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Abstract— Robots are increasingly introduced in various
Child-Robot Interactions with educational, entertainment or
even therapeutic goals. In order to achieve qualitative inter-
actions, robots need to adjust their behavior according to
children’s response. A robot’s ability to successfully estimate
partner’s engagement is of great importance towards this
direction. In this research we propose a method to estimate
the engagement level of children during heterogeneous and
challenging child-robot interactions. Our method uses the spa-
tiotemporal residual R(2+1)D blocks to simultaneously leverage
the rich RGB and temporal information, which is crucial for the
engagement estimation. We present results on three different
groups of data, including the PInSoRo open dataset, proving
our method’s robustness and improvement over previous works.
1 I. INTRODUCTION

Interest in using social robots has increased over the years
as more and more studies focusing on improving Child-
Robot Interactions (CRI) are performed every year [1]. Social
robots have been introduced in the educational process of
children [2], [3] and they have also been employed to help
children with Autism Spectrum Disorder (ASD) or learning
difficulties to tackle consequences and challenges of such
disorders [4], [5], [6].

In particular, there are promising results in the use of
robots in supporting the social and emotional development of
children with ASD [7], [8], [9]. Social robots proved to be a
way to get through the social obstacles of children and make
them involved in the interaction [1]. During interactions
with social robots, children with ASD tend to preserve a
calm and active mood and to display repetitive behaviors
less frequently [10], [11]. Furthermore, research indicates
that attention and engagement towards children’s parents
increased after a long-term of CRI [12]. These studies’
results reveal that interacting with robots could significantly
help children with ASD.

Robots’ ability to adapt their behavior according to the
children’s cognitive state is of great importance, so that
common ground between robots and children is established
[13]. Engagement is a significant indicator of human re-
sponse to interactions. It refers to a dyadic state constituted
by mutual and extended interactions between a child and a
partner (human or robot) about a topic in the environment.
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Fig. 1: Child interaction with Zeno robot in a Greek primary
school.

Engagement captures both partners’ contributions to the
maintenance of ongoing interaction periods comprised of
extended interactional turns, when the child and the partner
actively focus on shared objects and events [14].

Engagement estimation is not a simple task as it poses
significant difficulties. First of all, engagement is a multi-
faceted cognitive mechanism that cannot be directly observed
[15]. Moreover, although engagement is an internal mental
state, the observing robot stays confined to the exploitation of
external vision or audio cues to estimate its level [16]. While
recognizing an action can be part of the information needed
to estimate engagement, it is not enough as sometimes being
fully engaged to an interaction means observing the partner
without acting depending on the stage of the interaction.

Our purpose is to develop a reliable method of engagement
estimation in diverse child-robot interactions. In our previous
work [17], we proposed an engagement estimation method
focusing on ASD children, taking part in different interac-
tions both with social robots and with their mothers. Our
model based mostly on children poses could successfully be
trained to estimate children engagement in different sessions
during which children where free to move around the room
as they pleased. However, it could not tackle the engagement
estimation problem successfully when dealing with interac-
tions during which children where more confined, mainly
sitting in front of a desk or a table. Therefore, we aimed at
designing a different method based on raw RGB and optical
flow data instead of pose, that operates on video clips instead
of image frames and employs a different network architecture
so that it can accurately estimate children engagement level
in as many as possible, given the data we possess, conditions.

In this paper, we propose a method that can estimate
engagement of children interacting with robots by using deep
learning methods. The network we used for the machine
learning experiments is based on the spatiotemporal ResNet
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(2+1)D block [18]. We have experimented with various data
in order to be able to evaluate the generalization of our
models. First of all, we have designed and developed our
method on interactions of ASD children playing with Zeno
[19] robot two different games in their school environment.
Moreover, we have tested our method in data we used
in [17], in order to compare it with previous published
results. Finally, we applied our method on a part of the
PInSoRo dataset [20]. We consider this very important due
to the fact that, to the best of our knowledge, PInSoRo is
the biggest publicly available dataset capturing both child-
child and child-robot interactions and facilitating data-driven
studies of social dynamics and CRI. All these experiments
demonstrated that the proposing method can be used for child
engagement estimation in completely different scenarios.

