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Abstract—In this study, we investigate the relative perfor-
mance of Vision Transformers (ViTs) compared to convolution-
based neural networks in categorizing vocalizations from a
medium-sized marine mammal dataset. Additionally, we evaluate
whether phase information derived from Fourier decomposition
can serve as a complementary source of useful information
to magnitude for classification tasks. Our study focuses on
bioacoustics, utilizing the publicly available Watkins Marine
Mammal Sound Database, which contains sound clips identi-
fied as originating from 32 marine mammal species. In this
framework, we first trained convolution-based networks (ResNet-
101, MobileNetV3) and Transformer-based networks (ViT B-16,
Swin Transformer V2) on log-magnitude spectrograms (baseline
models). In a second set of experiments, we incorporated the
derivative of unwrapped phase from the Fourier representation
into the magnitude spectrograms. Our results show that (a)
Shifted Window (Swin) Transformers outperform MobileNets
and achieve performance similar to ResNets while maintaining
lower computational complexity and (b) the inclusion of phase
derivatives into spectrograms leads to (i) consistently improved
performance metrics across all biosignal categories for Swin
Transformers and (ii) enhanced classification ability for both
convolution-based and self-attention-based networks, particularly
for the narrow-band frequency modulated (FM) whistles emitted
by delphinids.

Index Terms—Bioacoustics, Vision Transformers, Phase
Derivative.

I. INTRODUCTION

The identification of marine mammal vocalizations is es-
sential for studying population movements, and ultimately
for protecting endangered species. The complexity of the
recognition task is enhanced by the ability of mammals to
modify the acoustic properties of their calls during social
interactions [1] or in response to vessel noise and other anthro-
pogenic activities [2]. The field of computational bioacoustics
has so far been dominated by convolution-based architec-
tures, primarily focused on feature extraction for recogni-
tion or detection tasks [3]. In particular, Residual Networks
(ResNets) which incorporate shortcut connections between
layers to allow identity mapping [4], and MobileNets, which
use depthwise separable convolutions [5], have proven to be
Acknowledgment—”This project is funded by the European Union under
Horizon Europe (grant No. 101136568 - project HERON).”

Fig. 1: Log-Magnitude spectrograms of Common dolphins’
(Delphinus Delphis) calls (top-left) vs Atlantic spotted
dolphins’ (Stenella frontalis) vocalizations (top-right) and
their respective representations incorporating phase derivative
(bottom-left and bottom-right). A cyclic colormap (’twilight’)
is selected to represent phase derivative; see Section III.

popular backbones for classification tasks. However, the recent
success made by Vision Transformers (ViTs) has raised the
question of whether self-attention-based models can effectively
replace Convolutional Neural Networks (CNNs), particularly
when working with limited data. Nevertheless, ViTs have
not yet been widely explored in bioacoustic tasks, as they
typically rely on large quantities of training data [6]. In fact,
collecting and annotating calls from endangered species, is
a particularly difficult task and few extensive bioacoustic
databases are publicly available. In this study, we evaluate both
typical and hierarchical Transformers, with a particular focus
on Shifted Window (Swin) Transformers, introduced in [7].
Swin Transformers limit self-attention computation to non-
overlapping local windows, while also introducing a window
partitioning approach for cross-window connections [6]. In this979-8-3315-1213-2/25/$31.00 © 2025 IEEE
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way they achieve both linear computational complexity and
global information flow. Moreover, they construct hierarchical
feature maps and have the flexibility to model at various scales
[7], that enhances their learning capacity in deeper layers.

Additionally, this study evaluates whether incorporating
phase information, alongside magnitude, into spectrograms
improves feature extraction and enhances the recognition of
marine mammal vocalizations. Typically, phase is often elimi-
nated when, during an intermediate step of spectrogram visual-
ization, windowed Fourier Transform is squared. However, we
know that the phase array of the Discrete Fourier Transform
(DFT) preserves important features of a signal [8]. Indeed, in
various contexts, such as signals of speech and images, phase
information from the Fourier representation is considered to
carry necessary information for efficient reconstruction [8],
[9]. Moreover, studies have shown that a phase-only-synthesis
in speech or image signals -where a signal is reconstructed
using the phase from its Fourier representation combined with
a unity magnitude- can result in a high degree of intelligi-
bility [8] as it efficiently preserves the location of patterns
of the original signal. Motivated by the fact that narrow-
band whistles produced by delphinids [10], [11], [12] contain
nonlinear structures such as frequency modulation (FM), we
further investigate whether incorporating phase derivative into
spectrograms could improve the classification performance of
FM bioacoustic patterns. This hypothesis is substantiated by
the experimental results in this study. Another motivation for
exploring the FM structure in marine mammal vocalizations is
the fact that AM-FM structures have been discovered in human
speech [13],[14]; the AM-FM information was captured using
the Teaker-Kaiser energy operator (TKEO) [15]. Afterwards,
the TKEO was used in [16] to detect marine biosounds.

