Machine Intelligence & Robotic Contrel, Vol. 3, No. 1, 7-26 (2001)

Paper

A New Partitioned Robot Neurocontroller: General Analysis and Application

to Teleoperator Modeling Uncertainties Compensation™

Spyros G. Tzafestas!, Platon A. Prokopiou, and Costas S. Tzafestas

Abstract: This paper presents in a compact unified way some new results on manipulator dynamics identification
and control using neural networks (NNs). First, the issue of robot identification is considered, The neura] net
is divided into three subnetworks, each one corresponding to a part of the robot dynamics, Aiming at enabling
ontine adaptation to changes in the dynamic model without spoiling the role of these subnets, a novel Heuristic Ex-
ror Distribution technique is introduced, theoretically anatyzed, and supported by simulations. This incorporates
prior knowledge zhout the robot dynamics not only in the network structure, but also in the training algorithm.
Multilayer Perceptron (MLP) and Radial Basis Function (RBF) Networks are employed. A teleoperatoy architec-
tare available in the literature is used to test the control performance of the proposed neural network structure.
“This architecture is enhanced to compensate for modeling uncertainties. Simulation results obtained with the
neurocontrollers with 2 and 3 DOF manipulators, as weli as with a sliding-mode controller, are reported. A final
performance comparison slightly favors MLPNN,

Keywords: Manipulator Dyramics Identification, Neurocontroller, Teleoperation, Muitilayer Perceptron, Neural
Networks, Radial Basis Functions

IIl!lllllilllllllllllllI!IIIIIIIIIIII!!lllll!lll!IlIllI!IIII|III!lI!IllllIIlillElllIIIHIlllllllllllitllllllit

1. Introduction

EURAL Networks (NNs hereafter) have gained over

the past years increasing attention from the engineer-
ing community and were applied to various fields, such as
signal and image processing, control, robotics, forecasting
and economics. Although justified criticism has been ex-
pressed by the classic control community on the novelty of
the concepts that NNs introduce [4], their success should
cause no surprise: NNs can approximate a wide range of
nonlinear functions by a simple learning procedure, using
input-output data efficiently, so that a system small in size
and easily implemented, by both hardware and software,
with parallel processing capability is generated. The field
of robotics involves several challenging NN application ar-
eas. NNs can be employed at most parts of a robotic sys-
tem (environment recognition, decision making, path plan-
ning, conirol, etc). Especially in large complex systerms,
such as legged robots [5}, {6], cooperating manipulators [7]
and telemanipulators {8]-[11], where the models at hand
become very complicated, they can offer simple and valu-
able solutions.

Several applications of NNs on single robotic manipu-
lators have been reported in the literature (e.g. {12]-{19]).
In this paper, NNs are exploited at the control level and a
new solution to the manipulator control task is presented.
The whole controller is divided in three subnetworks, each
one identifying a part of the robot dynamics. Such a mod-
ular NN architecture results in a simpler, faster and easier

* Received October 10, 2000; accepted January 6, 2001, This paper is
a unified and upgraded version of three papers presented at the JEEE
ICNN'97 [11, ISIC'97 [2], and ISIAC 98 [3] conferences.
Intelligent, Robotics and Automation Laboratory, Signals, Contral
and Robotics Pivision, Department of Electrical and Computer Engi-
neering, National Technical University of Athens, Zografou Campus,
15773, Athens, Greece, E-mail: 1zafesta@softlab.ece ntua.gr
Institute of Informatics and Telecommunications N.CS.R.
“Demokritos,” Aghia Paraskevi Attikis, Athens 153310, Greece.

-+

+~+

©¥2001 Cyber Scientific

to frain controller, offering good insight on the current sys-
tem situation, but complicates the online training. To over-
come this, a special Heuristic Error Distribution method
{the HERD method) is designed and analyzed in detail,
which reduces the confusion of the networks’ role when
large modeling ervors arise, e.g. when the robot picks up an
object or after an accident. With HERD we effectively in-
corporate prior knowledge about the specific control prob-
lem not only in the structure of the NN, as cumrent con-
sensus dictates, but also on the training algorithm. This
method is our main contribution to the robot control prob-
lem.

The method can be employed to any robotic system, and
can be extended to assist in the control with partitioned
NNs of other classes of systems, as well. Here we discuss
its application to a teleoperator system. Thus the effec-
tiveness of the method is verified in a demanding system,
where the interaction of two manipulators with the envi-
ronment and the non-passive human operator can cause in-
stability and performance degradation much easier than in
a single manipulator, In addition, several issues of the ap-
plication of NNs in teleoperator control are explored, in-
dicating solutions to practical aspects arising at the imple-
mentation of the system. Extensive simulation results are
presented throughout the paper to support the proposed ap-
proach.

Teleoperators will continue to be valuable in the future
for space, underwater, underground, hazardous or medical
applications. Bven though research on autonomous robots
is expected to reduce the need for humans working in hos-
tile or unpredictable environments, our supreme recogni-
tion, analysis, decision-making and manipulation abilities,
are not easy to be matched. Current research topics include
the incorporation of autonomous functions[9], [20], and
the design of schemes robust to time delays in the commu-
nication channel between the master and slave robots {21]-
[23]. Virtual reality techniques are also gaining a ot of

Paper No. 1345-2681/01/G10007-20

8 8. G. Tzafestas, P. A. Prokopiou, and C. S. Tzafestas

attention [241.

NNs, possessing a remarkable ability to identify and
control strongly nonlinear and multivariable plants, with
minimum need for prior knowledge, through an adaptive,
compact and fast system, can provide valuable solutions at
various levels of a telemanipulator. The methods developed
for single manipulators can be applied locally to the master
and slave. In addition, they can assist in the coordination
between the human operator and the machine (e.g. visual
representation, force feedback redefinition, incorporation
of human and environmental dynamics i the control loop,
etc). Certain autonomous functions can alse be assigned to
NNs. However, very few applications of NNs in this field
are reported [1], [2], {25], [26].7

Qur case study is based on the teleoperator architecture
proposed by Lee and Lee[9],[22],[27],{28]. In this, the
traditional concept of telepresence, according to which the
exact position and force sensed at the slave side is fed
back to the operator, so that he feels as if he is “physically
present” at the slave workspace[29], is abandoned. Lee
and Lee argue that in the context of semiautonomous con-
trol, this concept might mislead the operator, since he is not
aware of the automatic functions but “feels” their results.
Doubts about the necessity of telepresence have also been
previously expressed [29]. An alternative goal for teleop-
erators is defined as trying to execute directly the actions
determined by the operator’s intention, rather than just du-
plicating his arm’s movements [9]-{11],[30]. Other inter-
esting contributions in teleoperation research include [31}~
[371.

In this paper, their scheme is modified in order to be
able to compensate modeling uncertainties, arising after the
slave picks up an object of unknown mass and shape, or
caused by hardware malfunctioning, accidental deforma-
tion or deliberate model simplification. In[38] a sliding
robust controller was designed to ensure the achievement
of the desired performance. Here, Multilayer Perceptron
Neural Networks (MLPNNs) and Radial Basis Functions
Neural Networks (RBFNNSs) are utilized for the same pur-
pose [1],[2].

The paper is organized as follows: In Section 2 the robot
identification and control problems are discussed in detail,
and the HERD method is introduced. Simulation results
support the theoretical analysis. Section 3 is dedicated to
the teleoperator system and the modifications we propose.
Simulation results are reported, utilizing both MLP and
RBF NNs. A short presentation of the performance ob-
tained with sliding mode controllers is made, and the three
types of controilers are compared. The conclusions are pre-
sented in Section 4.

fLee [27] proposed a genmeral architecture, termed “Sensing-
Knowledge-Command Fusion Network,” for performing “interactive and
cooperative sensing and control,” which in essence functioned in the ob-
ject recognition and task planning level. Although this network was not
referred to as ““neural,” parts of it could be realized with neural networks,
fuzzy systems, expert systems or other techniques based on probability
theory.

{2001 Cyber Scientific

2. Robot Dynamics Identification and Control
Using Partitioned Neural Networks: The Herd
Method

2.1 A previous NN partitioning approaches

In a robot controller, NNs are most effective when em-
ployed for the identification of the robot’s dynamics. The
identified model can then be employed within a Model
Reference Adaptive or a2 Computed Torque control archi-
tecture. For rigid-link manipulators of n degrees of free-
dom (DO¥s), considered in our contribution, this dynamic
model is described by (see e.g. [39], [40]):

D(q)g+Clg,)a+g(g) =7~ I (@F.)

where g is the vector of joint variables, D{(g) the iner-
tia matrix, C(g, ¢)¢ the vector of Coriolis and centrifu-
gal forces, g(q) is related to gravity, T, is the vector of
driving forces, f,. represents the forces acting at the end
effector from the environment, and J{g) is the Jacobian
matrix. This widely accepted representation of the manip-
ulator dynamics, offers an inherent, “physical,” division of
the dynarmnics in three terms, relating to

a) the inertial (1),

b) the Coriolis, centrifugal and viscous (C') and

¢) gravitational terms (g).
Therefore, one can partition the identifying NN to subnets,
each one representing one of the above terms (Fig. 1). The
forms of the nonlinear functions that these subnets have to
learn are more or less a priori known and can be taught
offline.

According to Lewis et al. [14] the partitioning of an NN
to nevral subnets:

1) simplifies the design,

2) gives added controller structure, and

3) makes for faster weight tuning algorithms.
Our simulations confirmed that significantly less weights
are required for representing, within a given error margin,
the robot dynamics with partitioning to subnets, than with
employing one big NN, It is not the aim of this paper to
further elaborate on the advantages of partitioning, as this
is considered adequately covered by the literature, but to
provide an efficient training algerithm for this type of ma-
nipulator neurocontrol.

Several researchers up to date have proposed partitioned
neural controllers to identify the robot dynamics. In the
method of Guez and Selinsky [12], each subnet is trained
offline during appropriate movements of the robot that iso-
late and identify the terms. First the gravitational terms are
being taught through the execution of position commands,
so that the other terms of the robot dynamics become zero.
Then, by imposing constant velocity the weighis of the
Subnet C are identified and, at the end, the Subnet D) is
being trained. During the online operation of the NN as a
controlier, the subnets’ weights rernain fixed. Only the out-
put layer weights, i.e. the relative contribution of each non-
linear function and/or subnet are being constantly adapted.
A similar partition to subnets was employed by Kawato
et al.[13). Lee er al. [41] proposed the division to only
two NNs: a fixed, offline trained MLPNN, and a smaller
REFNN, trained online to provide adaptation. Ziauddin

Machine Intelligence & Robotic Centrol, 3(1), 7-26 (2001}

A New Partitioned Robot Neurocontroller 9

and Zalzala [197 utilized one NN for each joint, not as a
standalone controller, but in order to assist a classic con-
troller in compensating for unmodeled dynamics, such as
friction and payload variations.

A different approach was proposed by Lewis et al. [14].
The basic nonlinear functions are not identified but ex-
plicitly incorporated in the NN: the network structure was
carefully determined in order to match the a priori known
robotic model of Eq. (1). They employed two layer sub-
nets. The weights of the first layer were fixed, so that lin-
earity in the parameters for the NN holds, and thus some
theorems guaranteeing convergence could be proven. This
first layer could be chosen to represent some general ba-
sis functions. The most suitable ones for a manipulator
controller are the sine and cosine functions as well as their
products with each other and with the joint position and
velocity. Since Eq. {1) is explicitly known, it is easy to de-
termine the basis functions needed for any type of robot.
The overall control scheme realizes an effort to extend the
classic adaptive control theory to NN contro] theory.