II. RELATED WORK

In the past few years, numerous studies approached the
problem of child engagement estimation. Earlier studies
concentrated on features such as head pose [21], gaze [22],
face expression [23], and distance between partners [24].
Hadfield et al. [25], in a previous work of our laboratory,
proposed an LSTM neural network that uses skeletal pose,
body and head direction as well as distance from the robot
partner. Baxter et al. [16] proposed a two stage method
for children engagement estimation. Firstly, a convolutional
network is employed in order to extract useful representa-
tions from the RGB frames. Afterwards, a recurrent network
leverages these representations to extract a temporal feature
vector. Filntisis et al. [26] designed a method that estimated
children’s emotional state by combining estimations of two
different networks for more accurate results. A ResNet-50
convolutional network that estimated emotional state using
the RGB images of children faces and a fully connected
neural network that estimated emotional state using children
body poses. In [27], the method proposed to estimate en-
gagement is based on thermal infrared imaging.

Some studies have also approached the problem of esti-
mating engagement of children focusing on children with
ASD or children with learning difficulties. In Anagnos-
topoulou et al.[17], we propose a deep convolutional net-
work that receives as inputs children’s poses transformed to
resemble sequences of images and use it to estimate ASD
children’s engagement taking part in a variety of conditions
and interactions. Rudovic et al.[28] introduced CultureNet
for estimating engagement level of children with ASD. The
network architecture is based on convolutional ResNet-50 but
the training is personalized in different culture backgrounds.
Papakostas et al. [29] proposed a method that estimates en-
gagement of children with learning difficulties. Their method
extracts various features like body and head orientation,
emotion, response time and speaking duration and uses an
AdaBoost decision tree to estimate engagement. Moreover,
[30] employs the recurrent Legendre Delay Network and uses
facial and skeletal landmarks to estimate engagement level
on the PInSoRo child-child interactions.

Additionally, other recent studies focus on ASD children
aiming to action recognition or emotion recognition. Zhang
et al. [31] concentrate on action recognition of ASD children
in order to facilitate stereotyped actions recognition process.
Their approach employs OpenPose to detect children’s poses
which are fed to an LSTM neural network in order to
recognize children’s actions. In [32], the goal is to esti-
mate ASD children’s affect state and the method proposed
leverages acoustic and visual cues in order to accomplish
that. This approach employs speech emotion recognition to
distinguish negative affect states and afterwards uses RGB
data to distinguish between positive and neural affect states.

As previously shown while describing engagement, en-
gagement estimation cannot be considered as a subproblem
to the action recognition problem. However, efforts to esti-
mate engagement can be reinforced by the ongoing progress
in wider video recognition problems such as action recog-
nition. Examples, of recent action recognition methods that
engagement estimation could take advantage of are Temporal
Shift Modules [33], which based on a convolutional network
perform temporal shifts along channels in order to facilitate
the exchange of information between frames as well as Video
Transformer Networks [34], in which a temporal attention
encoder is employed in a network for action recognition.

III. DATA & ENGAGEMENT DESCRIPTION

Since we are focusing on developing a robust system to
estimate child engagement during challenging interactions
with a robot, we use datasets with diverse conditions ans
environments. In our experiments, we have been using three
different groups of data that differ on: a) the participating
children (TD or ASD), b) their posture (if they are seated
or not), and c) the extent at which the designed interactions
prompt children to cooperate with the robot towards a com-
mon goal. All of these, as mentioned before, affect the indi-
cations of the engagement level and, apparently, complicate
engagement estimation. In Table I, we summarize important
differences which have significant impact on engagement
estimation across the different sets of data.

The first set of data consists of 13 sessions in which three
children participate, one girl and two boys, facing autism
spectrum disorder. Each child participated in two intervention
sessions per week for three months in the school they studied,
the Special School for Children with Autism in Piraeus,
Greece. During each session, which lasted approximately five
minutes, each child participated and played two games every
time with Zeno robot [19]. Zeno was placed on a desk beside
a flat touch screen, while children sat in front of the desk.
For the recording, a Kinect camera was installed behind the
game setup at an angle that captures the child’s movements
and facial expressions and the progression of the games.

The games that children played were: Sums Game and
Emotions Game. During the Sums Game, Zeno asks the child
to help him learn how to add up to number four. Simple
sums appear on the screen, and Zeno and the child take
turns to solve them correctly. In the Emotions Game Zeno
asks the child to express the emotions of happiness, sadness



(a) BR-SCHOOL GAMES DATASET (b) ASD-GAMES DATASET (c) PINSORO DATASET

Fig. 2: Instances from the different data sets environments. (a) A BABYROBOT-SCHOOL GAMES Dataset instance, child
plays Sums Game and helps Zeno robot find the answer to the sum question that appears on the screen. (b)An ASD-GAMES
Dataset instance, child plays Guess the Object Game (c) A PINSORO Dataset instance, child plays with Nao robot around
the touchscreen table.