II. RELATED WORK

The raw source of information in bioacoustics consists
of 1-D waveforms representing pressure over time. In most
studies, these 1D-sequences are converted into log or mel-
scaled magnitude spectrograms, and the recognition or detec-
tion of vocalizations is typically based on identifying intensity
patterns determined by the magnitude of the DFT in the time-
frequency plane [17], [18], [19]. The importance of phase
derived from Fourier Transform in efficiently solving prob-
lems on image and speech reconstruction has been described
and demonstrated in [8]. The idea to utilize time-frequency
representations combining both magnitude and the derivative
of the phase in the same plots comes from [20] and is based
on the fact that the latter creates solid continuous lines in plots
of constant-Q transforms (CQT) for harmonics of a consistent
frequency. Regarding networks architectures, Transformer-
based models, which perform global self-attention [21] to
learn long-term time dependencies between input and output
sequences [22], are used systematically for sound and music
classification [23] or bioacoustic event detection [24]. For clas-
sification and detection tasks involving subsets of the specific
Watkins Marine Mammals Sound Database (WMMSD) used
in our study, several learning algorithms have been proposed:

As demonstrated in [25], Support Vector Machines (SVMs)
and VGGish networks trained on Mel Frequency Cepstral
Coefficients (MFCCs) and power spectrograms, respectively,
achieved accuracies of approximately 0.87 and 0.847 on a
31-class classification task using the ’Best of’ cuts section,
under resampling of recordings to 44.1 kHz. In [26], a ResNet
is trained on single-channel spectrograms achieving an F1-
score of 0.867 with an area under the curve (AUC) of 0.9281
outperforming a multi-channel implementation on a 32-class
categorizing task. In [27], a network based on Efficient-B1
pre-trained on bird-song vocalizations, with its weights kept
frozen, was adapted by training a single linear probe on various
bioacoustic datasets; on a subset of WMMSD, this model
achieved an accuracy of 0.83 and an AUC of 0.98. Finally,
in [28], the authors use ResNets in parallel (WhaleNet) and
explore the use of the Wavelet Scattering Transform and Mel-
spectrograms to extract features, from a balanced 32-class
subset of the ’all cuts’ section of the WMMSD, reporting an
accuracy of 97.61% and an average F1-score of 93.8%.

III. MATERIALS AND METHODS

Origin of data and preprocessing
Our study utilizes the publicly available ’best of’ cuts
section of the Watkins Marine Mammal Sound Database,
which contains approximately 1.700 sound clips, representing
calls from 32 marine mammal species. These sounds were
recorded over a span of 70 years using hydrophones of varying
technologies, at different sampling rates, and in environments
with diverse background noise levels. Each recording is
associated with a metadata file providing a brief description
and an evaluation of the bioacoustic events, present in both
the background and foreground soundscapes. However, the
dataset is imbalanced: some classes are underrepresented,
with only a few short audio recordings (e.g., the Minke whale
class contains 17 sound files, each lasting 1 to 2 seconds)
while other classes, are relatively overrepresented (e.g., the
Sperm whale class has over an hour of total recording time).
For data preprocessing, all recordings were resampled to
44.1 kHz. Additionally, we excluded audio files containing
overlapping calls, where individuals from different species
vocalized simultaneously. Since audio clips vary widely in
length -ranging from less than a second to several minutes-
we split the recordings into 5-second sub-clips. For shorter
audio files, that contained mostly repetitive whistle patterns,
iterative padding was applied to extend them to 5 seconds, to
preserve the temporal integrity of the sequence.

