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Abstract
Sign Languages are the primary form of communication for Deaf
communities across the world. To break the communication barriers
between the Deaf and Hard-of-Hearing and the hearing commu-
nities, it is imperative to build systems capable of translating the
spoken language into sign language and vice versa. Building on
insights from previous research, we propose a deep learning model
for Sign Language Production (SLP), which to our knowledge is
the first attempt on Greek SLP. We tackle this task by utilizing a
transformer-based architecture that enables the translation from
text input to human pose keypoints, and the opposite. We evaluate
the effectiveness of the proposed pipeline on the Greek SL dataset
Elementary23, through a series of comparative analyses and abla-
tion studies. Our pipeline’s components, which include data-driven
gloss generation, training through video to text translation and a
scheduling algorithm for teacher forcing - auto-regressive decoding
seem to actively enhance the quality of produced SL videos.

CCS Concepts
•Human-centered computing→ Assistive systems and tools;
• Computing methodologies→ Transformer networks; Ges-
ture recognition.
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1 Introduction
To address communication barriers between the DHH (Deaf and
Hard-of-Hearing) and the hearing communities, the field of Sign
Language Processing has emerged at the intersection of linguistics,
computer vision, and machine learning. Sign Language Processing
encompasses a variety of tasks, such as automatic translation and
production of sign language, with the most critical components
of an effective sign language system being Sign Language Trans-
lation (SLT), and Sign Language Production (SLP). In this paper,
we primarily focus on Sign Language Production (SLP), which in-
volves generating accurate sign language sequences from a given
text input. Specifically, we approach the production of sign lan-
guage videos by proposing a transformer-based method to generate
extended skeletal representations from text.

SLP systems have primarily relied on basic animation techniques
or rule-based models, which often fail to capture the subtleties
of human motion and natural language. Recent advancements in
deep learning, particularly neural machine translation models and
generative networks, have opened new possibilities for generating
more photorealistic sign language content. Despite these advances,
current solutions are still in their early stages, with significant room
for improvement in the fluidity and accuracy of the produced sign
language videos. In this work, we utilize transformer architectures
aiming to address the existing SLP limitations. Our contributions
can be summarized as follows:

(1) We present the first SLP system for the Greek Language
based on deep learning.
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Figure 1: Overview of the proposed architecture: Given a text sentence as input, our SLP pipeline generates the corresponding
sign language sequence. During training, the Encoder-Decoder structure learns through a sum of MSE Regression Loss (between
frames) and CTC (pose-to-text) Loss. Optionally, training can happen using data-driven generated glosses to limit lexical
diversity.

(2) Our method incorporates components such as the use of a
Pose-to-Text loss during training and SL gloss generation
through text transcriptions, which help the quality of the
generated sign poses. We also propose a scheduling algo-
rithm that alternates between using teacher forcing and
auto-regressive decoding during training.

(3) We conduct experiments on the publicly available Greek Sign
Language dataset, Elementary23 [20]. Through extensive
quantitative evaluations and ablation studies we highlight
the strengths and weaknesses of the proposed transformer-
based architecture, achieving significant improvements on
the quality of the SLP results.

2 Related Work
Sign Language Recognition and Translation: Sign Language
Recognition (SLR) focuses on extracting meaningful features from
sign language videos and classifying them into discrete sign rep-
resentations (glosses), while Sign Language Translation (SLT) is
defined as the translation of sign language videos directly into
spoken language. Early work on Sign Language Processing ([17],
[11]) addresses SLR as a computer vision problem, focusing on en-
hancing hand recognition accuracy, by utilizing statistical subunits
and lexicons. Many recent works have tackled both SLR and SLT
tasks using a variety of deep learning approaches, including RNNs
([1], [2]), LSTMs ([6]), GRUs ([8]), and Transformers ([4], [3]), after
using CNNs for spatial feature extraction or Pose Estimation net-
works. Camgöz et al. [2] formalized SLT as a sequence-to-sequence
(seq2seq) learning problem. This approach employs CNNs for spa-
tial feature extraction from sign language videos, which are then
fed into an attention-based encoder-decoder framework to gener-
ate spoken language translations. These experiments were made
on three different pipelines, gloss-tο-text, sign-to-text and sign-to-
gloss-to-text, which uses gloss annotations as an intermediate layer.
In another work, Camgöz et al. [4] used transformer models for
both the recognition and translation pipelines. The encoders pro-
cess sign video sequences to produce embeddings that capture both
spatial and temporal features, while the decoders generate spoken
language sentences. CTC Loss is used to facilitate learning without