In the present contribution a different approach is fol-
lowed, In the method of [14] explicit knowledge of the
robot dynamics is assumed. In the Guez and Selinsky ap-
proach [12], if one chooses as basic functions each of the
terms in Bq. (1), then any change in the robot parameters
would lead to a new offline training phase. If one chooses
the sine and cosine functions multiplied by the joint ve-
Tocity and acceleration, then a lot of subnets are required
(7 NNs plus 26 trainable weights for the final layer for a
2-DOF revolute-link robot). The second choice as well as
the method of Lewis et al. [14] leave no room for the NN
self-optimization through learning and the identification of
pew terms, arising e.g. upon contact with an object or at
malfunctioning.

We searched for a method that would:

(a) enable on-field adaptation to sudden parameters’
change,

(b) enable fast output calculation and weight tuning (for
this small NNs with high paralielism are necessary),

(c) preserve the basic nonlinear functions learned offline
(an inappropriate online training method could for ex-
ample allow Subnet G to learn some parts of the LD
matrix),

allow the learning of new nonlinear terms, induced due
to contact with the environment, actuator saturation or
hardware damage, and

@

(¢) encompass minimum a priori information in the sub-
net strucure, so that the net self-optimization and a
compact representation are possible.

In order to meet requirements (b) and (e) the NN was di-

vided to only three subnets (Fig. 1) corresponding to ma-

trices D, C and g of Eq. (1). Their outputs were added
at a final layer. The only a priori information used was
the subnet inputs. In order to achieve online adaptation,
the subnets were chosen to have no fixed part. To fulfill
point (¢) above, a novel, heuristic way to train the subnets
was developed. The final algorithm wutilizes both measur-
able data (actually g, ¢, §) as well as information based on
the structure of the robot. We named it HERD (Heuristic
ERror Distribution) method.

©72001 Cyber Scientific

* Subnet G

Subnet C

§ ——eee—pt Submet D 7
i
Fig.1 Partition to subnets

Our initial investigations on the topic were conducted
with MLPNNs[1],[38]. Our initial results utilizing
RBFNNs, are reported in [2]. This Section summarizes and
presents in a unified way all our efforts in the problem of
identifying the robot dynamics, under the presence of un-
certainties, with partitioned NNs, making use of minimal
information.

In the sequel we will use the following notation: 73
overall torque, e: overall error. Tp, T, Ta, €D, €0,
eq: torqueferror related to each subnet. In our setup
(Fig.)+ = 7p+7¢ +7g, ¢ = ep+eq + eg and
q = (g1 g2 qa]” (generally, the subscript denotes vec-
tor index).

2.2 Altering the training algorithm instead of the net-
work topolegy

The dynamics of an MEPNN can be represented as:
y=WTa(Viz) @)

where V', W are weight matrices for the hidden and out-
put layers respectively, o(-) is the NN nonlinear function,
and , y the vectors of inputs and outputs respectively. By
considering the three subnets we yield:

ra+TH+Tp=Who(Viza) + Whe(Vizw)
+WEo(Vhzn) (3)

As is well known, the Back Propagation (BP) algorithm is
in fact the application of the gradient descent rule to the
specific topology of the MLP. Applying the gradient de-
scent rule to the partitioned controller of Eq. (3), we yield:

ws,i;(k + 1}
= ws,i5(k) — n?%?
= W5 (k) 3 61?;3' B(yd _ y)z}
= We,i5 (k) ~ 1(¥a — y) 833”
We,i5(k) — nlyq —) 8?;2 ifs=0G
= { Wwe,i(k) ~ 0y, — y}aitij ifs=H (4
Wa,is (k) = M(Yg — ¥) ai;”’ - ifs=D

where ws ;; denotes the weight between the 4 cell (in layer
k) and the j cell (in layer k -+ 1) of subnet s (s = G, H
or 1), BE(w) = 0.5{y, — y)? the emror function, 7 the
fearning coefficient. The splitting of the derivative to three

Machine Tntelligence & Robotic Control, 3(1), 726 (2001)

10 S. G. Tzafestas, . A. Prokopiou, and C. 8. Tzafestas

independent parts is due to the fact that each subnet’s out-
put depends solely on its own weights. The remaining par-
tial differentiations, which adhere to the NNs of each sub-
model, can be computed through the BP equations. Notice
that (4), i.e. the application of the gradient descent rule to
(3), is equivalent to applying the BP to each subnet, with
the whole robot dynamics identification exror issued at each
one of them.

BP is a general training {i.e. parameter estimation [4])
algorithm, applying to the specific NN topology and a
wide class of nonlinear functions to be approximated. As
Sjberg et al.{4] pointed out, the most efficient nonlinear
optimization methods are based on iterative local search in
a “downhill” direction from the current point, of the kind:

g+ — 50 _ JuiR;”lV}?{ ()

where 8 is the parameter estimate after iteration num-
ber 4, u; the step size, f; the identified model, Vf; an
estimate of the gradient, and R; a mattx that modifies
the search direction. The gradient descent corresponds to
R; = I, whereas other choices lead to algorithms per-
forming a search along the Gauss-Newton and Levenberg-
Marquadt direction. Although such algorithms are widely
accepted and of proven efficiency, they remain general,
“black box” ones, in that they incorporate no knowledge
of the plant to be identified. They only involve derivatives
of the specific model components (regressors), i.e. in the
MLPNN case the mapping f = W e (V7 x).

It is the aim of this paper to demonstrate that enhanced
performance can be obtained if the peculiarities of the
robot dynamics are utilized, in 2 “gray-box” identification
scheme: adopting a loose notation, by suitable R in (3), the
search direction is biased towards a “manipulator specific”
direction. Broadly thinking, the idea of tuning the train-
ing algorithm of a general approximator according to hints
about the plant, rather than modifying the approximator’s
topology, could also be beneficial for other types of plants.

In the case of RBF NNs, the dynamics are represented
by:

Tg = WT¢($)

where W is a weight matrix and ¢ a nonlinear “radial ba-
sis” function. The derivation of a training algorithm for the
subnet output level is similar to the above and, for the case
of gradient descent, yields exactly the same resuit. Any
other type of NN or generally trainable nonlinear mapping
which adheres to (3) (wavelets, B-spline networks, etc),
could in principle benefit from a similar subnet implemen-
tation.

In the next section, the specification of search direction
biasing functions, as well as trade-off between relying on
little previous knowledge of the robot dynamics, against ac-
curately distributing the error to each subnet, is explored,

2.3 Error distribution te subnets: problem analysis

In an offiine training phase and if a nominal model is
known, the training of each subnet is easy and can be ac-
complished by any standard learning algorithm. In the
online case, when modeling uncertainties are present, dis-
tributing the total error among subnets becomes an almost

©2001 Cyber Scientific

“blind guess.” It is then very difficult to preserve the role of
each subnet.

In our effort to avoid utilizing a detailed mathematical
model, the following information is everything we consider
known:

{a) The total error e per joint,

{b) The joint and end-effector {Cartesian) position, veloc-
ity and acceleration,

{c) A nominal dynamic model in a mathematical form
(Eq. (1)) or input-output experimental data from the
manipulator, used to train the NN offline, to determine
its size and inputs, and to specify the type of norms
(used e.g. in HERD),

(d) The robot dynamics in the general form of Bq. (1),
We basically exploited the fact that Tp(r¢) is pro-
portional to § () and independent of ¢ {G), and 7 is
independent of both ¢ and g,

(e) Hints about the present dynamic model (e.g. the fact
that the output 7¢ for a 2-DOF revolute link robot is
proportional to sin(gs}), and

(f) May be some bounds of the uncertainty/torque.

On the other hand, the following are considered unknown:

{(a) The error of each subnet ep, eg, e (magnitude and
sign)

(b) The present dynamic model parameters.

After cutlining the problem as above, let’s investigate
the possible effects of modeling uncertainty. We can dis-
tinguish two situations:

() an object of unknown dynamic parameters is lifted and
carried or manipulated, so that, assuming that the ob-
ject is firmly grasped, the parameters of the last link
{only) change;

(i) due to an accident, more links are deformed and thus
the structure of the dynamic model changes (even the
DOFs can change if for example a link is cut off).

The second case is extremely severe, since the only useful
information left is q, ¢, g and e. In our work only the most
realistic case (i) was considered. For case (i) the mathe-
matical funetions involved remain unmodified, i.e. the un-
certainty is parametric (although these parameters are “hid-
den"” in complicated nonlinear expressions).

In: the sequel we have 1o decide whether: A} to consider
the mathematical model for the robot (Eq. (1)} as known,
or B) not to use it. A mathematical model can be used
either: Al) explicitly, to derive control laws, or AZ) indi-
rectly to derive “hints.” If the mathematical model is to be
used, then an anelytical adaptive controt law might be more
convenient, especially for 2 or 3 DOF robots, or robots that
are decoupled in two 3-DOF subsystems. Since the power
of NN lies in the fact that they do not require such detailed
prior information, the actual choice is between (A2) and
(B).! Whether we choose options (A2) or (B), the decisive
difference with (A1) is that we actually have in our disposal
for processing pairs of input-output data approximated by
the NN in a input/output function but not the internal dy-
namics that cause it. That is, a fuaction y = f(x} is iden-
tified, but (in contrast to the mathematical model) we don’t
know if e.g.: f(z) = 1or f(z) = sin®(z) + I cos?(z)

TUsing the classical identification terminology, cases (Al), (A2) and
(B) correspond to a “white,” “gray” and “black™ box identification task

[4].
Machine Intetligence & Robetic Coatrol, 3(1}, 7-26 (2001)

A New Partitioned Robot Neurccontroller 11

150

100

50

5

Torque Gi(Nm)
o
»J""#ﬂ’
"—--._,‘%L
iy

-5¢ ."L ' Y, \ {{

100k

2000 4600
(a} Time(msec)

6000

&

Torque DI(Nm}

0 2000 4000
(e) Time(msec)

6000

Torque CI{Nm)

20

O 2000 4040
() Time(msec)

6000

Fig.2 (a) 7 for 2-DOF robot, modified with mg = 7.5 and ls = 1.5, which is the most
complex case i a partitioned 2-DOF robot controller; (b) plot of the functions for nominal
(3sin g + cos ¢} and modified (—2sin g -+ cos ¢) models; {c) Tpa for 3-DOF robot, mod-
ified with Ty = 1.5 and 3 = 0.36, which is one of the most nonlinear (strange-shaped)
torques for the 3-DOF robet; and (d} v for 3-DOF robot, modified with mg = 1.5,
my = 0.28, lz = (.35, and I3 = 0.36, where note that a change in I3 and g is not real-
istic (only possible in 2 variable structure robot), the solid line denotes the nominal model,
and the dashed #ine is for the modified model

with link length I = 1. In the second case a change in [
will make the trigonometric terms reappeat, whereas in the
first not. What we want to stress here is that we are not
allowed to predefine the influence of each parameter’s {e.g.
I’s} modification to the dynamics.