Visualization of Time-Frequency Representations
Spectrograms are obtained by framing and windowing the
signal of pressure, then computing the DFT over each
windowed segment. For the visualization of log-scaled
magnitude spectrograms, we apply the windowed Fourier
transform to each 5-seconds sequence, using a Hamming
window of size 1024, with 50% overlap. The intensity of
the power spectrum is represented by a perceptually uniform
sequential colormap (’viridis’). In order to incorporate the
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TABLE I: Main Results: Mean values and 95% confidence interval and state-of-the-art benchmarks (first four rows)

Inputs Models (Parameters, GFLOPS) Accuracy Avg F1-score Wgt. F1-score Avg Precision Wgt. Precision Avg Recall Wgt. Recall

MFCCs (mean, stdev, min, max) SVM [25] 87% - - - - - -

Magnitude Spectrogram ResNet [26] 85.43% 85.1% - 85.99% - 85.43% -

Magnitude Spectrogram EfficientNet-B1 (Perch) [27] 83% - - - - - -

Mel Spectrogram - Wavelet Scattering Transform ResNets in Parallel (WhaleNet) [28] 97.60% 93.81% 97.61% - - - -

MFCCs (mean, stdev, min, max)
+ spectral (centroid, bandwidth and rolloff)

+ zero crossing rate, rms
SVM 95.8% ± 0.45% 91.6% ± 0.86% 95.7% ± 0.45% 94.0% ± 0.66% 95.9% ± 0.41% 90.5% ± 1.03% 95.7% ± 0.45%

ResNet-101 (44.5M, 7.8 GFLOPS) 97.0% ± 0.39% 94.2% ± 0.87% 97.0% ± 0.40% 95.2% ± 0.71% 97.2% ± 0.40% 93.9% ± 0.89% 97.0% ± 0.39%

MobileNetV3 (5.5M, 0.22 GFLOPS) 96.4% ± 0.28% 93.3% ± 0.70% 96.4% ± 0.28% 94.1% ± 0.77% 96.6% ± 0.28% 93.2% ± 0.72% 96.4% ± 0.28%

Magnitude Spectrogram (baseline) ViT B16 (86.6M, 17.56 GFLOPS) 96.1% ± 0.32% 91.9% ± 0.92% 96.0% ± 0.33% 93.8% ± 0.73% 96.2% ± 0.29% 91.1% ± 0.92% 96.1% ± 0.32%

Swin Transformer V2 (28.4M, 5.94 GFLOPS) 96.9% ± 0.32% 93.9% ± 0.93% 96.9% ± 0.33% 94.9% ± 0.50% 97.1% ± 0.30% 93.8% ± 1.02% 96.9% ± 0.33%

ResNet-101 (44.5M, 7.8 GFLOPS) 97.6% ± 0.33% 94.8% ± 1.12% 97.6% ± 0.36% 95.9% ± 1.09% 97.7% ± 0.33% 94.5% ± 1.07% 97.6% ± 0.31%
Magnitude and Phase MobileNetV3 (5.5M, 0.22 GFLOPS) 96.9% ± 0.27% 93.3% ± 0.74% 96.9% ± 0.27% 94.4% ± 0.74% 97.0% ± 0.27% 93.0% ± 0.79% 96.9% ± 0.27%

Derivative Spectrogram ViT B16 (86.6M, 17.56 GFLOPS) 97.4% ± 0.31% 94.0% ± 1.20% 97.3% ± 0.33% 95.0% ± 1.34% 97.4% ± 0.34% 93.6% ± 1.09% 97.4% ± 0.33%

Swin Transformer V2 (28.4M, 5.94 GFLOPS) 97.5% ± 0.43% 94.9% ± 1.09% 97.5% ± 0.43% 95.7% ± 0.91% 97.6% ± 0.41% 94.8% ± 1.01% 97.5% ± 0.44%

phase derivative into the T-F representation, we decompose
the complex-valued spectrogram F into the product of two
matrices: the amplitude spectrum |F (ω)| and the phase
spectrum θ(ω), such that F (ω) = |F (ω)|ejθ(ω). A phase
unwrapping operation follows to correct discontinuities
between consecutive elements of the phase vector, as
described in [29]. Subsequently, the time derivative of the
unrolled phase angle is computed. Finally, we visualize both
components of the energy distribution across frequencies in a
single spectrogram : the log-magnitude of the power spectrum
and the derivative of unrolled phase. The intensity of lines is
proportional to the amplitude of power spectrum, while the
phase derivative, defined within the range of values [−π, π],
is visually represented using a cyclic colormap (’twilight’). A
cyclic colormap starts and ends on the same color, increasing
monotonically from start to a symmetric point in the middle
and inversely from middle to end. An image resolution
of 224×224 is assumed for all spectrograms, which are
generated using the Librosa Python Library. In Fig.1 we plot
log-spectrograms alongside time-frequency representations
combining power spectrum amplitude and phase derivative
for calls of Common dolphins’ (Delphinus Delphis) whistles
or/and clicks (top-left, bottom-left) versus Atlantic spotted
dolphins’ (Stenella frontalis) whistles (top-right, bottom-right).

