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Abstract: Multi-robot systems have substantially increased ca-
pabilitics over single-robot systems and can handle very large or
peculiar objects. This paper presents a differential (incremental)
motion planning algorithm for an m-robot system (m > 2) to co-
operatively transfer an object from an initial to a desired final po-
sition / orientation by rigidly holding it at given respective points
Q1.Qs,...,Q,. Oneof the robots plays the role of a “master” while
other robots operate in the “slave” mode maintaining invariant their
relative positions and orientations during the system motion. The
method employs the differential displacements of the end-ceffector of
cach robot arm. Then, the differential displacements of the joints of
the m robots are computed for the application of incremental motion
control. The algorithm was tested on many examples. A represen-
tative of them is shown here, concerning the case of three STAUBLI
RX-90L robots similar to 6-dof PUMA robots. The results obtained
show the practicality and effectiveness of the method, which, how-
ever, needs particular care for completely eliminating the cumulative
errors that may occur.

Keywords: multi-robot systems, cooperative robots, incremen-
tal robot motion planning, master and two-slaves system, multi-
robot kinematics, rigidity condition.

1. Introduction

Multi-robot systems have attracted inereasing attention over the years for both
their theoretical and practical interest, with many important results already
available (Alford and Belyeu, 1984, Freund, 1984, FFujii and Kurono, 1975,
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Freund and Hoyer, 1985, Hoyer, 1985, Tournassoud, 1986, Zapata ct al., 1987,
Schneider and Cannon, Jr., 1988, Yoshikawa and Zheng, 1990, Paljug et al.,
1991, Henrich and Cheng, 1992, Su, 1992, Mayorga and Wong, 1997, Wang ct al.,
1997, Unseren and Koivo, 1989, Unseren, 1991, Choi and Lee, 1995, Kwon and
Lee, 1996). Many industrial operations and tasks can be performed efficiently
by a single robot with or without redundant degrees of freedom (Tzafestas.
1991a, Zagorianos. Tzafestas and Stavrakakis, 1995, Zagorianos, Kontoyiannis
and Tzafestas, 1994, Tzafestas et al., 1988, Tzafestas. 1989, Stavrakakis et al.,
1990. Tzafestas, 1991b. Tzafestas et al., 1996, Tzafestas and Prokopiou, 1997).
However, there are tasks which need two or more cooperating robots for satisfac-
tory and economic performance. The case of two cooperating robots handling
large objects or long flexible bars has been investigated by several rescarchers
(Alford and Belyeu, 1984, Freund, 1984, Fujii and Kurono, 1975, Ishida, 1977,
Kim and Zheng, 1989, Koivo, 1985, Koivo and Bekey, 1988, Lim and Ghyung,
1985, Paljug and Yun, 1995, Zheng and Lul, 1985). Most of these publications
present theoretical investigations and only a few provide practical experimental
studies (e.g. Paljug and Yun, 1995). For example, in Freund (1984) fecdback
linearization is introduced, and the pole placement technique is applied to the
desired linear state-space model. In Fujii and Kurono (1975), each joint is
controlled by a proportional type controller with the error being expressed in
Cartesian space. In Ishida (1977). the master-slave mode is considered, where
the master arm is controlled by a position PID controller with a feedforward
term, and the slave moves in cooperation with the master while its force is con-
trolled so as to balance the interactive force exerted by the master via the object.
In Koivo (1985), the controllers of the two arms are designed using the MIMO
discrete ARX model with external inputs, where the parameters arc estimated
on-line recursively. Experimental real-time results are presented in Koivo (1985)
for two PUMA 250 robot arms that manipulate large objects. In Wu (1997),
the problem of gencrating collision-free. near time-optimal trajectories for two
cooperative redundant robots between two sets of end-points is treated. irst,
the time-optimal trajectory of one robot is found, and then the collision-free
trajectory for the other robot is determined, by regarding the first robot as a
moving obstacle. Then, the travelling time is minimized by an iterative scheme
which scales down the time profiles of the robot trajectories.