In order to reduce the problem into easier subtasks, we
can observe that each of the robot torque’s element is de-
termined by a complicated matrix (I, C or g) specified by
the structure of the robot, which is multiptied by a fixed
measurable vector (g, g, or 1). The effect of the measur-
able part is fixed for all robots and easily detectable, and
thus can be readily exploited in an error distributing al-
gorithm. On the contrary, the influence of the structural
part is subject to parameter modifications and needs to be
further analyzed. In the preliminary analysis that was pro-
vided at the beginning of this section, this type of data cov-
ers types of “known information” (c) and (e}. The algo-
rithms presented in the sequence exploit separately each of
these multiplicative parts of the terms of Eq. (1).

Let’s try to assess whether the structural information is
of any use in our task, We will argue that the nominal
dynamic model can serve as a fair first approximation 10
the altered manipulator dynamics, since in the majority of
cases they have the same general form.

We considered it helpful to categorize the changes in the
robot dynamics due to uncertainties, according to their ef-
fect on the sub-torgues of Eq. (1), in:

(I) Changes in robot type (structural changes), where the

©2001 Cyber Scientific

model/DOFs change a lot.

(I} Usual parameter modifications, causing the type of
the input/output function of the sub-torques to change.
For example f(g) = (m-+1)sin g-+cos g, can be mod-
ified from 3 sin g + cos ¢ to —2 sin g + cos g. This to-
tally changes the shape of the resulting total function
{see Fig. 2b),

Usual parameter modifications, but not causing the
type of the input/output function to change. For exam-
ple f(g) = (m~+1) sin ¢ will always be a sine, crossing
zero and getting its maximum value at fixed positions
although the magnitude is variable. Such parameters
are multiplicative or additive to nonlinear functions,
but the coefficients of 2 weighted sum of them are not
so {see Fig. 2a).

Note that the distinction to types (If) and (III) is valid
regardiess of the linearity in the parameters, which holds
in both the examples mentioned above. Notice also that it
only takes into account the input/output function, and not
the underlying nonlinear functions, which remain unmod-
ified. To the best of the authors” knowledge, the literature
up to date only distinguishes between structural uncertainty
(type 1) and parametric uncertainty (types Il+IID).

In the case of robot dynamics, certain important con-
straints are imposed: a) Their parameters are positive. b)
Not any change mathematically possible is likely to hap-
pen. It is realistic to assume that serious uncertainties in
a robot can only arise in the last link. ¢) The uncertainty

(11D

Machine Intelligence & Robotic Control, 3(1), 7-26 {2001)

12 S. G. Tzafestas, P. A. Prokopiou, and C. S. Tzafestas

Table 1 Manripulators used in simulations testing the error distribution
algorithms

2-DOF ROBOT: Revolute joints

link 1: g = 10,1 = 1, ley = 0.5,1; = 0.8
link 2: mg = B, lp = 1l = 0.5, [n = 0.45
3-DOF ROBOT: Revolute joints

link 1: my = 10,0y = 1,00 = L
link 2: may =5, lg = 0.7, leg = 0.7
fink 3: me = 1,0y =0.3,lpp =03

Modeling Brrors

Unless otherwise stated, 50% on the mass and
moment of inestia of the last link

Dynamic Equations

Well known for the above, see e.g. [39]

TASK
2-DOF rebot: g1 = m -+ 0.8wcos(2n x 0.2kT)),
gy = 7 — 0.8mcos(2m % 0.16kT").
3-DOF robot: g3 = 7 -+ 0.8wcos(2w x 0.22kT);

ga = w + 08w cos(2m x 0.2KT);
g1 = 7 — 08w cos{@n x 0.16kT7.

The movements cover a representative part of the
joint space and demand joing speed (acceleration)
up to 4 frad/secl {4 [radisec?]).

is, realistically thinking, bounded (Note, however, that no
bounds are assumed in the algorithms of Section 2.4}.

Due to the above reasons, when the controller is parti-
tioned as in Fig. 1, the change in the form of the robot
dynamic functions, is hardly ever as serious as for the ex-
ample in (I[) above. The changes due to a realistic param-
eters” modification are mostly of type (II} above or not
significant (i.e. of type “II degenerated to III”). This help-
ful simplification is due to the partitioning in three subnets
as in Fig. 1. Thus, the nominal model is a fair coarse ap-
proximation. Based on the old model one can guess when
the subnet output (and hopefully its error too) will be *big,’
‘small’ or ‘zero,’ ‘increasing’ or ‘decreasing,’ etc. Figures
2a, ¢, d illustrate these argements. Refer to Table 1 for task
and manipulator parameters used throughout this paper.

An examination of the dynamics of various robots re-
veals that the above conclusion is reasonable for most of
the cases. For other types of robots with up to 3-DOFs
(e.g. spherical or cylindrical) {39] the equations are as sim-
ple as for the 2- or 3-DOF revolute link robot, whereas for
6-DOF manipulators the dynamics are often decomposed
in two 3-DOF subsystems [42], where the required change
in torque is like the one in Fig. 2c. For sub-torques that
remain of type (I0), another way to specify the error can be
used (e.g. a fixed percentage of e) or the HERD method
(described in the next paragraph) can be utilized as a first-
order approximation. One can decide which part is of type
(1) or (I by either observing the nominal dynamics or
experimenting offline.

2.4 Error distribution algorithms: formulation

Five different ways to distribute the error were examined
(Table 2) namely:

{2001 Cyber Scientific

TFable 2 Error distribution methods

Method | Error Diswribation Coefficient
Simplistic 3

Coarse lrl/lm withi = D, C, G
Measurable Info (MD | Fns

HERD {ml/ 17 f s withi = D, C\ G

(Error per Subnet) = (Error Distribution Coefficient)
% {Total Error)

Fric £oip

0 Nl N1 O 4 Y 111
toic &

o | faotfup

Fig.3 Error distribution functions fraq

a) Back Propagation of the total error;

b) an equal distribution of 1/3 of the total error to each
subnet (“simplistic” solution);

¢) a distribution relative to the contribution of the subnet
to the total output of the net, (“coarse” solution);

d) a distribution exploiting the information about the
“measurable part” (“Measurable Information (M) so-
lution™); and

e} a combination of the two previous methods, named
HERD Method (Heuristic ERror Distribution
Method).

Since, as shown in Section 2.2, the plain BP requires
that each subnet is trained with the total error e, the er-
ror distribution methods examined are mathematically for-
mulated as functions multiplying e, or as implementations
of B in (5). Equivalently, they can be thought of as
modifications of the learning coefficient 5(t), which has
now become time-dependent. Thus, the methods proposed
here effectively constitute variations of BP, and generally
gradient-descent methods, specifically designed for manip-
ulator control. Qur methods are not significantly more ad
hoc than gradient descent itself. The identification con-
vergence and the stability of the whele control system can
most Hkely be proven within specific control architectures
(as e.g. in[14], [15]), and remain for future work.

The simplistic solution coincides with the plain BF, with
a lower learning coefficient. This fact was not stressed in
our previous papers {11-[3], [26]. The results obtaired with
it are gualitatively equivalent to the BP, although in some
simulations performance differences may arise due to the
very fact that 7 is altered.

The coarse method is based on the assumption analyzed
in Section 2.3, namely on the assumption that the general
form of the dynamic mode] will not change for realistic
parametric modifications.

The MI method was introduced in[1] (although this
name was not used). Some modifications were however

Machine Intelligence & Robotic Control, 3(1), 7-26 {2001}

A New Partitioned Robot Neuroconzoller 13

made. The form of f,,; was inspired by observing the way
in which each term of the robot dynamics depends on q, g,
and §. These dependencies are plotted in Fig. 3 and de-
scribed by:

Fma,p (181} = C frns,pligli
Frmic(lal) = Cfmiclial?
Fri,a(l@l -+ 14l1°) = 1 = fnic = frmin-

The specification of the coefficients C fi; 15 not an casy
task. No fixed coefficients, globally optimal for any robot
and any working conditions, can be found. Instead, a pro-
cedure to specify them is recommended: first the maximum
realistic values of ¢ and g are specified. For this value, the
mean of the subnet output divided by the total controller
torque is calculated, over as many points as possible in the
joint space. If the calcuiation can be performed on-line,
the mean could be computed over the area of interest only.
The nominal dynamic model is used, or, a model “close”
to the new dynamics. However, the effect of the magnitude
of the maximum allowable ¢ and § was much more impor-
tant than the use of the nominal or another model. Thus the
“point” (g, §) = (wax(q), max{§)) is a critical one, deter-
mining the maximum efficient area of the algorithm. The
Subnet C was the most sensitive part to the initial offline
learning inadequacies. |

Note that each subnet output is assigned a different fons,
ie. an fn with different coefficients. The type of the
norms in f; can also be adjusted according to the task
and the robot. A reasonable choice is to make them depen-
dent only on the submet inputs (e.g. for the 2-DOF robot,
the norm of subnet C’s second output should be indepen-
dent of ¢3). An additional heuristic used is that if |G| < €
(small constant) (or |ig]| < € (small constant)), the subnet’s
D (or C) training error is set equal to the subnet output.
Thaus the subnet output is forced to zero and a smail dead-
zone is created around § = 0{g = (), aiming at healing a
possible inadequate offline learning of the measurable part
in this region.

The HERD method is clearly a concatenation of the
coarse and MI methods. In essence, the various training
sections of Guez and Selinsky [12] are here overlapped and
take simultaneously place, in a fuzzy logic-like way.

Among the problems that could not be solved, two are
the most important. First, although a guess on the mag-
nitude of the ervor is made, its sign remains unknown. It
was observed in our simulations, that when no training is
made, most of the time the subnet error has the same sign as
the subnet output. However, this information must not be
exploited during the online adaptation, since it was found
to lead to instability the coarse method, and thus also the
HERD method. Second, the fotal error is minimized very
soon (less than 0.3% in less than 20 sampling periods). Af-
ter this period the learning is very slow, since the error to
be distributed is smatl, If in the first few sampling periods
the networks confuse their roles, then this confusion will
not heal much in the sequence. This was unfortunately the

(6

Tin principle, Subnet C could be abolished, by calculating ¢ through:

. Bl 8D::N .
Rig,q) = ol [Tt 2okl ("a“,;,:l - %-g;f) ‘?jCIic}
since ID is represented by an NN, it is not pessible to isolate the Dijs.

However,

©?2001 Cyber Scientific

Table 3 Neural network parameters

RABF Networks, 2-DOF robot

Subnet G: 2~49-2 neurons, inputs: ¢, n = 0.1
Subnet C: 3~-81-2 neurcns, inputs: gs, ¢, = 301
SubnetD: 3-81-2 neurons, inputs: gz, §,n = .01

MLP Networks, 2-BOF robot
Subnet G: 2-9-2newrons, inputs: g, 0= 0.1, = 0.2
Subnet C: 5-9-2meuwrons, inpuls: g, & 41 % go, = 0.01

o= 0,2

SubnetD: 4-10-2 newrons, inputs: g, &, 71 =001, 0= 0.2

MLP Networks, 3-DOF robot

For all subaets: i == 0.00000%,a =0

Subnet G: 3-15-3 neurens, inpuls: g
Subnet C: 6-15-3 neurons, inputs: ¢, 4
Subnet D: 6-15-3 neurons, inputs: g,

case in the 2-DOF simulations reported in Section 2.5. For
example, a total error of 0.5 [Nm)] was divided to, say, 0.3
[Nm], 0.2 and 0.1, but were actually reflecting errors of,
say, 15 [Nm], —10 [Nm}, —4.5 [Nm]. In mathematical no-
tation, € = ep + ec + eg, but le| < |ep| + |ec| + |eg].
Several solutions were examined without obtaining signifi-
cant improvement. Note that in the above example the sum
of subnet errors is not equal to the total error: the distribu-
tion algorithm was allowed to selectively magnify the error,
since the total error is much smaller than the real ones per
subnet.