Design of Neural Networks
At the outset of this study, we confirmed that an SVM
classifier based on MFCCs, is effective in categorizing
biosignals, provided an exhaustive search is conducted across
a broad range of SVM hyper-parameters (regularization
parameter C and kernel coefficient gamma) of the radial basis
function (RBF) kernel. For the convolution-based experiments
in our study, we selected ResNet-101 (∼ 44.5M parameters)
and MobileNetV3 (∼ 5M parameters) architectures. As an
initial step to evaluate their efficiency, we used pretrained
versions of these models on the ImageNet-1K dataset,
removing the fully connected layer and replacing it with an
SVM classifier. Pretrained-models produced embeddings that
were then passed to the SVM classifier which was then trained
on these extracted features from either the ResNet or the
MobileNet, without any fine-tuning of the backbone networks.
Our preliminary results (93.3% and 88.7% accuracy for a

MobileNetV3-Large and a ResNet respectively) indicated
that frozen, pretrained convolution-based networks on image
datasets (such as ImageNet) encode transferable knowledge
useful for recognizing patterns in audio-spectrograms. In
subsequent experiments, we fine-tuned MobileNetV3 and
ResNet-101 networks, by using a fully connected layer
instead of an SVM to further optimize performance. For
the Transformer-based experiments, we selected a ViT-B16
(∼ 86.6M parameters), and a Swin Transformer V2-tiny
architecture (∼ 28.4M parameters), both pretrained on the
ImageNet-1K dataset. This choice is motivated by the fact that
the Swin V2 model, introduced in [30], adopts a scaled cosine
attention mechanism along with a residual post-normalization
technique, a method that significantly reduces the average
feature variance in deeper layers, improving training stability
and accuracy [30].

IV. EXPERIMENTS, RESULTS AND DISCUSSION

In our experimental setup, the dataset was divided into
two subsets: 60% for training and 40% for testing. We
used K = 10 different partitions of the dataset, conducting
an equal number of experiments for each partition. The
generalization ability of the classifier was evaluated on
test sets comprising 1563 biosignals. Standard performance
metrics, such as accuracy, precision, recall, and F1-score
were calculated as the mean of K experiments, along with a
95% confidence interval. For the SVM model, we extracted
the first 20 cepstral coefficients per frame from each audio
clip and calculated four summary statistics -mean, standard
deviation, min, and max- of each MFCC dimension over
time, as in [25], along with mean values of rms, spectral
bandwidth, spectral centroid, roll-off and zero-crossing rate.
These features were averaged across all frames to construct
an 85x1 feature vector for each vocalization. Results for the
best-performing model are presented in Table 1. For all deep
networks, models were trained for 100 epochs with a batch
size of 64. An Adam optimizer was used with an initial
learning rate of 10−3, decaying by a factor of 0.1 every 30
epochs through a StepLR scheduler. Categorical cross entropy
was employed as a loss function during the optimization
process.

Table 1 presents the main performance metrics for all
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models, with the best-performing networks emphasized. The
following observations can be made: (a1) Swin Transformers
and ResNets present similar performance within the margin
of statistical error (94.9% ± 1.09% average F1 score versus
94.8% ± 1.13% respectively), while Swin Transformers offer
an advantage in terms of computational complexity (∼ 5.94
GFLOPS required for a forward pass for Swin Transformers vs
∼ 7.8 GFLOPS for ResNet101); (a2) Both models outperform
MobileNets, which achieve a 93.3% average F1-score and
96.9% accuracy; (a3) Although ViT-B16 achieves comparable
performance to hierarchical ViTs, its higher computational
complexity (∼ 17.56 GFLOPS) renders the model less
attractive; (a4) The relative deviation between the average
F1-score and its weighted metric is attributed to dataset
imbalance. (b) Both convolution-based and Transformer-
based algorithms outperform SVMs, although SVMs still
demonstrate a remarkable speed-accuracy trade-off, a finding
that is consistent with observations in [25]. (c) Incorporating
the phase derivative into spectrograms systematically improves
model performance: the average F1-score and accuracy of
Swin Transformer increase by 1.0% and 0.6%, respectively;
corresponding improvements are 0.6% and 0.6% for ResNet-
101, 2.1% and 1.3% for ViT-B16, while MobileNet shows
minor gains. (d) Finally, we include in Table 1 several
state-of-the-art benchmarks (first four rows) reported on
different subsets of this dataset, although direct comparisons
with these works are not possible due to differences in
evaluation protocols. Specifically, in [25], only 31 classes out
of 32 classes were selected and in [28] a balanced subset of
32 classes from ’all cuts’ was utilized whereas we use the
full ’best-of’ cut dataset and in [26], a lower sampling rate
of 22.050Hz was used, and data augmentation was performed.