Although the capabilitics of 2-robot-systems are considerably increased over
single-robot-systems, they are still unable to handle (grasp, manipulate, trans-
for etc.) very large, very heavy or flexible objects. Therefore, attention must
be turned to the case of using three (or more) cooperating robots. Some stud-
ies of mmlti-robot systems can be found in (Freund and Hoyer, 1985, Hoyer,
1985, Tournassoud, 1986. Zapata et al., 1987, Schneider and Cannon, Jr., 1988,
Yoshikawa and Zheng, 1990. Paljug et al., 1991, Henrich and Cheng, 1992, Su,
1992, Mayorga and Wong, 1997, Wang et al., 1997, Unseren and Koivo, 1989,
TThearon 1007 (hai and Tea 1005 Kwon and Lee. 1996). In eeneral. the prin-
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1988), combined position and force control (e.g. Koivo, 1985, Yoshikawa and
Zheng, 1990. Wang et al., 1997), decoupling control (e.g. Unseren and Koivo,
1989, Unseren, 1991) and force / load distribution (c.g. Choi and Lee, 1995,
Kwon and Lee, 1996). For example, in Mayorga and Wong (1997) a robust
scheme for on-line concurrent motion planning of multi-robot systems is devel-
oped. which uses a linear set of equations for cach robot and takes into account a
vector for motion planning. This scheme can coordinate in real-time the motion
of the robots, and prevent singularities employing sensor-based information. In
Wang et al. (1997), the control problem of multi-robot systems is decomposed
into motion-control and internal-force control. It is shown that, under the rigid-
ity assumption (no slippage of the end-effectors on the object), the motion
control subsystem does not depend on the internal force control, and so any ad-
vanced motion-control law developed for a single robot can be applied directly
to the motion control of the multi-robot system. The above paper contains
experimental results for a system consisting of two RTX robotic manipulators.

The purpose of the present paper is to treat the problem of motion planning
of m-robot systems aiming at moving large objects from an initial to a desired
position / orientation under the rigidity assumption. The algorithm is based
on the technique of Paljug and Yun (1995) which is properly extended to the
m-robot case (m > 2). Single robot tasks can be performed by controlling the
robot’s end-effector such as to follow a desired path, without controlling the
exact time at which the end-effector passes through the particular points on
the trajectory. The orientation of the robot’s end-effector during the motion
may also be irrelevant. This is not true in multi-robot systems, where, once
the two or more end-effectors grasp the object, their relative positions and
orientations with respect to cach other must remain invariant during the entire
operation. Actually, in cooperating multi-robot systems, each end-effector must
pass through a particular point on its trajectory at exactly the right time, and
the orientations of the end-effectors must also be the proper ones.

Section 2 presents the multi-robot kinematic equations and the general kine-
matic constraints which the robots have to satisty due to the rigidity condition.
Section 3 derives the absolute and incremental motion equations of the m-robot
systeni, and develops the proposed differential motion planning algorithm. Sec-
tion 4 provides the full study of a 3-robot (master-and-two-slaves) example,
where it is assumed (without loss of generality) that the three grasping points
define an isosceles triangle, and that the three robots are placad in a symmet-
ric lay-out on the shop floor. The performance of the system is expressed using
suitable “relative positioning and orientation” error measures. Finally, Section 5
gives the conclusions and indicates some directions for further investigation.

2.  Multi-robot kinematics

Consider m robots R; (i =1,2..... m) in a common work snace. which aim to



570 C.5. TZAFESTAS, P.A. PROKOPIOU, S.G. TZAFESTAS

(Tw, Yw: zw), then the position and orientation of the object with respect to w-c
is given by an homogenous matrix A”:

N n oo a:p Pz
__& = [ ,-“.‘(.],.....‘E..i. j|‘ P_: Py (]_}
P

where the 3-dimensional vectors n, o, a define the orientation of the object, and
p is its position vector (position of the origin of the coordinate system [n., o, al,
which is usually placed at the center of gravity of the object).

(a) . /
op ;
Habr Object Zy
Ry
—
Robot k
1
T R;
w-C 1
e Y Robot i Robot j

(b) (object’s c.g.)
G
C]

Figure 1. (a) An object handled by a system of m cooperating robots (C =
object’s center of gravity, (o, %o, 2o) = object coordinate frame, (z;,yi,2) =
eaordinate frame fixed to the i-th end effector). (b) Arrow diagram of the
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The position and orientation of this object with respect to the coordinate
systems S; (i = 1,2,...,m) of the bases of the robots is given by (see Fig. 1b):

A =GR f= 1 % (2)

In practice, the relative positions of the bases of the m robots on the shopfloor
influence the shape of the robot workspaces as well as the overall motion of the
system.

Figure la shows an object grasped by the m cooperating robots in a work-
space with a total of n degrees of freedom.