As a consequence of the efforts up to now, we conclude
that an online-trained multipartitioned network can, under
the presence of severe uncertainties, act successfully as a
controller, since the total error is kept very small (0.1%—
0.5%) but cannot always avoid confusing the role of s
subnets.

2.5 Simulation results

Initial simulations were performed with the 2-DOF ma-
nipulator of Table 1. Modeling uncertainty was 50% on
the mass and moment of inertia of the 2nd link. The NN
was initially trained at the nominal model, and then tried to
learn “online” the modified dynamics.

Three of the methods presented in Section 3 were com-
pared. A reasonable critical point for the determination
of the coefficients of the HERD method was chosen to be
(4,§) = (5[m/sec), B[m/sec?]). This results in quite high
velocities for industrial robots. The coefficients were cal-
culated on the basis of the nominal dynamic model, The
final valoes used were:

C i, = 0.27,
O fmi,cn = 0.6,

Clmiae =022, Cfmic1 =055
C frs,p1 = C fmi,pg = 0.1

To validate the methods, it conjunction with the mean
error, a special index, named the Confusion Index Cl, was
wsed, in an effort to isolate the error caused by the ermror
distribution algorithm from the normally appearing error,
which is due to the learning algorithm, the specific NN
structure, the initial offline learning quality, and the cho-

Machine Intelligence & Robotic Contrel, 3(1}, 7-26 (2001)

14 S. (3. Tzafestas, P A. Prokopiow, and C. §. Tzafestas

200

140 \

~100F

Te(Nm)
(=]

/

-20¢
1000 2000 3000 4000 3000 6000

(a} Time{msec)

30

Ta(Nm)
<

/

1060 2000 3000 4000 5000 6600

{¢) Time(msec}

50
z |2 Va ™\
2-'; 0 \ T T i
R
& \,,. /
]
1080 206 3000 4000 5000 6000
(b) Time(msec}
200% / & .
100 pe; /
£ o 4
g /
) / //
~H0GE v V
-200

1000 2000 3000 4000 5080 6000
{d} Time{msec)

Fig.4 2-DOF case with RBFNNg, representing the desired output and the output with HERD by
the solid and dashed lnes for the first joint: (a) Subnet G; (b) Subnet C; {c} Subnet I and

{d) the whele network

Fig.5 2-DOF case with error distribution methods: representative re-
sults, where 1 = 7¢1, 2 = 7g2,3 = 7¢1,4 = 702,85 = TD1.

and 6 == Tha

sen parameters’ values:

CI = |(subnet error} — (subnet error by training
with real error)|/{absolute subnet output + 1)
x100%

In the denominator above, 1 is added so that the percentage
does not become infimum when the desired output is zero.

Both MLPNN and RBFNN were tried. Their param-
eters are depicted in Table 3. Each of the RBF sub-
nets was first trained offline with the standard Least Mean
Square method [43], to learn the corresponding term of
a nominal model. In this way the required basic func-
tions were formed. The subnets were frained online us-
ing a gradient descent procedure outlined in [43]. The of-
fiine training data was forming a sparse grid over the -
put space. Neither the positions nor the spreads of the

(©2001 Cyber Scientific

centers (i.e. the input norm) were trained, since the int-
tial simulations indicated satisfactory performance with-
out such a computation-costly training. These parameters
were selected before learning. MLPNNs were trained with
the same procedure, using, at all times, the standard BP
algorithm with 2 momentum term and fat-spot elimina-
tion [43].

Some representative results are shown in Figs. 4, 5. Note
that the trial trajectory is a hard one. From these results, the
superiority of the HERD algorithm over the other methods
is evident. Although the error per subnet is significant, it
is acceptable since a poor qualitative information is only
used.

The results obtained using RBFNNs were significantly
better, as far as the subnet confusion is concerned. How-
ever, a direct comparison is not possible (Table 3). The
MLPs had an extra input, ¢;, which they learned to ignore,
but the algorithm used for RBF learning did not involve in-
put norm modifications, and thus the net inputs had to be
exact. The size of the RBF net was also much bigger than
that of MLPs, and the resulting control torque with RBFs
had significant chattering (refer to Section 3.4.3). On the
other hand the initial offline training in RBFs is much sim-
pler.

Simulations also revealed that for the algorithm to be sat-
isfactory, the offline training has to be good. The zero-
crossing points of the structural part are of special im-
portance. The zeroing points due to the measurable parts
are not so dangerous, since a special heuzistic was incor-
porated to account for them (Section 2.4.3). In our tests
¢ = 0.75(0.0) for subnet C (D). It was also made cleas, that
for the above formulation of the eror, the contribution of

Machine Intefligence & Robotic Contral, 3(1), 7-26 (2001}

A New Partitioned Robot Neurocontroller 15

Table 4 MLP 3-DOF error distributing methods

Subnet BP Coarse | HERD BP Coarse | HERD
(NME) | (NME} | (NME) ; (CD (1) (ChH

Tiatar,1 | 00093 | 00032 | 0.0033 | 0.0611 0.0183 | 0.0126
Tiotar,a | 00429 | 0.0392 0.0381 (.1890 § 0.0602 | 0.0283
Teotet,s | 00130 | 0.0039 | 0.0026 | C.0652 0.0225 } G.0433
a1 0.0004 | 00003 | 0.0002 | 0.0358 | 0.0254 | 0.0239
3,2 0.0535 1 0.0404 | 0.0380 ; 0.2694 | 0.2036 | 0.1892
TG,3 0.0124 | 0.0047 | 0.0042 | 0.3446 | 0.3300 | 0.1182
TGl 0.0092 | 0.0034 | 0.0032 | 0.2242 | 0.0805 | 0.0720
TO,2 0.0057 | 0.0033 | 0.0031 | 0.1305 | 0.0844 | 0.076C
TQ,3 0.0024 | 0.0005 | 6.6012 | 0.0923 | 0.0215 ; C.0534
D1 0.0015 | 0.0005 | 0.0004 | 0.0611 | 0.0183 | 0.0126
D2 0.0151 1 0.0050 | 0.0024 | 0.1890 | 0.0602 | 0.0283
TD,3 0.0012 | 0.0004 | 0.0009 | 0.0652 | 0.0225 | 0.0433

N M E = (Mean absolute error) - (Mean absolute error, when
training with the real error per subnet)

¢ I: Confusion Index. (N M E equals the C'I numerator)

subnet C 1o the total error is critical. By giving the correct
error to C, the error of the other two subnets decreases sig-
nificantly. On the contrary, if we use the correct error only
for G (or D), although the total error decreases, the error
per subnet does not improve much. The error distribution
to Subnet C is the weak point of the HERD method for the
2-DOF case.:

Simulations were also performed for the 3-DOF
revolute-joint manipulator of Table 1. The modeling er-
ror was 50% at the mass and 20% at the length of the
last link. The NN was initially trained at the nominal
model, and then tried to learn “online” the modified dy-
namics. A reasonable critical point for the determination
of the coefficients of the HERD method was chosen to
be (¢, q) = (Blm/sec], 5im/sec®]). The final values used
were:

Clmicr =0, C frmt, o2 = 0.4642
Cfmi,gg = (1.3121, Gfmi,C’l = (.8013
C fmicn = 0.3174, C’fmt‘,cg = {5536
C frni D1 = 0.1987, Cflmipr = 0.2185
C frni.pa = 0.1344.

MLPNNs were tested for various leaming parameters
and trajectories. At the simulations reported here, the stan-
dard BP algorithm was employed, without a momenium
term or other enhancement, since its performance was sat-
isfactory.

Some representative results are shown in Table 4 and in
Figs. 6, 7. The three last methods of Table 2 were com-
pared against the BP of the error to the subnets, instead of
the qualitatively equivalent simplistic method of Fig. 5.

In contrast to the 2-DOF case, the error per subnet is re-
markably small. This shows that the role confusion of cach
subnet depends on various factors (the learning algorithm,
the specific NN structure, the initial offline Jearning quality,
and the chosen parameters’ values), However, in all cases
the HERD algorithm is clearly superior to the other meth-
ods.

Notice also that, as expected, in all methods the biggest

(€52001 Cyber Scientific

Desired and Learmnmed G subnet Torque Desired and Learned H subnet Torque
163 20

i
’) 4

£ /\ NN

Z £ ! i

na':‘ 4] % o - f. VA\] o }

5}]

st = - J——

-10 (] 3‘
i -20
] 1060 2000 3000 [1606 2000 3000

Time(0.5 msec) Time{0.5*msee)

Desirad and Learned D subnet Torque Desired and Learned Total Torque
20 50

A
ANTAN
Y

-850
0 1000 2000 3000 0 1000 2000 3000
Time(0.5*msec) Time(D.5"msec)

Tarque (Nm)

Torque {(Nm}
5 o
.'-"‘""

<20

Fig.6 3-DOF case, representing the desired ontput and the output with

HERD by the solid and dashed lines: each subnet and the whole
network for the first joint

Fig.7 3-DOF case with error distribution methods: representative re-
sults, where 1 = 7g1,2 = Tgp,3 = Tgs,4 = Ton,d =
To9,6 = T3, T = TD1,8 = Tpe. 9 = Tpa, and notice that
the error is much smaller than for the 2-DOF case

part of the actual error is due to the inherent inability of BP
to train the subnets within one cycle, i.e. online: even if the
real error is issued to each subnet, the error is significant,
and about 2 levels of magnitude bigger than the one shown
in Table 4. This error is of course small in relation to the
NN output torque, as shown in Fig. 6.

3. Teleoperator Neurocontrol
3.1 An original control scheme

The teleoperator design concept of Lee and Lee[9],
[22], [28] redefines force feedback, by actively altering the
force fed to the operator and incorporating to it a term de-
pending on the slave tracking error. Moreover, the control
loop includes models of the human arm and the human re-
action to force and vision stimuli during his effort to reach
the desired position and force. The effects of time delay
were also discussed in [9], [22], [28].

The overall control architecture of Lee and Lee is de-
signed in the Cartesian space (Fig. 8). In order to provide
comphiant force control, a previous extension of Impedance
Control proposed by the authors is utilized. The desired
manipulator impedance is defined through a set of differ-

Machine Intelligence & Robotic Contrel, 3(1), 7-26 (2001)

i6 $. G. Tzafestas, P. A. Prokopiou, and C. §. Tzafestas

fd \/L/f
Y LI e

e G L

[T A ————— e Ll B B i s o

Slave GIC

Fig.8 Lee and Lee teleoperator system [9], {221,§28]

ential equations, termed the Generalized Impedance (GI).
For the master and slave respectively it is specified as’ :

fref + fe,m = M gm@Em + Bam@m)
M .5, + Bds(i‘s - d’"ds} + de(ms . mds}
’ uI)’fs-fes";"lr(f«‘ifes (8)

where f,,, is the interaction force between the operator’s
arm and the master, f,.; is the reflected force, zg, =
K .., the matrices K .o, Mg, Bye, Kas, Bfe, Kys,
M gy, B ar, are parameters of the GI, and f.; = Z. (me
@) represents the contact force at the slave side, where Z
is the environmental impeddnce and . its location. In or-
der to impose the GI, a control law following the computed
torque method was proposed.