explicit alignment data, tying the recognition of sign glosses to
the generation of text. Experimental results of the previously men-
tioned works prove that using gloss information as an intermediate
step to spoken language translation improves the performance of
the model, however relying on gloss annotations can be limiting
on larger datasets since they require professional annotation.

Sign Language Production: While Sign Language Translation
has seen considerable progress, Sign Language Production remains
under-explored, with a need for significant breakthroughs. Early
works on SLP primarily relied on phrase lookup, direct sentence
matching, and computer-generated avatar sign videos to produce
realistic animated outputs, such as Tessa (BSL) [14] and Simon (Sign
Supported English) [10]. Recent advancements [12], [15], [13], [16],
have redefined SLP as a Neural Machine Translation (NMT)
task, leveraging sequence-to-sequence models to generate 2D pose
sequences from text embeddings. Saunders et al. [12] pioneered a
Transformer-based architecture for end-to-end SLP, employing a
dual-transformer approach. Their Symbolic Transformer encodes
text, while the Progressive Transformer generates continuous frame
sequences, marking a significant step forward in automating and
enhancing SLP. Several other works [13], [19], [18], specialize on
the photorealistic aspect of SLP and aim to synthesize and also
anonymize realistic SL videos.

Datasets: Most mentioned works on SLT and SLP conduct their
experiments on the publicly available PHOENIX14T dataset [9].
This dataset includes a total of 8257 sequences performed by 9
signers along with their gloss annotations. Its relatively limited
vocabulary of 1066 sign glosses allows for high quality SLT and
SLP results. On the other hand the Elemntary23 dataset [20],
is a recent GSL dataset, which contains annotations of the first
three classes of Greek Elementary school books in all subjects. The
Greek Language subset containts 9499 videos with a vocabulary of
14345 words, while the Maths subset containts 6583 videos with a
vocabulary of 6457 words.

Pose Estimation: Recent advances in the field of computer vi-
sion and pose estimation, make it possible to generate 2D or 3D
landmarks from RGB images. Open Pose ([5],[21]) is one of the
first and most popular frameworks for human pose estimation and
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is mostly used in the previously mentioned works on SLT and
SLP. MediaPipe (MP) is an open-source framework for construct-
ing multi-modal and cross-platform machine learning pipelines,
supporting a broad range of applications, including pose and face
detection. A particular implementation of MediaPipe is the Medi-
aPipe Holistic model [7], which we particurally use in this work.
MP Holistic employs a graph-based pipeline that processes different
regions of interest (ROIs) within an image to estimate a total of up
to 543 landmarks, which include 33 body pose landmarks, up to 468
facial landmarks, and 42 hand landmarks (21 per hand).

3 Methodology
Given a text sentence as input, our SLP pipeline generates the
corresponding 2D sign language sequence in the form of extended
skeleton representations, which include hand, face and body land-
marks. An overview of the proposed architecture is presented in Fig.
1. It consists of four main components: Feature Extraction, Gloss Ex-
traction, Auto-regressive Decoding, and Pose-to-Text Translation,
which are analyzed in the following sections.