The robots grasp the objects rigidly at the points @Q; (i = 1,2,...,m), i.e.
no slippage at the grasping points occurs. Therefore, one can either define the
initial and final positions of these points. or the initial and final position of the
center of gravity C of the object, plus the initial / final object’s orientation. The
initial and final positions, or the path of the object. defined in one of the above
two ways, are used to determine the motion path (position and orientation) that
must be followed by the end-effector of each arm.

The position and orientation of an end-effector, with respect to the cor-
responding robot-base reference frame is described by an homogenous 4 x 4
transformation matrix ﬁ_s‘ of the type described by (1). The coordinate sys-
tems of the end-effectors and of the grasping points @Q; (i = 1,2,...,m) are as
shown in Fig. 2.

Figure 2. Coordinate systems attached to the end-effector i and grasping point @;

Therefore, if G' is the coordinate system attached to the grasping point Q,
(i=1,2,...,m) expressed in the corresponding robot reference frame, then

G' = H%® (3a)

where

-1 0 0 0

0 01 0 ,
€= 49 10 0 (3b)
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is the fixed transformation from ﬂ_s"' to G* (see Fig. 2). Usually, we consider one
of the robots (say the robot j) to be the master robot and define the coordinate
systems attached to the points @Q; (i = 1,2,...,m, i # j), with respect to the
coordinate system attached to the master grasping point @;. This calculation
depends on the geometry defined by the Q;’s.

The generalized Cartesian position / orientation vector P of the object frame
(0, Yo 20) attached to its center of gravity can be expressed in terms of the joint
position vector g. of the robot as:

£:-‘{_’§(gi)1 1= 1,2,...‘??1. (4""‘)

Clearly, P involves the Cartesian coordinates of the object’s center of gravity
C and the angles of rotation of the object’s frame. Thus, inverting (4a) gives:

Ql=£3_l(£)‘ = 12Tl (4b)

From (4a) it follows that the joint positions of the m robots must satisfy the
following kinematic constraints:

Li(q) = Ly(g,) = ... = L,(q,) (5)

If J,; is the transformation matrix from the object frame to the ith robot
end-cffector frame, and J; is the Jacobian matrix of the #th robot, then

E:im{,sip S o A (Ga)
where Jyp; = OLi(q:)/0q; is practically computed by:

Loge =45 A (6h)
Therefore, the following velocity constraints hold:

iuuﬂl = iof,eﬂg =...=JLormd,,- (7)
Differentiating (6a) and (7) yields the respective relations and constraints for
the object’s generalized Cartesian-space acceleration vector and the joint accel-
erations of the m robots, i.c:

P= lnuﬂ,— + oLl (8a)
-'-Lli.lgl + '-!'-ULIQI = JUL?,Q?‘ + .‘—‘{U.I’.Qig S = l’ill.{.mim oy -'—‘-’-l}Llnim (SI})

Equations (4a), (6a) and (8a) can be used for checking if any constraints regarding
the positions, velocities and accelerations of the joints are violated by the desired
position, veloeity and acceleration of the object grasped and transferred by the
wolinbn Rawatiane (R 7V and (8h) represent the kinematic conditions for
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3. Multi-robot motion planning
3.1. Absolute motion equations

Here, the motion equations of the object in space will be provided. Consider first
the motion of the point @5 (grasped by the master arm). This motion is defined
by a time-varying homogeneous transformation matrix M(t) which determines
the lincar and angular displacements needed for the point @Q; to go from the
initial to the desired final position and orientation. The matrix M(#) is given by

M(t) = (9)
reraV(Te) + c(re)  reryu(Te) —ris(re) rirev(re) +ryslre) Tox
raryu(re) +ra8(re)  ryru(re) +e(re)  ryrav(re) —res(re) Ty
rar:0(re) — rys(re) ryrav(rte) +ras(re)  rersvlre) +o(re) 7oz
0 0 0 1

where 7 = £/ty is normalized time (!f is i‘ll(‘ time in which the motion has to
be completed), s(.) = sin(.), ¢(.) = cos(.), v(.) = 1 = cos(.), p = [x.y, z]T is the
position displacement, and t.]lL vector 1 = [? w1y r:) T defines the axis about
which the initial coordinate system must rotate by an angle ¢ to obtain the final
orientation.