Assuming ideal performance, the master and human
arms form a dual system described by:

Fo o+ Frop = (Mp + Man)Yom + Bamem (9

where f, is the intentional force of the operator, (i.e. the
force applied by his brain to his muscle). Note that f is
the response of his nervous system to the stimuli of vision
and force (generated through a screen and the master arm).
Equation (9) reveals that f,,, is the reaction force acteally
felt by the operator. In a conventional scheme it would be
equal to (a scaled) f,,. Lee and Lee [9],[22], [28] define
it as a combination of the force and position tracking error,
and thus they actually redefine force feedback.

3.2 Dynamic model uncertainty in teleoperation

Modeling errors can be caused by several factors. On
the slave side, the parameters of the last link change when
a large object of unknown mass and shape is picked up.
This is 2 common situation in telerobotic systems: one can
easily imagine the manipulator collecting samples from an

TIn the above and in the following, subscripts m, s, &, and & will dencte
the master, slave, human and environment respectively.

(©2001 Cyber Scientific

ocean floor or picking up a tool from an unstructured en-
vironment and performing an assembling task with it, or,
while carrying it, pushing a door open. Another cause of
errors is an accidental deformation of the end effector or
even the last links. Pinally, unidentified nonlinear terms
(induced by an unexpected object or force field) or terms
deliberately omitted in the basic design process to simplify
the design, also fall in this category and need to be com-
pensated. With the simulation tasks defined in Section 3.4
several of these situations are tested.

On the master side modeling errors are not likely to
be large, since the master operates in a safe and weli-
known environment, Possible canses of uncertainty are
now unidentified terms, deliberate simplification of the
model and accidental deformation of the links. An appeal-
ing application for the master would be to provide the pos-
sibility to change its end effector, so as to best suit the task
to execute, For example in a telesurgery system[8], [35]
the surgeon would like to customize on spot the shape and
feel of the handle he grips according to the instrument used
at the slave side and personal preferences. An adaptive or
robust controller can then be utilized to provide automatic
adaptation. Uncertainty also becomes significant if the hu-
man arm dynamics, which are inherently nonlinear, time-
varying, and difficult to analyze [10], {11], are considered.
BEven in this case, 20% seems a logical upper bound for
master side modeling errors.

In [97, [20] the results of several simulations and exper-
iments, with various control laws (other than GIC) for the
slave are provided and discussed. The role of modeling
errors was not considered in these papers. In([22] a pew
control scheme for applications with significant time delay
is proposed. The new controller was reported to perform
well also under 5%-10% errors in the slave model. How-
ever, this does not nullify the need for a new controller:
some new terms added in the last version, which as a side
effect compensate modeling uncertainties, decrease expo-
nentially as the time delay decreases. At short time delays
their contribution vanishes and the new version coincides

Machine Intelligence & Robotic Control, 3(1), 7-26 (2001}

A New Partitioned Rebot Neurccontroller 17

>

Robhot

[x]
Ty
R

=]
R

Fig.9 Neurocontrolier aschitecture employed in this paper (refer
(47, [48] for accurate erTor expression}

with the one described in Section 3.1. The controllers pre-
sented in the following Sections are capable to operate un-
der all circumstances, and cope with much larger modeling
errors at both robots. Moreover, our goal was to replace
the initial computed torque controller with an improved
one, since the desired trajectory following is not perfect,
even with minimuam modeling uncertainty. With errors up
to 50% in the parameters of the last link the system be-
comes unstable. The reader is referred to Section 3.4.1 for
simulation results on the response of the original system to
computational delays and modeling errors.

3.3 Teleoperator control

Several neurocontrol architectures have been proposed
in the lterature, most of them stemming from previous
classical control methods. Two comprehensive surveys can
be found in[171,[44]. A comparison in the context of
robotic control was reported in [26]. For the teleoperator
system presented here, the variation of Model Reference
Adaptive Control (MRAC) of Lee et al. {41] was selected
(Fig. 9). The desired performance of each robot is deter-
mined in the form of Generalized Impedance. The resulting
sets of differential equations can be considered as a model
for the robot, Therefore the MRAC seems to be the most
appropriate choice for use within the teleoperator.

As mentioned in Section 3.1 the desired performance
for both robots in the original architecture of Lee and Lee
is determined by the Generalized Impedance. The most
straightforward way to incorporate the neural controller is
to first calculate an ideal trajectory according to the GI and
then use the NNs to force the robots follow it. The standard
computed torque controller functions in a similar way. The
difference is that there the GI is explicitly incorporated in
the control torque generation formulas, whereas now a two-
stage approach is followed.

Figure 10 shows in block diagram form the overall tele-
operator architecture with the new controllers. This archi-
tecture realizes a two-level hierarchy. At the higher level,
the operator and GI blocks determine the desired trajec-
tories “thinking” in Cartesian coordinates. At the lower
level, the controllers try to impose the ideal performance
by calculating suitable control inputs. Starting from the

©2001 Cyber Scientific

A " g‘
Fd’xd Fes’ xs Xm’

t},’ ale

Operator s
\ A
Brain F

an
\l/

F), Estimator

b

b

Desired
Fl Trajectory

Q

am

A .4

Neural
Controller

Communication
Channel

%
as

Coupled dynamic system

Master work place

Slave work place F ¥

Desired
Trajectory

Q*|
ds o |

Neural
Controller

Coupled
dynamic system

Fig. 10 Telecperator with neural controllers, where " denotes variables
corrupted by noise

slave side, the “Desired Trajectory Block” generates the
command to the controller according to the master com-
mand and the GI parameters. Since the next block uses
variables in the joint space, the inverse kinematics are also
part of this block. The Neural Controller produces the con-
trol torque for the coupled dynamic system “slave robot
+ environment” In order to improve the system perfor-
mance, the latter and the controller can be enclosed in a
local control Ioop, with smaller sampling period than the
overall system, However, simulations revealed that this is
not necessary, as long as the communication chamnel al-
lows high transmission rates. Furthermore, one can isolate
the Desired Trajectory generator from the slave side posi-
tion @, and/or force f,, by using for the GI calculations
not the actual but the desired variables, which are local in
the block. To use such a “desired” f, a model of the en-
vironmental dynamics has to be known or estimated, or a
filter for the measured force has to be used. In this way the
“ideal” trajectory produced is not influenced by the slave
tracking error, which can spoil the smoothness of the de~
sired trajectory. The control loop is closed through the op-
erator and the master. Although this approach relies on the
good tracking capabilities of the controller, simulation re-
sults testing it were excellent.

On the master side the situation is more complicated.
Two choices for the generation of the desired trajectory are
possible: viz., equations (3) and (5). In the ideal case, the
use of either would give the same results, Note that they
both represent the GI, with the difference that the second
is applied to the dual dynamic systemn: “operator’s arm -+
master.”” In our opinion the second is the best choice, since

Machine Intelligence & Robotic Control, 3(1), 7-26 (2001}

18 S. G. Tzafestas, P. A. Prokopiou, and C. S. Tzafestas

. y
0.81 po--ri - L4
2 z 1.2

£ 0,805 =

1 -

0.8 : 08
0.8 0.805 0.8 0.8 i 12 14
(a) X(m) () X(m)

Fig.11 Stave trajectory with MLPNNs; (a) Task A, representing the re-
sults without and with initial learning phase by the solid and
dashed lines, where this simulation was performed with slightly
different NN structure [1]—the structure used in the other sim-
ulations behaved almost perfectly to the same task {initial error
< 1 fmm]), nevertheless this figure is presented to show what
could happen with inadequate traiaing or larger modeling errors;
(b) Task C

the complete dynamics of the controlled part of the system
are taken into account. If (3) is used, then the desired per-
formance will be imposed exclusively on the robot, ignor-
ing the internal dynamics of the humean. In other words, the
“ideal” desired trajectory generated would not be based on
the human intentional force f,, but on an indirect observa-
tion of it {f .,,)» 1.€. on the result of its application to a dy-
namic system (the operator’s arm). The other choice copes
with all the passive parts of the couple “operator + master.”
Tt results from the fact that the human arm is also something
to be controlled, considering f), rather than f.,, as the fo-
cal system input. However, f}, is not easily measurable’ ,
whereas f,., 1s.

To overcome this problem an estimator of the human arm
dynamics was incorporated in the control scheme. Lee and
Lee [9] model the human arm in detail, and derive the sim-
plified model mentioned in Section 2. In the latter, there is
only one set of unknown parameters (matrix M), whose
estimation is trivial. Even the detailed model is not diffi-
cult to identify. Since the parameters of the model change
according to the person’s fatigue and intention, an NN
adopted online would be a suitable estimator. If it is pre-
ferred, then the block labeled “f), estimator” in Fig. 10
should be renamed “f,,, filter” In the following, this es-
timator is treated as a “black-box” which always gives the
perfect f .

There are two other major difficuities concerning the
master controller, First, it has to work in paralle] with the
operator, who-—in contrast to the environment in the slave
side—is not passive. Thus it acts only upon a part of the
system, so that perfect performance cannot be guaranteed
just by its design, unlike the slave side controller. Second,
the master’s function is to transmit to the operator the feel
of the force and (together with the visual system) the feel
of the movement at the slave side, which are the fundamen-
tal stimuli for the generation of f,. Therefore the perfor-
mance of the controller has to be excellent right from the
start, so that the operator won't be misled, Ideally, its pres-
ence has to be unnoticed by the operator, who has to feel
the GI trajectory.

Regarding these difficulties, the MLPNN achieves satis-
factory performance after a short (1 [sec]) training phase

t]t can be measured by implanted sensors or estimated from surface
electrodes’ measurements {10}, [11].

©2001 Cyber Scientific

performed automatically, during which their is no inter-
action with the operator. Early simulations indicated that
right after the modeling error appears (e.g. after picking
up an object) the robot can even move at first towards the
wrong direction (Fig. 11a), even if we assume that the oper-
ator “understands” correctly f,.,;.1 Within a few millisec-
onds the neurocontroller performance-—i.e. the accuracy of
the model—is greatly improved and the robot starts mov-
ing along the desired path. This small error can be mini-
mized by first ordering the robot to move along a sinusoidal
course of small amplitude for a while and then stay still.
In this way the NN learns coarsely the altered dynamics
before the main movement begins. Although in later sim-
ulations with improved NN strocture the system behaved
almost perfectly to the same Task (initial error < 1 [mm]},
this short additional phase is included for the integrity of
the approach and for safety, in case larger modeling errors
arise. With RBFNNs the adaptation to sudden parameters
changes was found to be much faster, and so such a trick
was not considered necessary.

With the incorporation of this phase, the training consists
of three phases: a) An initial offline phase, during which
the robot is trained on a nominal model and learns the ba-
sic nonlinear functions (this phase can be performed in a
laboratory), b} A short, automatic, on-field but still offline
phase whenever serious modeling errors (are expected to)
arise, and ¢) A continuous online phase for perfectly tuning
the parameters and following the desired trajectory. Using
the terminology of classical identification, the first phase
corresponds to the structure identification, the second to a
coarse parameter estimation, and the last with the final pa-
rameters’ tuning. This training phase, as a general concept,
can be used in conjunction with any teleoperator task or
contzol method. In sunumary, it should be noted that when
designing controllers for the master, the engineer has to be
more careful than for the slave side. With the exception of
the points discussed above, the design concept of Lee and
Lee was preserved without any other changes.