3.1 Feature Extraction
We first extract the skeleton pose sequences from Elementary23
SL videos using MediaPipe (MP) Holistic [7]. In order to expedite
the training process, we sub-sample both the pose and face mesh
landmarks. For the pose keypoints, we select the 8 points shown in
Figure 2 which include the body parts necessary for a SL video, such
as the torso, elbows and wrists. For the face landmarks, we choose
141 instead of 468 face keypoints, which contain all the necessary
face information, such as the mouth, eyes, nose and face perimeter.
For each hand, we keep all 21 landmarks. This brings us to a total of
191 landmarks, instead of the original MP 543 landmarks, which is a
substantial reduction to nearly one third. Finally, the total extracted
landmark sequence for each frame is defined as follows:

P𝑓 = [a𝑙𝑒 𝑓 𝑡 ℎ𝑎𝑛𝑑 | |a𝑟𝑖𝑔ℎ𝑡 ℎ𝑎𝑛𝑑 | |a𝑓 𝑎𝑐𝑒 | |a𝑝𝑜𝑠𝑒 | |𝑐 𝑓 ] (1)

where 𝑃𝑓 is the landmark sequence for the f-th frame, 𝑐 𝑓 is the
counter value ranging from 0 to 1 that indicates the relevant frame
posisition and | | the concatenation symbol.

Figure 2: Extended Skeleton Representation based on Me-
diaPipe Holistic [7]: (a) Original 33 MP pose landmarks. (b)
Selected 8 MP pose landmarks for SLP. (c) Original 478 MP
face landmarks. (d) Selected 141 MP face landmarks for SLP.
(e) MP hands.

3.2 Text to Video Transformer Module
After extracting the pose sequences from the dataset, we employ
a transformer-based architecture to tackle the Sign Language Pro-
duction (SLP) task, and ultimately transform text sentences to sign
sequences. The key distinction between our approach and a classic
encoder-decoder architecture is that the decoding process happens
auto-regressively, meaning the model produces a sign pose frame at
each time-step given the text embeddings and the previously gen-
erated pose embeddings. The training objective of the transformer
module is concluded by regressively calculating the MSE between
the ground-truth 𝑦∗1:𝐹 landmark sequence and the predicted land-
mark sequence 𝑦1:𝐹 , with 𝐹 being the total number of frames. Fig.
3 shows the text2pose Transformer architecture.

Figure 3: Proposed Sign Language Production Transformer

3.3 Teacher Forcing vs Auto-regressive
Decoding

In previous methods [12], transformer models were trained using
teacher forcing. This approach involves providing the model with
the ground truth spatial embeddings from the previous frame during
sequence generation. By using the correct embeddings as input,
this method enables parallel training with known outputs. While
teacher forcing has demonstrated satisfactory results on limited
vocabulary datasets such as PHOENIX14T [4, 12], it struggles with
the broader and more diverse Greek Sign Language dataset. In
general, while teacher forcing provides better training stability
and ensures alignment between inputs and outputs—particularly
in the earlier stages of training—it suffers from error compounding
during inference, as the network is unable to recover from its own
prediction errors.

On the contrary, autoregressive training generates frame se-
quences sequentially during training as well. In this approach, the
model predicts each frame by conditioning on the spatial embed-
dings it has previously generated. Before applying the MSE loss,
the entire sign sequence is generated from the text embeddings,
effectively mimicking the inference process. This allows the model
to learn to correct its own errors rather than relying on ground-
truth inputs. However, this training process is considerably more
time-consuming than teacher forcing due to the sequential nature
of frame generation.

To balance efficiency and effectiveness, we employed a hybrid
approach, training the model using teacher forcing and autoregres-
sive generation for half of the epochs each. Specifically, we began
training with teacher forcing to leverage its stability and strong
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input-output alignment during the critical early stages of training.
This ensures the model effectively learns the foundational rela-
tionships in the data. We then switched to autoregressive training,
allowing the model to learn to correct its own errors and better han-
dle the challenges of inference. This strategy combines the strengths
of both methods, resulting in improved performance compared to
using either method independently. Quantitative results comparing
these approaches are presented in Section 4.