Now. if G*(0) is the matrix defining the initial position / ovientation of the
point ;. then the time-varying position / orientation of @; with respect to the
w-¢ system is given by

GH(t) = G(0) - M(t) (10)

and the final one is given by

Gy =G (ty) = G*(0) - M(ty) (11)
where
z=nT(0)[p(ty) - p(0)]. y =" (0)[p(ts) - p(0)),
2= a" (0)[p(ts) = p(0)] (12a)
0y = cos™ ! [(%)(n T(0) n(ty) + 0" (0)olts) + ap(0)alty) = 1) ] (12b)
a’(0)alty) ~ r_ (0)a(ty )
r=| n'(0)a(ts) - r_ )'-'_( - (12c)
o™ (0)n(ty) — u"(0)af

The motion of the other points Q; (¢ # j) of the object is defined by
G(t) = 87 'GMOIM()KS, i=1,2,3,...om, i# ] (13)

where the matrices S; (i # j. 1 = 1,2,...,m) define the coordinate frames of the
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Qi (2 # j) with respect to the coordinate frame attached to @Q; (grasped by the
master). The arrow diagram of the transformations involved in (13) is shown in
Fig. 3.

Qi (Slave robot) Q; (Master robot)

Initial position
M(t)  of jth grasp point
(Master robot)

G'O=G O M()

T GN0)

Figure 3. Arrow diagram of the transformations G#(0) (master), M(t), G*(t),
S, K}, and G'(t) = S7'G*(0)M(t) K {sce Eq. (13)}

The motion of the end-effectors of the robots at the point Q; (for the master)
and Q; (i # j for the slaves) is defined by the transformations ﬂ‘w(t) and _PJ_’Si(t),
i # j, respectively, which can be determined by equating the right-hand sides of
(see (3a,b)):

GA(t) = HM(t)- @, Gi(t) = H5'(t)- 0, i#j

with the right-hand sides of (10) and (13) respectively, and solving the resulting
equations, namely:

HY(t) = g*(0)M(t)8, H(t) = S7'G(0)M(HK;O, i # (14)

where the relation @' = @ was used.

3.2. Incremental motion equations

We now determine the incremental (differential) motion equations of the m-robot
arm system. Let

Q = [d;l'! d‘yl d:; d(p:l:! d(p!."- d‘p-'?]T

be the differential motion vector, where d,, d,, d. are differential linear displace-
ments, and dg,., dp,, dp. are differential angular displacements with respect to
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Consider the master’s grasping point ;. The coordinate system of @Q; at
the time (¢ + dt) is given by

GA(t + dt) = GA(t) + dGA(t) = GA)L + 4] (15a)
where [ is the 4 X 4 unit matrix, and

0 —-dy. dy, dz
A dep. 0 —dp, dy
=7 =dey  des 0 dz
0 0 0 0

(15b)

Similarly, the differential transformations for the robot arms are defined by

HMNt+dt) = HFt)[L+ A4 (16a)
0 —dy* d(pfj dx
. 1ok 0 —der  dy
é}v — C SO: ; 1 Qp.’n, J (161))
—d%’} dtpi 0 dz
0 0 0 0

with & = M for the master, and k= S; (i # j, i = 1,2,...,m) for the slaves.
From the analysis of Section 3.1, it follows that:

HM(t) = G418, S;H%(t) =G (KO, i=1,2,....mi#j  (17)

Similar equations hold for the time instant (¢ + dt). _
Now, using (15a,b), (16a,b) and (17), and solving for AM and AS? (i # j)
one obtains:
AV = [HM @)@ (h a0
A% () = [H3*@)] 'S\ CMNAKSS, i=1,2,...,m, i# ]

which by (17) reduces to:

AM =046 o
A5 () = OKITTAKIS, i=1,2...,m, i #]. (18b)

Equations (18a,b) give the displacements of the robot end-effectors in terms of
the differential displacement matrix A of the master’s grasping point ;.
Using (15b) and the definition (3b) of @, AM in (18a) gives for the master
robot:
dpM = —~d¢,, (l(/)fy = d¢,, de} =dg,
deM = —da, dg/“[ =dz, dzM =dy.

(19)

Similar eaquations can be derived for the slave rohots if ane comnutes (1K) neine
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3.3. The differential motion planning algorithm

To develop the proposed incremental motion control algorithm (for each robotic
arm) the total linear and angular displacement of the master grasping point @
(p = [,y 2]" and ¢.) given by (12a.b) is divided in a large number of small (nearly
infinitesimal) displacements p and 8yp. (The planning algorithm uses practical
small displacements which are denoted by §p and 8 to distinguish them from the
theoretical differential displacements dp and dg. ) From these displacements and
the above relations one can compute the corresponding displacements 5;_:3‘” : 559'”.
6p5i, 8p%" (i =1,2,....m. i # j) of all robot arms.

