To mitigate the
lack of large amounts of data for specialized applications,
transfer learning approaches are usually employed, by us-
ing pre-trained models on large datasets and fine-tuning
them on a smaller specialized set that fits the problem.

There are two main deep learning approaches for object
detection: (a) Two-stage methods (Girshick et al., 2014;
He et al., 2017), which first estimate candidate regions
containing objects and subsequently classify the corre-
sponding image patches, requiring two separate networks;
and (b) Single-stage methods (Redmon et al., 2016; Liu
et al., 2016) which use a single network for detection
and classification and are therefore more computationally
efficient.

To detect electrical instruments, we use YOLOv11n (Red-
mon et al., 2016), a single-stage object detection method
that offers high performance with relatively low compu-
tational requirements, which makes it suitable for deploy-
ment on mobile robots. We employ a pre-trained model
and fine-tune it using manually annotated data acquired
from an actual power substation. Specifically, we have
collected 30 minutes of video in which 6 different classes
of electrical components appear (Figure 3). After down-
sampling the video, we have manually annotated 1468
frames containing 7923 components in total. We also use
random crops, scaling and flipping for data augmentation.
Electrical components are mainly distinguished by their
upper part (cap) and its connections, while the lower part
(insulator) is present in all components and in most cases
its appearance is not indicative of the component class. In
addition, most elements are positioned more than 3.5 m

Fig. 3. Recognized electrical components. From left to
right and from top to bottom: surge arrester, bush-
ings, current transformer, voltage transformer, isola-
tor, circuit breaker.

above ground. As a result, depending on the robot/camera
configuration, only the insulator may be visible. In such
cases, recognizing when only the insulator is in view can
help the robot and camera control system accurately aim
at the electrical component. To address this, we classify
the insulator as a separate category.

3.2 RGB-thermal image matching

To identify early signs of wear, electrical instruments must
be detected in the thermal channel. Following detection
on the RGB image, the estimated bounding boxes are
projected on the thermal image, by estimating the homog-
raphy H that transforms RGB image coordinates xRGB to
thermal image coordinates xth:

xth ∼ HxRGB .

A common way to estimate H is to extract features from
both images that encode interest points, edges, object
contours or other salient structures and look for matches
among them. Representing images with these features
makes these methods robust to changes in luminosity,
viewpoint and other transforms.

However, most methods focus on matching color im-
ages only, while few deal with multi-modal matching,
i.e., matching images acquired from different types of
optical sensors. The latter is particularly challenging,
due to the nonlinear radiometric differences between the
two sensors and the resulting luminance values that are
recorded (Jiang et al., 2021), which add up to other sources
of nonlinear changes (optical distortions, changes in illumi-
nation). For this reason, many traditional gradient-based



(a) (b) (c) (d)

Fig. 4. Thermal fault detection. (a): original image with ground truth from human operator, (b): background subtraction,
(c) high temperature regions (d) estimated hot-spots with mean temperature.

features, such as SIFT are often insufficient for multi-
modal matching.

Radiation-variation Insensitive Feature Transform (RIFT)
(Li et al., 2020, 2023) is a feature extraction method
specifically designed for multi-modal matching. RIFT uses
the phase congruency to detect keypoints that correspond
to edges and corners. These features are described by
constructing a maximum index map, which encodes ori-
entation. To estimate the homography between the RGB
and thermal images, we extract RIFT features from both
images and find keypoint pairs with the minimum absolute
difference. H is estimated by the Direct Linear Transfor-
mation algorithm along with RANSAC to reject outliers.

3.3 Thermal fault assessment

Early deterioration of electrical components typically
shows as areas of abnormal heat distribution, signaling
more serious defects that may lead to system failure and
subsequent power supply interruptions. In contrast to their
significant consequences, such faults occur infrequently,
and thermal images documenting these defects remain
scarce. This scarcity of data limits the application of ma-
chine learning methods, which typically require substan-
tial datasets, even when implementing transfer-learning
approaches.

Local guidelines regarding thermal inspection of power
substations dictate that potential instrument fault is in-
dicated by temperature values 10◦C greater than the
ambient temperature. To detect faults in thermal images
we follow a simple yet effective rule-based approach that
complies with these guidelines (Figure 4):

• The background is removed using Otsu’s thresholding
method (Otsu, 1979).

• A reference temperature is computed as the median
temperature of all foreground objects. This serves as
a rough estimate of the ambient temperature.