3.4 Video to Text Translation Module
An integral component of our training pipeline is the implementa-
tion of the pose-to-text loss. This approach entails the pre-training
of a distinct Translation model that maps the 2D sign sequences
to text, which is subsequently utilized during the training of the
text2pose (forward process) model. The objective is to enhance
accuracy and prevent the model from regressing to mean pose,
which often happens when only training with MSE loss, and also
prove its ability to reinforce the quality of the forward translation.
The translation loss, essential for both training and evaluation, is
formulated following [4] as follows:

𝐿𝑇 = 1 −
𝑈∏
𝑢=1

𝐷∑︁
𝑑=1

𝑝 (�̂�𝑑
𝑢 )𝑝 (𝑤𝑑

𝑢 |ℎ𝑢 ) (2)

where 𝑝 (�̂�𝑑
𝑢 ) is the probability of word 𝑤𝑑 at decoding step u,

while D is the vocabulary size.
∏𝑈

𝑢=1 𝑝 (𝑤𝑑
𝑢 |ℎ𝑢 ) is calculated by

sequentially applying CTC Loss on a frame level for each word.

Figure 4: Proposed Sign Language Translation Transformer

In order to implement the pose-to-text translation model we built
on the state-of-the-art, publicly availiable network Sign Language
Transformers by Camgoz et al. [4]. Simplifying the overall training
process that performs both SL recognition and translation, we keep
solely the translation loss objective, aiming to achieve the desired
results through a direct sign2text model. The complete architecture
of the pose-to-text module is shown in Figure 4.

3.5 Gloss Extraction as an intermediate step
Next, we explored the use of off-the-shelf large language mod-
els (LLMs) to automatically generate gloss annotations for the SL
dataset. This approach effectively reduces the lexical diversity of
the dataset by condensing commonly used words, such as articles
and connective phrases, while preserving the overall meaning of
the sentences. Given the established benefits in previous literature,
where gloss annotations as an intermediate step have been shown

to enhance model performance [12], [15], we anticipate observing
similar improvements in our experiments. Shown below in table
1 are Gloss Generation examples from the Elementary23 Dataset
using the GPT-4o API.

Prompt Transform this Greek sentence into Greek Sign Language gloss: "I
complete the table by first estimating the values approximately and
then checking my calculations"

Gloss COMPLETE TABLE ESTIMATE FIRST VALUES APPROXIMATELY
CHECK THEN CALCULATIONS

Prompt Transform this Greek sentence into Greek Sign Language gloss: "The
line of symmetry divides shhapes into two equal parts"

Gloss LINE SYMMETRY DIVIDES SHAPE TWO EQUAL PARTS
Prompt Transform this Greek sentence into Greek Sign Language gloss: "I

observe and continue the patterns"
Gloss OBSERVE CONTINUE PATTERNS

Table 1: Examples of the text-to-gloss sequence translation
that we adopt, based on LLMs. Note that the original sen-
tences and gloss outputs are in Greek, however we present
here the English translations.

4 Experiments and Evaluation
In this section, we provide extensive comparative analyses and
ablation studies on the Elementary23 dataset. First, we explore how
the model performs on Signer-dependent subgroup of the Maths
subset (for the twomost frequently appearing Signers in Elementary
23 Maths subset). Next we explore how the model performs on
entire sections of the dataset, with a class-related theme (i.e. Maths
Subset, Greek Language Subset). Following [12], [13], we perform
evaluation using the NLP metrics BLUE-4 and ROUGE-L, and also
DTW (Dynamic Time Wrapping) for measuring similarity between
the produced and ground-truth sign sequence.