3.4 Simulation resulis

3.4.1 Original system response First some simulations
were performed to check the response of the original aigo-
rithm of Lee and Lee. They were performed with two iden-
tical rigid-revolute-link manipulators of 2 DOFs acting as
the master and slave arm. Their parameters, the modeling
errors considered, as well as the overall teleoperator conirol
system parameters are given in Table 5.

Table 6 shows the tasks for which the system was tested.
The first three tasks are performed in free space. Tasks D
and E are contact task. Both master and slave are initially
stationary at free space, at the same position relative to their
base frame. Then the operator tries to move the slave to po-
sition 4 and expects/estimates to feel a reaction force fg
(which is a scaled version of the actual f., ;). This wili
actually be felt if he penetrates inside the object as much as
the last column of Table 6 shows. The object in the contact
tasks is modeled as an elastic, immobile “wall” of infinite

We still expect to assess by experiments how misleading such an “al-
) P J EXp ; :
most instant” discrepancy can be for a human operator. With proper train-
ing, the operator could learn to ignore transient errors.

Machine Intelligence & Robotic Control, 3(1), 7-26 (2001

A New Partitioned Robot Neurocontrolier 19

Table 5 System parameters and modeiing errers

Operator

0.18 8] 0.5 G 7.0 0
My = s Bha = y Kpe =
G 0.15 0 05 0 7.0
0.5 V] 1.0 0
Bpg = yHpg =
0 G.5 0 1.0

Master and Slave Dynamics

link 1:
link 2:

Units and symbols:

e 10l m= 1, =051T=038
me=51=1,1,=051=045
S¥ units (m, kg, kg- m?)

Symbols: n: mass, [length, [o: center of mass position from previous joint
I: moment of inertia
Generalized Impedance
Do 0 4 0 078 0
Mape. = s Bamn = ?stm
0 005 0 4 0 078
01 0| B 10 0 0 0
Mg =) Bds = K = :I<fs =
0 91 0 8 0 10 0 0
Communication Channel and Grp
1.6 0 3,02 0 1.6 o0
Ko = ‘Kca - W Trp =
0 19 6 002 9 1.0

Modeling Errors

Unless otherwise stated, 50% and 20% for the siave and master respectively on
the mass znd moment of inertia of the last link.

. 20 20 . Table 6 Simulation tasks
dimensions with 2, = 9 2(}} [N/m]. A point on the
0 . Task] 1 @4 i fcs,d] Penetration

torder is 2, = (0.8085 [m], 0.8085 {m]), and a unity vec-
tor vertical to it is (0.7071, 0.7071). Its stiffness is equiva- A | (08,08) | (08105,0.8105) 1 - -
lent to a spring vertical to its border with k = 40 [N/m].11 B 1(08,08) | (0.85085)

In the next figures, when referring to “ideal” response C | (6.8,08) (1.4,1.4) - -
we mean the response computed directly by the Gl equa- D |8 08 | (0810508105 | (55 | 01768
tions, 1.e. assuming they were perfectly imposed by the E | 03,08 | 0810508105 | (1, 1) 0.0354

controller. For the “non-ideal” case the control input was
first calculated and then applied to the robot dynamics after
a time delay of one sampling period, in order to model the
computational delay. All simulations were carried out with
a sampling period of 1 [msec] on a PC with a 90 MHz Intel
Pentium processor.

The ideal system response for Task B is shown in
Fig. 12. However, in the same Figure it is shown that
even if only a computation delay of a full sampling pe-

Variables with subscript “o™ and “d” represent starting
and goal values respectively. All distances are in meters,
and forces in Newtons.

unstable. The above results justify the need for our new

controller.

3.4.2 Response with MLP neural controllers

Various

riod {1 [msec]) is taken into account the

a sinusoidal course. Note that the results reported by Lee
and Lee in [9], [221, [28] compare the system response with
other teleoperator designs but not with the ideal (GI) per-
formance. Furthermore, at Task A with 50% modeling er-
rors only at the slave side (¥ig. 13), the slave moves along
a curved course and stops at a totally wrong position, prob-
ably because of the monitoring forces. With modeling er-
rors at both robots, and on contact, the gystem becomes

sets of simulations were performed employing MLP neuro-
controllers, Although the offline training data was forming
a sparse grid over their whole input space, the NNs had no
difficulty to adapt to such localized tasks. Figure 11 reveals
the usefulness of the initial training phase. When the robot
is ordered to move right after the modeling error appears
(e.g. after picking up an object) it moves initiaily towards
the wrong direction. Within a few milliseconds the neuro-
controller performance—i.e. the accuracy of the model—is
greatly improved and the robot starts moving along the de-
sired path. This small error is minimized by first ordering

slave will follow

1 Yokokohji and Yoshikawa characterized & similar object as “relatively

hard” [371.
©)2001 Cyber Scientific

the robot to move along a sinusoidal course of small ampli-

Machine Intelligence & Robotic Centroi, 3(1), 7-26 (2001}

24 S. G. Tzafestas, P A, Prokopiou, and C. 8. Tzafestas

0.85 o

0.84

0.83

¥{mj
=
@
)

0.8%

0.8

¢.8 081 082 0383

{a) X{m)

84 085

98
97
86
95
94
93
92
91
Q0
89

b
E;

T(Nm)

pram

Y

<

0 2000 4000 6000

{c} Time{msec)

Tig. 12

0.85

0.84

083

Y{m}
o]
b

0.81

0.8 .

082 083 0.8%

{b) X(m)

0.84

102

160

88

95

94

T{Nm)

92

St

90

88

0 2000 4000 &009

(d) Time(msec)

Task B, representing the ideal system and the system with full period computation delay by

the solid and dashed Jines: (2} slave trajectory; (b) master trajectory; {c} input torque for the
slave’s first joint; and (d) input torque for the master’s second joint

¥{m)

0.8 0804 0808 0812
Ky

Fig.13 Task A, representing the ideal system and the system with mod-
eling error at the slave by the solid and dashed lines

tude (1 mm at this simulation) for 0.5 [sec] and then stay
still for another 0.5 [sec] (see Fig. 11b). This way the NN
learns the altered dynamics before the main movement be-
gins. This new training session will be used in the follow-
ing figures. In the simulations we considered that modeling
errors arise sinmmultaneously at both sides. This is clearly a
worst-case situation. It will be however shown that the pro-
posed controllers can handle it.

Figure 14 shows the results for a small movement in
free space. Note that the slave trajectory is a perfect line
and that the time evolution of the distance from the tar-
get matches perfectly the ideal one, 1.e. the one generated
through GI. With the exception of the first few millisec-
onds, during which the subnets leamn the new dynamics,
the control torque has almost no chattering.! The peaks of

TIr {1] we reported some chattering, which later on disappeared by i~
proving the structure of the MEPNN.

©2001 Cyber Scientific

the torque mark the beginning of the phases of training and
movement.

Figure 15 {Task D) shows a typical trajectory when con-
tact with the environment is commanded. In some simula-
tions a staall deviation from the linear course upon contact
was observed. To minimize this deviation, the scaling fac-
tor K,, was set to low values. Note also that due to the
compromise imposed by the GI, the equilibrium position
Hies between the desired position @4 and the desired pene-
tration (Table 6). It can be seen that after contact, the trajec-
tory is slower and the equilibrium point is sightly different
(< 1 [mm]} from the one expected by the GI. We have con-
cluded fhat this is due to the contact shock, which obstructs
the NN learning. Possible ways to minimize its effects are
currently being investigated by the authors.

3.4.3 Response with RBF neural controllers In Figs. 16
and 17 some representative results of the system with
RBFNNs are shown, The trajectory is almost ideal, and
no initial training phase is required as with MLPs. Much to
our surprise, though, control chattering is more than MLPs,
even more than sliding mode controllers discussed in the
next paragraph.

A general remark, applying to both MLPNN and
RBFNN, is that instability of the NN learning and conse-
quently the whole teleoperator system can be caused if the
online obtained training data is “too hard” for the NN, ie.
if the acceleration and speed are outside the limits used in
the offline learning phase, or if the modeling error is ex-
cessively big. An area of “useable” training data has to
be specified during the offine initialization phase, by both

Machine Intelligence & Robotic Control, 3(1), 726 (20CG1)

A New Partiticned Robot Neurocontroller

0.8 .82

{a) X(m)

0.84

o
i)
=

e
L]
=

F
—_
=

Torgue (Nm}

p
<o
=

90
0 160G 2000 3000 4000 5000

{c) Time(msec)

Torgue (Nm)

21

0.08

0.06

i
=
Y

Distance(m}

©
<
fav

Nl

5000
(b) Time(msec)

10060

117

t16.5

116

—
-
wn
(%]

115
4000 4500

(d) Time(mseg)

5000

Fig. 14 Task B with MLPNNs, representing the ideal system and the system with modeling error at
the slave by the solid and dashed lines: (a) slave trajectory; (b) distance from the target; (c)
input torque at the slave’s 1st link; and {d) input torque at the slave’s 1st link

0.08
0.82
0.815 5 008
- T
g 048] 2 0.04 |t
> b
0.805 A 9.2 |- y
0.8 oot /
0.8 0.805 .81 0,815 (.82 5000 10000 15600
(=) X(m) (b) Time(msec)
130 116
— 120 U [5 T) S — ;
= E
O Z
o 110 v 115}
g_ I ?I‘ MM
S &
L 10 ES NS SO AT 4 = 1145
90 114
0 5000 10000 15000 4900 4500 5000

(¢) Time{msec)

(d) Time{msec)

Fig.15 Task D with MLPNNs, representing the ideal system and the system with modeling error at
the slave by the solid and dashed lines: (a) stave trajectory; (b) distance from the targes; (¢}
input torque at the slave’s 1st link; and {(d) input torque at the siave’s ist link

theoretical and trial-and-error methods. If “illegal” data is
generated during the online movement, we have concluded
that it is better to nof teach this pair of data and use the cur-
rent model for the generation of the control torque. A few
milliseconds of “approximately correct” torque are prefer-
able over instability! If the movement ordered continu-
ously demands “illegal” NN tnput, then an alert has to be

(©2001 Cyber Scientific

issued to the operator.