• The image is denoised with median filtering and
the pixels with the top 90% temperature values are
isolated.

• Potential hot-spots are detected in the resulting bi-
nary image by connected components analysis with
8-way connectivity (Bolelli et al., 2020).

• Connected components whose mean temperature dif-
fers more than 10◦C from the reference temperature
are considered potential hot-spots.

Fig. 5. Examples of fault detection in thermal images,
showing each hot-spot’s mean temperature. To be
classified as fault area, a candidate hot-spot’s temper-
ature must be at least 10◦C higher than the estimated
environmental temperature.

4. RESULTS

To assess the performance of electrical component detec-
tion, we randomly split our RGB dataset and use 80% to
fine-tune YOLOv11n and 20% for validation. Detection
is considered correct if the Intersection Over Union (IoU)
between the estimated bounding box and the ground truth
is > 50%. Results are reported in terms of F1 score and
mean Average Precision (mAP), given by:

mAP =
1

C

C∑
1

APc, (1)

where C = 7 is the number of component classes and
APc is the area under the precision-recall curve for class
c and for different values of the confidence threshold. The
network achieves 96.7% mAP and 94% F1 score across all
7 classes, showing the effectiveness of our proposed method
and the power of the transfer learning approach. Per class
results (Table 1) also demonstrate that the performance is
relatively uniform across all instrument types. The main
source of the small error is apparent after inspecting the
confusion matrix (Figure 6): some instances are misclassi-
fied as background, which may be due to imperfections in
the annotations and the relatively low amount of data used
for fine-tuning. Another source of error are elements in
close proximity to each other and in a large distance from
the robot, which the detection algorithm falsely groups
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Fig. 6. Confusion matrix for electrical component detec-
tion. SA: surge arrester, BS: bushings, CT: current
transformer, VT: voltage transformer, IS: isolator,
CB: circuit breaker, INS: insulator, BG: background

into a single element. The aforementioned types of error
are also related to the non-maximum suppression that
YOLO performs.

To assess the accuracy of our estimated homography, we
calculate the mean reprojection error for the N matches
computed by RIFT2:

E =
1

N

N∑
i=1

∥∥xi
th −Hxi

RGB

∥∥ .
Our approach results in a mean reprojection error of 2.46
pixels, demonstrating its effectiveness for RGB-thermal
image matching.

For fault assessment, we compiled 84 reports from a human
professional operator who performed periodic inspections
of the power substation and annotated hot-spots in a
2-year period using a handheld camera. The resulting
dataset contains 84 RGB-thermal image pairs. Our al-
gorithm correctly detects thermal faults in 76/84 cases,
indicating that efficient methods that run in real-time can
be successful in detecting hot-spots. Most errors result
from erroneous mapping of image intensity values to tem-
perature values in the report compilation process. Figure 5
shows indicative results of our fault detection algorithm.
The electrical components of the UHVS are arranged in
a grid-like configuration, which enables the acquisition of
RGB and thermal images of each component from different
viewpoints. To increase our system’s robustness, at inspec-
tion time we capture images from 4 different directions.
As a result, if a fault is undetected in a certain view, it
can be effectively identified and compensated for through
detection in another view. This redundancy enhances the
accuracy and reliability of the fault detection process. The
whole system requires approximately 200ms to process a
single RGB-thermal image pair using the robot’s CPU
only.

Table 1. Precision (P) and Recall (R) for
detecting each instrument class.

BS SA VT CT IS CB INS

P 0.973 0.992 0.975 0.971 0.902 0.938 0.845

R 0.975 1 0.968 0.965 0.844 0.895 0.932

5. CONCLUSION

This paper presented an automated thermal inspection
system for Ultra-High Voltage Substations using an au-
tonomous ground robot equipped with RGB and thermal
cameras. Our approach demonstrates the effectiveness of
utilizing the RGB channel for electrical component de-
tection combined with thermal imaging for fault assess-
ment, despite the lack of specialized datasets. The sys-
tem’s ability to operate autonomously with minimal hu-
man intervention represents a significant advancement in
UHVS inspection, potentially reducing maintenance costs,
improving safety by eliminating human exposure to high-
voltage environments, and enhancing reliability through
early fault detection. Future work will focus on expand-
ing the thermal fault dataset, enabling the development
of more sophisticated anomaly detection algorithms and
on unifying the detection and fault assessment processes.
These improvements would further enhance the robustness
and applicability of the proposed system in real-world
substations.
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