s
TABLE II: Average F1 score per vocalization class

Inputs Models FM Whistles Vocalizations Vocalizations

and Clicks from Whales from Seals

ResNet-101 94.5% 95.0% 92.1%

MobileNetV3 93.0% 95.0% 91.5%

Magnitude Spectrogram ViT B-16 92.4% 92.2% 89.4%

Swin Transformer V2 93.9% 95.0% 92.2%

ResNet-101 95.4% 95.4% 92.1%
Magnitude and Phase Derivative

Spectrogram MobileNetV3 94.4% 94.2% 89.1%

ViT B-16 95.3% 94.7% 89.4%

Swin Transformer V2 95.1% 95.7% 92.9%

Table 2 presents the mean evaluation average F1 scores for
three broad categories of vocalizations in the same dataset:
FM whistles and clicks from delphinids, and vocalizations
from whales and seals. Sperm whale calls are excluded,
as they consist of broadband impulsive signals (clicks), for
which the incorporation of phase has no impact on classifi-
cation performance. Key observations are: (a) The addition
of the phase derivative improves classification metrics for
FM whistles produced by delphinids across all networks,
supporting the intuition that phase derivative adds useful infor-
mation complementary to magnitude for recognition tasks. (b)
Overall, Transformer-based models show a greater ability to
leverage phase-related information compared to convolutional

networks. In particular, Swin Transformers achieve better re-
sults across all categories of calls, followed by ViT-B16 which
exhibit the highest positive deviations (+2% for delphinid
vocalizations, +2.5% for calls from whales vocalizations). In
contrast, while ResNet-101 also benefits from the inclusion
of phase-related features, MobileNets show mixed results -
achieving higher performance with log-power spectrograms
for non-whistle classes.

(a) Swin’s Transformer features (b) MobileNet’s features

Fig. 2: t-SNE visualization of extracted feature vectors into a
3D feature space.

Finally, in Fig.2, we apply t-distributed Stochastic Neighbor
Embedding (t-SNE), to project the high-dimensional feature
space onto a lower-dimensional plane. For each architecture,
we train both a Swin Transformer and a MobileNetV3-Large
on the same training set. After training, the classification
head is removed, and a forward pass is performed on the
validation set to extract feature embeddings. For the Trans-
former, features of dimension 768 are reduced to 3, and
for the MobileNet, features of dimension 1280 are similarly
reduced to 3 using t-SNE. These features are then visualized
in a Euclidean plane. Fig.2 illustrates the superior capacity of
the Swin Transformer to partition the feature space: clusters
corresponding to different species are more clearly separated
and distinct compared to those produced by the MobileNet.

V. CONCLUSION

In this study, we show that hierarchical ViTs effectively ad-
dress common challenges associated with Transformer archi-
tectures, such as high computational complexity and sensitivity
to dataset size. Among all evaluated models, they achieved
the most favorable speed-accuracy trade-off for classifying
marine mammal vocalizations on a mid-sized dataset. Fur-
thermore, our findings show that both convolution-based and
self-attention-based networks benefit from the incorporation of
phase derivatives into spectrogram representations, with more
pronounced improvements observed in Transformer-based ar-
chitectures, across all vocalization classes. These findings
suggest that phase-augmented representations can enhance
classification performance, especially for frequency-modulated
(FM) sounds produced by delphinids. Future work could
extend this analysis to other bioacoustic datasets and explore
efficient methods for incorporating phase-related features to
modern challenges such as vocalization detection and few-shot
learning.
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