4.1 Dataset
As mentioned in section 2, the Elementary23 dataset [20] contains
annotations of the first three classes of Greek Elementary school
books in all subjects, with a large vocabulary exceeding 30,000
words. In our work, we focus on The Greek Language subset which
contains 9499 videos with a vocabulary of 14345 words, and the
Math subset which contains 6583 videos with a vocabulary of 6457
words. Specifically for the Math subset, we begin our evaluation
in subsection 4.3, by training the SLP pipeline on the two most
prominent signers, referred to as Signer A and Signer B, who appear
in 3,476 and 746 videos, respectively. Then, in subsection 4.4, we
generalize our training process across all signers to achieve a more
holistic result. Table 3 visualizes the size and vocabulary of each
subset used.

4.2 Evaluation of the sign-to-text module
First, we evaluate the Sign Language Translation (sign-to-text) Mod-
ule. The sign-to-text module is crucial for our pipeline, as it’s used
during SLP evaluation in the following sections, as well as during
text-to-sign SLP training. Table 2 shows that we achieve a BLUE-4
score of 7.69 on the Math and 5.52 on the Greek subset, which is
quite promising and close to the 6.67 mentioned in the original
paper [20] on the SLT task.
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Dev Test
Sign-to-Text Method BLEU-4↑ ROUGE↑ BLEU-4↑ ROUGE↑

Voskou et al. [20], trained on entire Elementary23 6.67 - 5.69 -
Ours, trained on Elementary23 Math 7.58 15.11 7.69 15.26
Ours, trained on Elementary23 Greek 5.63 14.56 5.52 14.23

Table 2: Evaluation of the sign-to-text module on the Elementary23 SL Dataset. Please note that results are not directly
comparable due to differences in the test sets.

Videos # Words

Math Signer A 3473 3654
Signer B 746 1059

Greek Signer A 2467 4749
Signer B 1927 3535

Table 3: Elementary23 subsets

4.3 Evaluation of signer-specific training
To begin our SLP evaluation, we performed experiments on the
Mathematics subset of the Elementary23 dataset, on the two most
frequently appearing signers, Signer A and Signer B. To assess the
model’s ability to generalize across different signers, we performed
two separate training sessions: one focused exclusively on Signer
A and the other on Signer B. For evaluation, we alternated between
their respective test sets to measure cross-signer performance. Re-
sults are shown in table 4. We clearly see that the model fails to
produce accurate signs when the "wrong" test set is used. These find-
ings suggest that the model struggles to generalize across signers,
likely due to differences in signing styles or vocabulary correlations
unique to individual signers. To address this limitation, we proceed
to train our models on larger sections of the Elementary23 dataset,
emphasizing the need for more generalized training approaches.

Test - Signer A Test - Signer B
BLEU-1↑ BLEU-4↑ BLEU-1↑ BLEU-4↑

Train - Signer A 17.05 5.02 5.93 0.00
Train - Signer B 6.29 1.18 21.87 6.69

Table 4: Ablation Study on the Elementary23 Greek Language
SL Dataset. Best-performing results are highlighted in bold,
while failure scores in the case of swapped signer test scores
are shown in red.

4.4 Signer Independent Studies
Next, we focus on conducting experiments on entire sections of the
Elementary23 dataset, disregarding the fact that videos are filmed
with different signers. We specifically choose the entire Math subset
and the Greek Language subset. Our first ablation study, shown in ta-
ble 6, compares training with Teacher Forcing (TF), Auto-regressive
Decoding (AD), and their combination (TF+AD), underlining the
benefits of employing a hybrid approach. While Auto-regressive De-
coding achieves significantly higher BLEU-4 and ROUGE scores (5.4
and 14.5 on the dev set, respectively) compared to Teacher Forcing
(1.69 and 8.52), the hybrid TF+AD model provides balance between

computational efficiency and predictive accuracy. Notably, the hy-
brid model achieves the highest overall performance, both in the
Greek and Math subsets, validating the importance of alternating
decoding strategies during training.