3.4.4 Response with sliding-mode controllers A sliding
mode robust controlier was also tested as ap improvement
of the control scheme of Lee and Lee [38]. Sliding con-
trollers guarantee trajectory tracking under the presence
of modeling uncertainties of known bounds and distur-
bances [6], [39], [45], [46]. The controller was incorporated

Machine Intelligence & Robotic Control, 3(1), 7-26 (2001)

22

0.85

e

0.84

— 0.83 -

Yim

(.82

0.81

G.8

0.8 0.82

(2) X(m)

0.84

130

ot
[
<=

powm
-
<o

Torque (MNm)

—
L]
<

(c) Time(msec)

50
0 1000 2000 3000 4000 35000

S. G. Tzzfestas, P. A. Prokopiou, and C. §. Tzafestas

0.08

0.06

Distance(m)

\
N

0 2000 4000 6000
(b) Time(msec)

2000

117

114.5 far

[
—r
Lo}

TForque (Nm)

115.5 -

115
4000 4500

(d) Time{msec)

5000

Fig.16 Task B with RBFNNs, representing the ideal system and the system with modeling error at
the slave by the solid and dashed lines: {a) slave trajectory; (b) distance from the target; (¢
input torque at the slave’s 1st link; and (d) input torque at the slave’s 1st link

0.08
0.82
~ 0.06
0.815 E . ‘
— Q i ",
E 081 S .04 prd %
> 8]
0.805 3 0.02 bt
0.8 bt D\/
0.8 0.805 0.81 0.815 0.82 5000 10000 15000
(=) X{m) {b} Time{msec}
130 116
— 120 U I P—S— :
g n g
& &
o 110 o 15
) 5
8 5
=100 B 1145
90 114
0 3000 16600 15000 40060 4500 5000

(c) Time(msec)

{d) Time(msecc)

Fig.17 Task I with RBFNNs, representing the ideal system and the system with modeling ervor at
the slave by the solid and dashed lines: (a} slave trajectory; (b) distance from the target; {c)
input torque at the slave’s 1st link; and (d) input torque at the slave’s 1st link

in the teleoperator system foliowing the concept presented
in Fig. 10a, where now the controller blocks represent the
new type of controllers instead of NNs, A problem faced
was how to handle force control, since the sliding mode
method is primarily aimed at trajectory following. The
most straightforward approach was to apply the two-step
procedure also utilized for the neural controllers.

(€2001 Cyber Scientific

Figure 18 analyzes the system response for a move-
ment in free space {Task B). Although the slave trajectory
matches the ideal, some control chattering is visible. In
contact tasks it becomes more intense. Figure 19 shows
the response for Task E. Note that although trajectory track-
ing is satisfactory during the movement, in the steady state
there is a small discrepancy between the ideal and the ac-

Machine Intelligence & Robotic Contzol, X1), 726 (2001)

A New Partitioned Robot Neurocontrolier

(.85 1.
0.84 ¢,

0.83 !

¥ {m}

0.82 .

0.81

0.8 081 0.82 0.83 0.84 0.85
X {m)

{a)

138
130 |- -
125
120 f e
115
110
105
100
95
80

Targue (Nm)

0 2000 4000 600C 8GO0

Time (msec}

{e)

23

G.08
0.07
006 fier v Ce we
005 1. or L A
0.04 { . : :
0.03
Q02| -y

0.01 F - - b

0 N
O 2000 4000 6000 8000
Time (msec)

(b}

Distance {m)

116.45
116.4
116.35
116.3 +il4
116.25 Pl
16,2
116.15
148.1

116.08
4000 4250 4500 4750 5000
JTime (msec)

{d)

Torgue (Nmy)

Fig. 18 Task B with sliding mode controllers, representing the ideal system and the system with
modeling error at the slave by the solid and dashed lines: (a) slave trajectory; (b) distance
from the target; {c) input torque at the slave’s 1st link; and (d) input torque at the slave’s st

tink

tual position, comprising to about I {ram] or 0.01 [N}. This
error becomes insignificant for smaller desired forces. In-
creasing the coefficient K., led to a gradual elimination of
it, but at the cost of amplification of contro] chattering.

3.4.5 Comparison of MLE, RBF and sliding-mode con-
frollers Although a direct quantitative comparison be-
tween the methods is not easy, due to the differences in
basic concepts and architectural parameters, a qualitative
one is attempted in Table 7. Generally, all three methods
produced practically ideal trajectories. Between the two
NN families tested, RBF controllers performed better in
some aspects: they never exhibited any initial trajectory
overshoot, the “subnetwork confusion™ was less and their
offline training very easy. However, the control chattering
was, surprisingly, worse than even the sliding controllers,
and the MLPs had significantly less neurons. Therefore we
would prefer the MLPNNs. A useful criterion is reported
by Ziauddin and Zalzala[19] and relates to the hardware
available: if serial hardware is used, then the MLPs are
more suitable due to their spaall size. RBFs are fittest to be
implemented on parallel hardware.

An engineer deciding which algorithm to implement,
should also consider the classical control methods. As their
representative in our work we used the sliding mode tech-
nique. As with the other members of this controller class,
a sliding mode controller requires a mathematical nominal
model of the robot dynamics as well as knowledge of the
uncertainty bounds. On the other hand, NNs adapt quickly
to a wide range of situations and parameters, and the output

©y2001 Cyber Scientific

is calculated easier and faster. Finally, an inverse model of
the system is identified. This can prove to be very useful
to evaluate the situation and the objects encountered, much
better than the “blind” compensation offered by sliding ro-
bust controllers. Therefore NNs are, in our opinion, more
suitable for employment within the teleoperator system.

4. Conclasions and Future Work

This paper summarized and presented in a unified way
some new results of the authors on robotic manipulator dy-
namics identification and control using NNs. The first part
of the paper concentrated on the identification problem.
The NN is divided in three subnetworks, each one come-
sponding to a part of the manipulator dynamics. A novel
Error Distribution technique (termed HERD) was theoret-
ically analyzed and supported by simulations. The second
part of the paper employed the resulting NN to the tele-
operator control problem. Two different teleoperator con-
tro} architectures, a global and & local one, were proposed.
The local one was then fully analyzed. Simulations with
MLPNN and RBFNN, as well as with sliding-mode con-
trollers, were reported. A final comparison slightly favored
the MLPNNs.

In the future, as far as the teleoperator scheme is con-
cerned, the investigation of other neural net architectures
(e.g. recurrent architectures) are planned to be tested. NNs
can also be exploited for other functions within 2 teleopera-
tor system equally successfully. They can be used to model
the environment, the operator’s arm and his nervous system

Machine Inteligence & Robotic Control, 3(1}, 7-26 (2G01)

G.83
0.825
0.82
0.815
0.81
0.805
0.8

Y (m)

220
260
180
160
140
120
100

80

........

.........

Torque {Nm)

G 2000 4000 6GCD 80CO

Time (msec)

{2}

S. G. Tzafestas, P. A. Prokepiou, and C. S. Tzafestas

0.035
0.03
0.025
0.02
0.015
0.01
0.005

Distance (m}

2000 4000 600G 8000
Time (msec)

&)

11625
4000 4250 4500 4750 5000
Time (msec)

(b)

Fig.19 Task E with sliding mode controllers, representing the ideat system and the system with
modeling error at the stave by the solid and dashed lines: (a) slave trajectory; {b) distance
from the target; {c} input torgue at the slave’s 1st link; and (d) input torque at the siave’s 1st

link

Table 7 Comparison of control methods

MLP RBF Siiding mode
size of network/complexity small big big
offline learning/mathematical
computation long (hours) | short (minutes) iong {hours)
online learning: confusion error bigger smalier no learmning
online learning: total error very smalk very small ne learning
guaranteed convergence no no yes
robot {rajectory excelient excellent excellent
control chattering insignificant | big (o(1) Nm) | mediura {o(0.1) Nm)

response. In addition, some of the autenomous functions
assigned to the slave can be accomplished by NNs, e.g. pre-
serving the orientation or programming the moves of the
end effector, local path planning, and obstacle avoidance.
We also consider applying the partitioned neurocontroller
as an underlying linearizing controller within the Neuro-
predictive Teleoperation Scheme, introduced in [10],f11].
All these are fruitful areas for future research.

The effect of time delays in the communication channel
was not analyzed in this paper. In order to simulate the
stochastic nature of the communication channel and thus
make the simulations more realistic, random delay will be
introduced in future explorations. The effect of time delays
in teleoperation and robustifying techniques to compensate
for them are discussed in {10].

We also plan to further investigate the form of the HERD
functions and generally R in (5) to suitably modify the

(©2001 Cyber Scientific

search direction of the gradient descent algorithm, i.e. de-
velop “manipulator-specific” or generally “plant-specific”
{raining algorithms.

References

[i} 8. G. Tzafestas, P. A. Prokopiou, and C. 8. Tzafestas, “Robust
telemanipulator control using a partitioned neural network architec-
tuze,” in Proc, of 1997 IEEE Int. Conf. on Neural Networks (ICNN
'97), Houston, Texas, June, 1997,

S, G. Tzafestas, P. A. Prokopiou, and C. 8. Tzafestas, “Telemanip-
ulator neurocontro! using multiple RBF networks,” in Proc, of 12th
IEEE Int. Symp. on Intelligent Control {ISIC °97}, Istanbul, Turkey,
July 1997, pp. 257-262.

5. G. Tzafestas and P. A. Prokopiou, “Error distribution to parti-
tioned newral controllers identifying the robot dynamic model,” in
Proc. of the 2nd Int. Symp. on Intelligent Automation and Control
(ISTAC'98}, Anchorage, Alaska, May 1998, paper No. 140,

1. Sjoberg, Q. Zhang, L. Ljung, A. Beaveniste, B. Delyon, P-Y. Glo-
reanec, H. Hjelmarsson, and A. Fuditsky, “Nonlinear black-box
modeling in system identification: A unified overview,” Automar-
ica, vol. 31, no. 12, pp. 16911724, 1995,

e

(31

(4]

Machine Inteliigence & Robotic Control, 3(1}, 7-20 (2001)

53

[l

(71

[8]

9

[10]

1

[12]

[13}

{14]

[13]

(16]

{17]

(18

[19]

201

[21]

[22]

[23]

i24]

[25]

{26}

(21

A New Partitioned Robot Neurocontroller

8. G. Tzafestas, A. E. Krikochoritis, and C. . Tzafestas, “Robust
and adaptive control of biped-robot walking,” in Proc. of 1st Mobile
Robotics Technology for Health Care Services Research Network
(MobiNer) Symposium, Athens, Greece, May 1997, pp. 271-286.

. G. Tzafestas, M. Raibert, and C. 8. Tzafestas, "Robust sliding
mode control applied to & 5-link biped robot,” J. of Intelligent and
Robotic Systems, vol. 15, ne. 1, pp. 67-133, 1996

C. $. Tzafestas, P. A. Prokopiou, and S. G. Tzafestas, “Path plan-
ning and control of a cooperative three-robot system manipuiating
farge objects,” J. of Intelligent and Robotic Systems, vol. 22, no. 2,
pp. 59-116, 1998,

G. Hirzinger, “Towards a new robot generation for space, terrestrjal

and medical applications,” in Proc. of Second ECPD Int. Conf. on

Advanced Robotics, Intelligent Automation and Active Systems, Vi-
enaa, Austria, September 1996.

S. Lee and 1. 8. Lee, “Modeling, design and evaluation of advanced
telecperator control systems with short time delay,” JEEE Trans. on
Robatics and Automation, vol. 9, no. 5, pp. 607-623, October 1993
P. Prokopiou, W. S. Harwin, and S. G. Tzafestas, “Exploiting a
human arm model for fast intuitive and time-delays-robust telema-
nipulation,” in Advances in Manufacturing: Decision, Control and
Information Technology, 8. G. Tzafestas, Ed. Berlin, Germany:
Springer, 1999, pp. 255-266.

P. A. Prokopiow, W. 8, Harwin, and S. G. Tzafestas, “A novel
scheme for human-friendly and time-delays robust nevropredic-

tive teleoperation,” J. of Intelligent and Robotic Systems, vol, 25,

pp- 311-340, August 1999.