Child Child Kinetic Robot Social
DATASET Development Behavior Behavior
BR-SCHOOL ASD Seated Social
GAMES
ASD-GAMES[17] ASD Move around Social
PINSORO[20] TD Seated Asocial

TABLE I: Most important differences among the used
datasets.
and fear. In both games, the robots’ prompts were graded
in three levels, i.e. from more concrete to more abstract for
the Sums Game, and from direct imitation of the robot to
prompts for spontaneous expressions. We refer to these data
as BABYROBOT-SCHOOL GAMES.

We also tested our method in some of the data we
experimented with in our previous work [17]. We have seven
sessions in which seven children participate facing autism
spectrum disorder. During each session, which lasted approx-
imately 20 minutes, each child participated and played four
different games with two robots, NAO [35] and Furhat [36].
The games that children played were: Show me the Gesture,
Express the Feeling, Pantomime and Guess the Object. Each
child stood in front of the robots and interacted freely
with them while moving in the room as they wanted. For
comparison reasons, we refer to these data as ASD-GAMES.

Finally, we also experimented with the PInSoRo dataset
[20], which is an open dataset of child social interactions
designed to be used in data-driven research efforts. It consists
of about 45 hours of social interactions between 45 child-
child pairs and 30 child-robot pairs. All interactions are
taking place around a large interactive table. Children are
encouraged to play freely and are not directed to perform any
particular task. Interactions are annotated on three different
axis: task engagement, social engagement and social attitude.
For our experiments, we have been using the child-robot
interactions as we are mostly interested in empowering social
robots to adjust their behavior according to children’s en-
gagement level. We have chosen not to use interactions with
low inter-coder agreement for task engagement annotations.
We have been using 23 out of the 30 child-robot interactions
and specifically we cropped interactions between the 5th and
the 15th minute. This time period was chosen because the
density distribution of the duration is centered around 15
minutes [20]. For comparison reasons, for the rest of this
text, we refer to these data as PINSORO dataset.

Engagement is expressed as a dynamic, multimodal, and

temporally organized action generated in and referring to
a socio – cultural context [37], [38]. It is a reciprocally
motivated enactment involving whole body communication
of agency based on intuitively regulated temporal contours
of expressive sound and movement. Its coherence is based on
the ways its parts are related temporarily and casually. Each
partner monitors the other’s attention and adapts his action
accordingly, while maintains or exchanges perceiver – actor
roles [39], [38]. Thus, from a psychological point of view
we cannot monitor engagement by separately monitoring
behavior towards the goal and social behavior towards the
partner, although in the future we could explore this ap-
proach computationally in order to draw further conclusions.
According to these we define three engagement levels:

• level 1: The child is disengaged,meaning they are paying
limited or no attention to the robot or their common
goal.

• level 2: This level is regarded when children pay atten-
tion to the robot but remain passive or act relative to
the common goal but not pay attention to the partner.

• level 3: The child is engaged, referring that the child acts
harmonically with the robot to complete their common
goal.Members of our laboratory annotated the data according to

a set of instructions containing groups of visual and acoustic
cues under psychologists supervision. These instructions
can be found in our previous work [17]. The videos were
annotated not based on a specified time interval but on the
change of the engagement level with one second accuracy,
while each one was annotated by one annotator.

For the PInSoRo dataset, four different engagement levels
are used on the task engagement axis, close to our en-
gagement annotations: no-play, adult-seeking, aimless and
goal-oriented. By excluding the adult-seeking engagement
level, which is extremely rare (about 2.5% for the particular
sub-dataset we have been using), the engagement annotation
schema of all the used datasets are in agreement.

IV. METHOD

A. Network Architecture

Previous research has shown that engagement estimation
can be estimated adequately using children’s pose. However,
our empirical studies have shown that this approach is suc-
cessful in scenarios where children are free to move around



Fig. 3: Network for engagement estimation. Network receives as input a clip of RGB and optical flow data estimates the
child’s engagement level.

the room and therefore their pose (especially relative to the
robot) presents significant variations. On the other hand, it
is not successful when applied on interactions during which
children are seated and thus their poses present much less
variety and many parts of the children bodies are occluded.
To tackle this, we need to leverage RGB information which
contains much richer information.

Simultaneously, one other empirical finding is the fact that
engagement heavily depends on the progress of the ongoing
interaction. For example, during the Sums Game there are
instances that the child needs to wait for the robot to answer
the question. Waiting on these particular instances reveals
higher level of engagement than immediately answering.
These kind of parts of the interactions are really difficult to be
correctly estimated. This is the reason why we have decided
to estimate engagement on clips instead on separate frames.
We split the videos into parts with constant engagement level
and afterwards we split each part into clips with duration of 6
seconds each. We extract optical flow and we estimate depth
data from RGB data. Video frames are scaled to 228× 128.
Using a face detector, we crop frames into square images of
size 112× 112 around the children faces.