Let qr (k=1.2....,06) be the displacement of cach joint, and dg;. the corre-
sponding small displacenent. Then, one can write for the master robot arm:

[61” 6JJ\.‘ 62” 61’,’5:” J'If 6(}"\!]

=JY(q.....q6) - [8a]. 5@‘” - (20)

where JM is the Jacobian matrix of the master arm. Similar equations hold for

the slave robot arms, too.

Given the small displacements da™ ..., 8o (determined as previously dis-
cussed ) one can find the corresponding 6@" (k= 1,...,6) by solving the Jacobian
equation (20), assuming that the robot does not pass via, or very near to, the sin-
gular configurations. This must be tested by simulation prior to the application
of the algorithm in a practical case.

On the basis of the above analysis the incremental control algorithm is as
follows:

e Step 0 (Initialization): Determine the initial position (the gs; j = M, S;,

1= 1.2 0 m. i # M) of each robotic arm, and the final position / ori-
entation of the master arm. Also specify the desired time ¢y for task
completion.

o Step 1: Compute the linear displacement vector p = [z,y,2]*. the axis of

rotation r = [ry, 1y, 7 -], and the total rotation angle ¢, from the equation
(12a,b,c). Determine the number of elementary segments into which the
motion from the initial to the final position / orientation will be split. and
compute the corresponding dp and dy of cach of them.

e Step 2: Sct éq,‘ =0k =D onsB)s

o Step 3: At cach time ¢ compute §pM. 8", 5p>, 867 (8 = 1. 2uunitiy
i # M) using (18a.b)

e Step 4: Using the 6;&’ 6(pJ (=M Si=1200 s, i # M) found in Step 3,
compute the 5(],‘, (=M, 8,i=12...mi#M,k=12,...,6) by
solving the Jacobian vqudtion (20).

e Step 5: Upddt(‘ the ¢}'s as

qk.nc\\ qk old ™ 6(1‘1. )
and reneat from Step 3 until time ¢4 is reached. Here, of course, ¢ is
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The computational requirements of this algorithm are comparable to those of
other m-robot motion planning / control algorithms (see e.g. Zapata et al., 1987,
Wang et al., 1997). The application of suitable parallel task scheduling / grouping
techniques can substantially reduce the actual computation / implementation
time (Tzafestas, 1991c, Tzafestas and Triantafyllakis, 1993, 1994, Tzafestas et
al., 1995), thus giving the algorithm more practical value.

4. A master-and-two-slaves example

Here a 3-robot system will be fully treated, where the robot Ry is considered to be
the master, cooperating with the two slave robots Ra and Ry. It is assumed that
the robots grasp a planar object at three points A = Qy, B = @ and C' = @y,
which define an isosceles triangle as shown Fig. 4. The coordinate frames attached

Initial Position ZoA

! %% \

y \:"-.
(Ry)
ch
c
N

Final Position

Figure 4. The master R grasps the object at point A, and the slaves Ry and R
at points B and C, respectively. The triangle ABC' is isosceles: (AB) = (AC)

to the grasping points A, B and C. and expressed in the corresponding robot
reference frame, are (see (3a,b) or (13)):

@ = I¥ g, B8 =J%0, 0% = H™ B,

Here, the matrices K and A7 that define the coordinate frames attached to
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grasping point A, are (sce Fig. 4):

1 0 0 -8 -1 0 0 8
. |0 =10 3 . |0 -1 0 3
Kz=19 0 1 0 |"&=|0o 0o 1 0 (21)
0 0 0 1 0 0 0 1

The w-c¢ reference frame is defined to be the coordinate frame (z,,yo, zo) of
the master’s base, and the 3-robot system is assumed to possess the symmetric
configuration shown in Fig. 5.

Master M

Slave 2 (S5) Slave 1 (Sy)

Figure 5. Symmetric master-and-two-slaves configuration (all axes z,, 2}, 2] are
normal to the plane M-5;-5;)

From Fig. 5 it follows that the matrices S, and S, defining the coordinate
frames of the slaves 1 and 2, respectively, are given by:

-1 0 0 h -1 0 0 h
0 -1 0 b 6 T 0 =b
Si=1 o 0 100'%25| 0 0 1 0
0 0 0 1 0 0 0 1

One can see that in this symmetric configuration: §‘-_1 =38, (i=1,2), whereas
the transformation from @, y., 2, to z, 4., 2! is equal to:

{ <1. 00 O ] { <1 00 0
0 1 0 2b ” 0 1 0 -=2b
Syp = n 0 1 n ) 3121 & n o0 1 0 = ﬁ‘)l'
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It must be remarked that in practice the distances b and h must be carefully
selected and depend on the shape of the workspaces of the three robots, as well
as on the overall motion of the three-robot system. Usually, one can find suitable
values of b and h that depend on the application at hand.