A, Guez and J. Selinsky, “Neurocontroller design via supervised and
unsupervised learning,” J. of Intelligent and Robotic Systems, vol. 2,
pp. 3073335, 1989,

M. Kawato, Y. Uno, M. Isobe, and R. Suzuki, “Hierarchical neu-
ral network model for voluntary movement with application to
robotics,” IEEE Control Systems Magazine, pp. 8-16. April 1988,
E L. Lewis, K. Liu, and A. Yesildirek, “Neural net robot controlier
with guaranteed tracking performance,” JEEE Trans. on Neural Net-
works, vol. 6, no. 3, pp. 703-715, May 1995.

F. L. Lewis, K. Liu, and A. Yesildirek, “Multilayer neural net robot
tracking control,” IEEE Trans. on Newral Networks, vol. 7, no. 2,
pp. 388-399, March 1996.

T. D. Sanger, “Neuraj networks learniag control of robot manip-
ulators using gradually increasing task difficulty,” JEEE Trans. on
Robotics and Automation, vol, 1¢, no. 3, pp. 323333, June 1994,
§. G. Tzafestas, “Neural networks in robot control,” in Artificial
Intelligence in Indusirial Decision Making, Control and Automa-
tion, S. . Tzafestas and H. B. Verbruggen, Eds. Dordrecht, The
Netherlands: Kluwer, 1995, pp. 327-328.

S. T. Venkataraman, S. Gulati, 7. Bahren, and N. Toomarian, “A neu-
ral network based identification of environments models for compli-
ant control of space robots,” JEEE Trans. on Robotics and Automa-
tion, vol. 9, no. 5, pp. 685-657, October 1993,

$. M. Ziauddin and A. M. S, Zalzala, “Model-based compensation
and comparison of neural network controllers for uncertainties of
robotic arms.” IEE Preceedings on Comtrol Theory and Applica-
tions, vol. 142, no. 5, pp. 501-507, September 1995.

Y. Yokekohji, A. Ogawa, H. Hasunuma, and T. Yoshikawa, “Opera-
tion modes for cooperating with autonomous functions in intelligent
teleoperation systems,” in Proc. of 1993 IEEE Int. Conf. on Robotics
and Automation, Atlanta, Georgia, vol. IfL, 1993, pp. 510-515.

R. J. Anderson and M. W. Spong, “Bilateral contrel of teleoperators
with time delay,” IEEE Trans. on Automatic Control, vol. 34, no. 5,
pp. 494501, May 1989.

S. Lee and H. S. Lee, “Design of optimal time delayed teleoperator
contro! systems,” in Proc. of 1994 IEEE Int. Conf. on Robotics and
Automation, San Diego, California, U.S.A., 1994, pp. 3252-3258.
G. Niemeyer and 1.-1. E. Slotine, “Towards force reflecting teleoper-
ation over the internet,” in Proc. of 1998 IEEE Int. Conf. on Robotics
and Automation, Leuven, Belgium, May 1998, pp. 1909-19135.

P. Coiffet, “Robotics and virtual reality technigues: A new lock on
man-machine relations,” in Proc. of Ist Mobile Robotics Technalogy
for Health Care Services Research Network (MOBINET) Sympo-
siwm, Athens, Greece, May 1997, pp. 11-25.

D. H. Cha, H. 8. Cho, and 8. Kim, “Design of a force reflection con-
troler for telerobot systems using neural retwork and fuzzy logic,”
J. of Intelligent and Robotic Systems, vol. 16, pp. 1-24, 1996,

£ A. Prokopiou, C. 8. Tzafestas, E. S. Tzafestas, and S. G. Tzafes-
tas, “Neural network robust-adaptive telemanipulator control: com-
parison with sliding-mode control,” Syst. Anal. Modell, Simul,
vol. 33, no. 3, pp. 259294, 1998.

S. Lee, “Intelligent sensing and control for advanced teleoperation,”

©2001 Cyber Scientific

[28]

{291
{30]

(311

32}

{33]

[34]

(351

136]

[37]

[38]

[39]

0]

{41]

[42]

[433

[44]

[45]

{46)

[47]

(48

25

IEEE Control Systems Magazine, pp. 19--28, June 1593,

S, Lee and H. $. Lee, “An advanced teleoperator control system: De-
sign and evaluation,” in Proc. of 1892 IEEE Int. Conf. on Robotics
and Automation, Nice, France, 1992, pp. 859-864.

T. B. Sheridan, “Felerobotics,” Automatica, voi. 25, no. 4, pp. 487-
507, 1989,

A. A. Kobrinski and A. E. Kobrinski, Bras Manipulateurs des
Robots. Moscow, Russia: Editions Mir, 1989 (in French).

H. Kazerooni, T.-1. Tsai, and K. Hollerbach, “A controller design
framework for telerobotic systems,” IEEE Trans. on Control Sys-
tems Technology, vol. 1, no. 1, pp. 50-62, March 1593,

1. B, Colgate, “Robust impedance shaping telemanipulation,” JEEE
Trans. on Robotics and Automation, vol. 9, no, 4, pp. 374-384, Au-
gust 1993,

B, Hannaford, “A design framework for teleoperators with kines-
thetic feedback.” IEEE Trans. on Robotics and Automation, vol. §,
no. 4, pp. 426-434, August 1939

D. A. Lawrence, “Stability and transparency in bilaterai teleoper-
ation,” IEEE Trans. on Rebotics and Auwtomation, vol. 9, no. 35,
pp. 624637, October 1993,

R. M. Satava, “The modern medical battlefield: Sequitur on ad-
vanced medical technology,” IEEE Robotics and Automation Mag-
azine, vol. 4, no. 3, pp. 21-25, September 1594.

S. E. Salcudean, N. M. Wong, and R. L. Hollis, “Design and contro}
of a farce reflecting teleoperator system with magnetically levitated
raster and wrist,” JEEE Trans. on Robotics and Automation, vel. 11,
n0. 6, pp. 844-857, December 1995,

Y. Yokokohji and T. Yoshikawa, “Bilateral control of master-slave
manipulators for ideal kinesthetic coupling—-Formulation and ex-
periment,” IEEE Trans. on Robotics and Automation, vol. 10, no. 5,
pp. 805-619, Getober 1994,

5. G. Tzafestas and P. A. Prokopiou, “Compensation of teleopera-
tor uncertainties with a sliding mode controller,” J. of Robotics and
Computer Integrated Manufacturing, vol. 13, no. 1, pp. 920, Jan-
uary 1997.

5. 3. Craig, Intreduction to Robotics: Mechanics and Control.
Reading, MA: Addison-Wesley, 1989.

S. G. Tzafestas (Ed.), Intelligent Robotic Systems.
Marcel Dekker, 1991, Chapter 10.

T. H. Lee, W. K. Tan, and M. H. Ang, “A neural network control
system with parallel adaptive enhancements applicable to nenlinear
servomechanisms,” IEEE Trans. on Industrial Electronics, vol. 41,
no. 3, pp. 269~276, Jane 1994,

S§. G. Tzafestas, G. Stavrakakis, and A, Zagerianos, “Robot model
reference adaptive control through lower/upper part dynamic de-
composition,” J. of Intelligent and Robotic Systems, vol. 1, pp. 163~
184, 1988,

S. Haykin, Neural Networks.
Publishing, 1994,

K. J. Huat, D. Sbarbaro, R. Zbikowski, and F. J. Gawthrop, “Neu-
ral networks for control systems-—A survey,” Awtomatica, vol. 28,
no. 6, pp. 1083-1112, 1992,

C.-C. Kung and §.-C. Lin, “Fuzzy controller sesign: A sliding mode
approach,” int Fuzzy Reasoning in Information Decision and Control
Systems, S, (. Tzafestas and A. N. Venetsanopoulos, Eds. Do
drecht, The Netherlands: Kluwer, 1994, pp. 278-306.
1.-3. Slotine and W. Li, Applied Nonlinear Control.
CEffs, New Jersey: Prentice Hali, 1991,

S. P. Chan, “Comments on: ‘A neural network compensator for un-
certainties of robotics manipuiators’, ™ IEEE Trans. on Industrial
Electronics, vol. 42, no. Z, pp. 217-218, April 1995,

T. C. Hsia and $. Fung, “A simple alternative to neural network con-
tro] scheme for robot manipulators,” IEEE Trans. on Industrial Elec-
tronics, vol. 42, no. 4, pp. 414416, August 1995,

New York, NY:

New York, NY: Macmillan College

Englewood

Machine Intelligence & Robotic Control, 3(1), 7-26 (2001)

26 S. (. Tzafestas, P. A. Prokopiou, and C. §. Tzafestas

Biographies

Spyros G. Tzafestas is a full Professer, the Director of the Insti-
tte of Communications and Computer Systems ({CCS), the Sig-
nais, Control and Robotics Division, and the Intelligent Robotics
and Automation Laboratory (JRAL) of the National Technical
University of Athens (NTUA). He holds Ph.D, and D.Sc. in Con-
trol and Automation, and received Honorary Doctorates from the
International University (D.Sc.(Hon.)) and of the Technical Uni-
versity of Munich (Dr.-Ing. Eh). He is a fellow of IEEE (N.Y.)
and IEE (London), and member of ASME (N.Y.), New York
Academy of Sciences, IMACS (Rutgers, N.J.) and SIRES (Brus-
sels}y. He i3 alse a member of IFAC SECOM and MIM TCs,
a project evaluator of national and international projects (USA,
Canada, Itaty, Hong-Kong, Japat), and a project coordinator of
national and EU projects in the fields of robotics, CIM and I'T (ES-
PRIT, BRITE-EURAM, TIDE, INTAS, SOCRATES, EUREKA,
GROWTH etc.). He published 30 research books, 60 book chap-
ters, over 700 joumal and conference technical papers. He is an
Editor-in-Chief of the Journal of Intelligent and Robotics Sys-
tems and of the book series “Microprocessor-Based and Intelli-
gent Systems Engineering” (Kluwer). He has served as an orga-
nizer of several international conferences (IEEE, IFAC, IMACS,
IASTED, SIRES ete.). His current research interests inciude con-
‘trol, robotics and CIM.

(©2001 Cyber Scientific

Platon A. Prokopiou received the Diploma in Electrical Engi-
neering (1996) and the Ph.D. in Engineering (2000} from National
Technical University of Athens, Greece. He is currently with
the Intelligent Rebotics and Automation Laboratory, Dept. of
Electrical Engineering, National Technical University of Athens,
Greece. His research interests include Robotics (especially Tele-
operation, Human Arm and Operator Modeling for Teleoperation,
Visual Servoing, Cooperative Robot Centrol, Mobile Robots, Ar-
tificial Life), Neural Networks, and Fuzzy Logic for Control.

Costas 8. Tzafestas holds a Diploma in Electrical and Com-
puter Engineering from the National Technical University of
Athens, Greece, and a DEA and Ph.D. degrees in Robotics from
the Universite Pierre ¢t Marie Curie (Paris 6), France. He is
currently & research associate in the Institute of Informatics and
Telecommunications at the National Center for Scientific Re-
search “DPemokritos,” Athens. His research interests include vir-
tual reality interfaces, haptic feedback, human/machine interac-
tion, and telerobotics. He has also worked on robust, adaptive
and neural control with applications in walking robots and coop-
erating manipulators. He is a member of the IEEE and of the
Greek Technical Chamber.

Machine Intelligence & Robotic Control, 3(1), 7~26 (2001}

| }@\Q‘i

\