We propose a network that is built using the spatiotemporal
convolutional block R(2+1)D [18] which has been introduced
for action recognition. This block is made of spatiotemporal
convolutions which perform a two dimensional convolution
over the spatial plane followed by a one dimensional convo-
lution along the time axis. These spatiotemporal convolutions
are repeated twice and combined in a residual block. Our
network consists of five consecutive layers created from these
spatiotemporal blocks. The spatiotemporal convolutional lay-
ers are followed by an adaptive pooling layer and finally fully
connected layer.

We have been experimenting with different training data.
We use raw RGB data, a fusion of RGB and depth data
as well as a fusion of raw RGB and optical flow data.
We experiment with fusing rgb and optical flow networks
during a late or an early network stage. On the first occasion,
we fuse the two channels before the last fully connected
layer. On the second, we fuse the two channels after the
first of the five spatiotemporal convolutional layers. The
proposed architecture with early fusion of RGB and optical

flow channels is depicted in Fig.3.

B. Implementation

We use PyTorch library [40] to implement our network.
We use the ResNet (2+1)D pretrained on the Kinetics-400
dataset. We chose a batch size of 16 and a learning rate of
10−4 after experimenting with different values. We also used
the Adam Optimizer [41] as well as ReduceLROnPlateau
scheduler in order to update network weights and decrease
learning rate when our metrics do not improve for 10
continuous epochs.

We create train and validation sets for our four data groups
separately and we apply cross validation. In order to avoid
overfitting danger as well as produce more training examples
for the less common classes, we employ some methods of
data augmentation. We create clips that consist of 15 frames
that spread along six seconds. Thus, we use one every 12
frames given a fps of 30. For every six second interval we
use different frames to produce different clips. As far as
the PINSORO dataset is concerned, this data augmentation
method is not employed for the ‘goal-oriented’ engagement
level which is by far the most common in our data, so
that the imbalanced distribution between classes mitigates.
In addition, we flip images vertically with a 0.5 probability
and horizontally with a 0.2 probability.

In order to compute network loss, we employ the weighted
CE loss function. We chose this loss function because in
Child Robot Interactions data are not at all equally distributed
among the different engagement levels that represent our
training classes. Therefore, it is important that our network
pays more attention to training examples of classes that are
less common among the data.

Finally, we use three metrics to evaluate our models.
These metrics are: standard accuracy, weighted F-score
and weighted precision (w.precision). Generally, F-score
improves when both precision and recall improve and not
when one of them improves at the expense of the other,
while weighted F-score is the weighted average of the F-
score of different classes. Respectively, weighted precision
is the weighted average of precision of different classes.



Network Accuracy F-score W. Precision
majority class 38.03 20.95 15.12

pose CNN [17] 39.34 25.95 25.95
ResNet-50 38.45 25.54 26.30

R(2+1)D RGB 62.17 62.98 60.88
R(2+1)D RGB + Depth 62.52 63.32 63.18

R(2+1)D RGB + Flow (Late) 63.07 63.88 63.57
R(2+1)D RGB + Flow (Early) 65.78 65.38 65.95

TABLE II: Engagement estimation results for the
BABYROBOT-SCHOOL GAMES dataset.

Network Accuracy F-score W. Precision
majority class 62.28 47.81 38.80

pose CNN [17] 68.34 67.57 65.07
R(2+1)D RGB + Depth 68.22 67.47 67.32

R(2+1)D RGB + Flow (Late) 69.85 68.92 68.04
R(2+1)D RGB + Flow (Early) 71.09 70.96 70.36

TABLE III: Engagement estimation results for the ASD-
GAMES dataset[17].

V. RESULTS & DISCUSSION

In this section, we present the results of our experiments
on the various data. In Table II, we present estimation results
for the BABYROBOT-SCHOOL GAMES data. We use the tag
“majority class” to refer to a network that would always
estimate the most common engagement level. Besides the
R(2+1)D networks we also include the CNN network that
uses children pose as input that we proposed in [17] for
child robot interactions during which children where moving
around the room as well as a network based on ResNet-50
as in [6].

During the BABYROBOT-SCHOOL GAMES interactions
children’s pose are quite limited and this is reflected on the
efficiency of the CNN network that takes children’s pose
as input. Although, this network could successfully learn to
estimate children engagement in interactions during which
children were playing around the room it can not generalize
on limited different poses. Moreover, the ResNet-50 based
network, which does not take into account the sequence of
frames - the process of the ongoing interaction - is not able
to learn to accurately estimate engagement.