The displacements of the end-effectors of the two slaves in terms of the
differential displacement matrix A of the master at the grasping point A, are
given by (18b). Therefore, using (3b), (15b) and (21) in (18b) one finds:

Slave 1
d3* = dey, dep* = dp., dpdt = —dp,
dz®t = dz - 3ady., dy*' =dz + pdy, + 3ade., dz% = —dy + Bde,

Slave 2
dp3? = dp,, dpy? = dp., dp3? = —dp,
dz®* = dz — 3ade., dy*?* =dz — Bdey, + 3ade., dz%2 = —dy — Bde..

The proposed differential motion algorithm was applied to several trials of
simulated robots. Here we present the results obtained for three Staubli RX-90L
robots that are similar to the PUMA 700 robot, and possess six revolute joints
and a workspace of a radius of about 120 cm.

The simulated task consists of picking up an horizontal plate and performing
a vertical translation of 30 cm as well as rotation of 40 degrees about an axis
parallel to the z-axis of the master-robot coordinate frame. The dimensions of
the plate are taken to be (180 c¢m x 80cm X 4 cm).

Initial and final configurations (as well as eleven intermediate ones) are shown
in Fig. 6. The motion of each robot is planned by making small incremental,
linear and angular displacements, as discussed in Section 3. In order to test the
efficiency of the method, we varied the number N of increments. To evaluate
quantitatively the performance of the algorithm we used a “relative-positioning
error” measure €,, defined as

Ep = \/612) s1,M + 6‘12)‘52‘1\1 + 612).82,.91
= [P = di}1® (i = M, 51, j = 1,5, with i # j)

I)J i

where p“? is the relative position of the j-th robot end-effector, with respect to

the i-th robot endpoint, expressed in the i-th robot local tool frame and d(
the desired (reference), relative-position vector from the é-th to the j-th robot
end effector, expressed in the local i-th tool frame. These reference position
vectors are imposed by the geometry of the manipulated object and the choice
of the grasping points. In our case:

gm)  _ran 91T g(m) f o n sl (S1) e i A
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{t = 2.5 sec) (t = 2.75 sec)

Figure 6. Graphical animation of the simulated 3-robot coordination task. A se-
quence of configurations: initial (¢ = 0), intermediate (¢t = 0.25-2.75 sec) and
final configuration (¢ = 3 sec)

This error gives a measure of the magnitude of the “internal forces” that
may appear during execution of the task. Fig. 7 shows the results obtained for
three different numbers N of differential increments (N = 40,400,1000) and
t; = 3sec. The presence of cumulative errors is practically eliminated (less than
1 mm) if sufficient number of steps (N = 400, 1000) is used, which corresponds
to a differential angular displacement of 0.1 degrees or less. Satisfying these
conditions, the results obtained show that the proposed method can be casily
and efficiently implemented for the case of three-robot coordinate tasks.

A similar “relative — orientation error” expression was also used for the
aviantatinng traiectarios of the end-effectors, which gave analogous results to
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Figure 7. Relative — positioning error for the robots’ end-cffectors

5. Conclusions

In this paper we have considered the problem of transferring an object grasped
by m cooperating robots from an initial to a desired position / orientation under
the assumption that the end-effectors grasp rigidly the object (no slippage of
the end-ceffectors at the grasping points is allowed). A path / motion planning
algorithm was presented which consists of performing incremental linear and
angular displacements computed from the desired motion of the manipulated
object using homogencous transformations.

Numerical simulations showed applicability of the proposed method under
certain conditions regarding the magnitude of the differential displacements,
which is related to the number of increments used.  Nevertheless, complete
climination of cumulative errors may require the reference to the inverse geometrie
model of the robots in a periodic way, in order to reinitialize the resulting
undesirable relative positioning errors.  This is currently nuder investigation
by the authors, along with the problem of adaptive and sliding-mode robust
trajectory control (Tzafestas et al., 1988, 1992, 1996; Tzafestas, 1989, 1991D:
Stavrakakis et al., 1990; Tzafestas and Prokopiou. 1997). using the decomposition
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