Dev Test
𝑝𝑜𝑠𝑒 − 𝑡𝑜 − 𝑡𝑒𝑥𝑡 𝐿𝑜𝑠𝑠 𝐺𝑙𝑜𝑠𝑠 BLEU-4↑ BLEU-4↑

✗ ✗ 4.17 4.15
✗ ✓ 3.56 3.44
✓ ✗ 4.42 4.55
✓ ✓ 4.06 4.32

Table 5: Ablation Study on the Elementary23 Greek Language
Dataset. We highlight best performing scores in both dev and
test sets.

Time/ Dev Test
Method Epochs Epoch (s) BLEU-4↑ BLEU-4↑

G
re
ek Teacher Forcing, [12] 2500 5 0.49 0.35

Autoregressive Dec 2500 30 4.3 4.13
TF + AD 1250, 1250 5, 30 4.67 4.46

M
at
h Teacher Forcing, [12] 2500 5 1.69 1.46

Autoregressive Dec 2500 30 5.4 5.3
TF + AD 1250, 1250 5, 30 5.69 5.59

Table 6: Ablation Study on the Elementary23 Greek (Top)
and Math (Bottom) SL Dataset. Best TF+AD results are high-
lighted in bold. Teacher Forcing (TF) method can be consid-
ered equivalent to the Progressive Transformers (PT) work
[12].

Our next ablation study, shown in table 5, on the Elementary23
Greek Language Subset, shows that the inclusion of pose-to-text
Loss and Gloss annotations possessively affects on performance.
Although BLEU-4 scores improve independently (4.42 dev, 4.55 test),
the combination with Gloss yields mixed results, slightly reducing
BLEU-4 on the dev set (4.06) but improving on the test set (4.32). This
interplay suggests that while gloss annotations simplify linguistic
diversity, over-reliance on glosses can limit adaptability. Through
these ablation studies we structure a useful evaluation process of
our architecture’s components, demonstrating how they enhance
SLP performance.

4.5 Experimental Setup
All models have been trained using 2-layer transformers with 4
attention heads, embedding dimension 512 and all weights are
initialized with Xavier initialization. We trained all modesl using
the Adam optimizer with a learning rate of 1e-4, a batch size of 32,
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Figure 5: Sample (test set) visualizations of our SLP method. Top to bottom: Text inputs, 2D generated sign sequence from text
embeddings, ground-truth sequence reference, RGB reference. Figures are best viewed in video form.

Figure 6: Comparison of the averaged DTW results on the
Math and Greek Test Subsets. Again the hybrid combination
of teacher forcing and auto-regressive decoding during train-
ing significantly improves sequence alignment.

and early stopping based on validation loss. For compatibility across
pipelines, all SLP and SLT models within a specific data subset (e.g.,
Math or Greek) adhere to identical architectural specifications.

4.6 Qualitative Results
Lastly, in Figure 5 we showcase representative results from our
proposed pipeline, evaluated on test sentences from the Elemen-
tary23 dataset using our best-performing models.

5 Conclusions
In this paper we presented the first SLP pipeline applied on Greek
Sign Language Datasets, actively improving existing architectures

Figure 7: Sample visualization of the effect of the pose-to-text
Loss. Top to bottom: (a) 2D Pose w/o pose-to-text Loss, (b) 2D
Pose with pose-to-text Loss, (c) ground-truth sequence ref-
erence. When used, the generated poses show greater move-
ment variability and regress less on mean pose.

through novel components. We presented our best results, which
where achieved through the combination of gloss generation, de-
coding scheduling and pose-to-text translation training. These SLP
methods find useful application mainly in the sign language learn-
ing process and education. In the future, we aim to expand our work
so that it also incorporates a generative module for photorealistic
SL video synthesis, as this is considered a necessary component for
a SL user. It’s finally important to emphasize that SLP models are
not intended to replace sign language interpreters. Instead, they
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serve as a complementary tool, providing an ethical and practical
solution for educational purposes.
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