On the contrary, we see that the ResNet (2+1)D achieves
accuracy higher than 60%, with correspondingly high values
of F-score and w. precision even when training on the RGB
data alone. Adding depth training data does not cause a
significant estimation improvement. This is not unexpected
at all, as during these interactions children are seated in
front of a desk and the depth data of the videos does not
display any significant divergence associated with children’s
action or engagement state. Estimation efficiency is growing
when optical flow data are exploited along with raw RGB
data, while the best estimation results are observed when
RGB and flow channel are fused at an early stage of the
model. These observations are in accordance with respective
research conclusions on training CNN neural networks [42],
[18]. Evaluation results on the other datasets lead to the same
conclusions, as far as depth’s, optical flow’s, early and late
fusion’s contributions are concerned. Therefore, we settle on
the R(2+1)D RGB + Optical Flow (Early Fusion) network,

Network Accuracy F-score W. Precision
majority class 36.67 19.68 13.45

ResNet-50 40.52 34.32 35.05
R(2+1)D RGB + Depth 62.49 59.87 59.36

R(2+1)D RGB + Flow (Late) 66.78 65.30 65.32
R(2+1)D RGB + Flow (Early) 68.40 67.11 68.50

TABLE IV: Engagement estimation results for the PINSORO
dataset.

Ground Truth Predictions
Engagement Level No-play Aimless Goal-oriented

No-play 53.83% 5.74% 40.43%
Aimless 9.02% 48.62% 42.36%

Goal-oriented 4.27% 9.63% 86.10%

TABLE V: Confusion matrix for engagement estimation
results for the PINSORO dataset.

which achieves accuracy and Fscore around 65% both on
the Sums and on the Emotions games.

In Table III, we present estimation results for the ASD-
GAMES data from our previous work on the subject [17].
Here we can see that the proposed R(2+1)D based method
outperforms the pose CNN method of [17] in all metrics,
showing high estimation rates in these kind of interactions as
well. We remind that these data contain a variety of different
interactions during which children are asked to talk, gesture,
move around the room or play before a screen.

In Table IV, we present estimation results for the PIN-
SORO dataset. Our model achieves accuracy and weighted
precision higher than 68% as well as F-score around 67%.
The other methods that we tested on these data failed to
generalize and learn to estimate the ground truth, having
low accuracy. ResNet-50 achieved accuracy 40.52% and pose
CNN 57.07%. As far as we know, these are the first extensive
results on the child-robot interactions of the PInSoRo dataset.

Finally, for comparison reasons with [30] in Table V,
we present the confusion matrix for the PINSORO dataset.
We can observe that results are similar although we cannot
have a direct comparison. Firstly, we refer to the child-
robot interactions, whereas [30] refers to the child-child
interactions. At the same time, training and testing clips are
created in a different manner as we use specific parts of the
interactions (5th-15th minutes), while [30] collects pieces
with specific engagement level to form experimenting data.

VI. CONCLUSION

In this paper, our goal is to develop a method that
successfully estimates children’s engagement level during
various and challenging child robot interactions regardless of
the participating children’s development state, their kinetic
behavior or even the goal of the interaction. We propose
a method that based on a spatiotemporal residual network
estimates engagement on six seconds clips. The experiments
with different data show that our method improves engage-
ment estimation compared to previously proposed methods.
Future work should explore the possibility of improving
estimation leveraging state of the art action recognition archi-
tectures and look into the possible contribution of multimodal
characteristics - e.g. audio, text or multimedia information of



the interaction - for further improvement of the estimation.
The final goal should be to incorporate the engagement
estimation model to an educational robot so that it can be
tested in real conditions during child-robot interactions.
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time, Peter Øhrstrøm Bruno Mölder, Valtteri Arstila, Ed., pp. 225–265.
Springer, Cham, 2016.

[39] Maya Gratier and Colwyn Trevarthen, “Musical narrative and motives
for culture in mother-infant vocal interaction,” Journal of Conscious-
ness Studies, vol. 15, pp. 46–79, 10 2008.

[40] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, et al., “Pytorch: An imperative style, high-performance
deep learning library,” in Proc. NeurIPS. 2019.

[41] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
Proc. ICLR, 2014.

[42] K. Gadzicki, R. Khamsehashari, and C. Zetzsche, “Early vs late fusion
in multimodal convolutional neural networks,” in Proc. FUSION,
2020.




