Multiscale Fractal Analysis on EEG Signals for Music-Induced Emotion Recognition

Kleanthis Avramidis, Athanasia Zlatintsi, Christos Garoufis and Petros Maragos

National Technical University of Athens, School of ECE Computer Vision, Speech Communication and Signal Processing Group

kle.avramidis@gmail.com; cgaroufis@mail.ntua.gr; [nzlat, maragos]@cs.ntua.gr

2 Multifractal Algorithms

3 Feature Extraction

4 Experimental Evaluation

- 2 Multifractal Algorithms
- 3 Feature Extraction
- 4 Experimental Evaluation
- 5 Contributions

< 1 k

Affective Analysis:

- Emotion-driven Intelligence is underexplored
- Barriers: subjectivity / annotation / data availability
- Research: Speech, Language, Facial Expressions

Affective Analysis:

- Emotion-driven Intelligence is underexplored
- Barriers: subjectivity / annotation / data availability
- Research: Speech, Language, Facial Expressions

Brain Responses:

- Neural signals (EEG, fMRI) can be objective affective metrics
- Brain Operations and Emotions are highly affected by Music
- But: chaotic, nonlinear, fragmented, large amounts of noise
- Fractal Theory and Multifractality for Music and EEG
- Rehabilitative Applications, Decision Making & Human Behavior

2 Multifractal Algorithms

3 Feature Extraction

4 Experimental Evaluation

Multiscale Fractal Dimension (MFD)

- Determined by measuring the multiscale length of a curve via morphological coverings (just like the Box-Counting method).
- Cover: 2D morphological set dilations of the signal graph F by multiscale versions sB = {sb : b ∈ B} of a unit-scale convex symmetric B. Cover Area: A_B(s) = area(F ⊕ sB).

Multiscale Fractal Dimension (MFD)

$$D = \lim_{s \to 0} \frac{\log \left[A_B(s)/s^2\right]}{\log[1/s]}$$

In practice, D can be estimated by a least-squares line to find the slope of $\log [A_B(s)]$ vs $\log(s)$, assuming the power law $A_B(s) \approx s^{2-D}$ as $s \to 0$.

Multiscale Fractal Dimension (MFD)

$$D = \lim_{s o 0} rac{\log\left[A_B(s)/s^2
ight]}{\log[1/s]}$$

In practice, D can be estimated by a least-squares line to find the slope of $\log [A_B(s)]$ vs $\log(s)$, assuming the power law $A_B(s) \approx s^{2-D}$ as $s \to 0$.

• Fractogram: We compute the slope of the data over a small scale window of *w* scales that move along the scale axis, creating a profile of local MFDs *D*(*s*, *t*), from which D can be estimated:

Multifractal Detrended Fluctuation Analysis (MFDFA)

DFA estimates the Hurst exponent H in time series data x[n] of length N.

- Signal cumulative sum: $y[n] = \sum_{n=1}^{N} (x[n] \mu_x)$
- divided into non-overlapping windows $y[k, n], k = 1 \dots N_s$ of length s
- for every window the local trend r[k, n] is linearly obtained
- Detrended k^{th} profile segment: $y_d[k, n] = y[k, n] r[k, n]$
- RMS of each one is computed and averaged across segments:

$$F(s) = \sqrt{\frac{1}{N_s}\sum_{k=1}^{N_s}F_k^2(s)}, \quad F_k(s) = \sqrt{\frac{1}{s}\sum_{n=1}^s y_d[k,n]^2}$$

Multifractal Detrended Fluctuation Analysis (MFDFA)

DFA estimates the Hurst exponent H in time series data x[n] of length N.

- Signal cumulative sum: $y[n] = \sum_{n=1}^{N} (x[n] \mu_x)$
- divided into non-overlapping windows $y[k, n], k = 1 \dots N_s$ of length s
- for every window the local trend r[k, n] is linearly obtained
- Detrended k^{th} profile segment: $y_d[k, n] = y[k, n] r[k, n]$
- RMS of each one is computed and averaged across segments:

$$F(s) = \sqrt{\frac{1}{N_s}\sum_{k=1}^{N_s}F_k^2(s)}, \quad F_k(s) = \sqrt{\frac{1}{s}\sum_{n=1}^{s}y_d[k,n]^2}$$

D is obtained by the power law $F(s) \propto s^{H}$, that determines H = 2 - D. For MFDFA, the computation of F(s) includes q moments.

$$F_q(s) = \sqrt[q]{rac{1}{N_s}\sum_{k=1}^{N_s}F_k^q(s)}$$

Multifractal Detrended Fluctuation Analysis (MFDFA)

The resulting representation is a set of linear-like graphs of a specific value for each scale. H is determined through linear regression, for each moment.

$$t(q) = qH(q) - 1, \quad D(q) = q'h(q) - t(q'), \quad h(q_n) = rac{t(q_n) - t(q_{n-1})}{q_n - q_{n-1}}$$

Kleanthis Avramidis (NTUA)

CVSP Research Group

2 Multifractal Algorithms

3 Feature Extraction

4 Experimental Evaluation

Experimental Setup

The DEAP Dataset: Widely used and competitive

- Preprocessed data from 32 subjects
- Each exposed to 40 1min music videos
- Each annotates their induced emotion
- Valence Arousal Emotion Space
- EEG given at 128 Hz and 32 electrodes

Experimental Setup

The DEAP Dataset: Widely used and competitive

- Preprocessed data from 32 subjects
- Each exposed to 40 1min music videos
- Each annotates their induced emotion
- Valence Arousal Emotion Space
- EEG given at 128 Hz and 32 electrodes

Subject Dependency:

- Subject Dependent: trained and tested on trials of a single participant
- Subject Independent: trained on several subjects and tested against unseen trials.

Experimental Setup

The DEAP Dataset: Widely used and competitive

- Preprocessed data from 32 subjects
- Each exposed to 40 1min music videos
- Each annotates their induced emotion
- Valence Arousal Emotion Space
- EEG given at 128 Hz and 32 electrodes

Subject Dependency:

- Subject Dependent: trained and tested on trials of a single participant
- Subject Independent: trained on several subjects and tested against unseen trials.

Classifier and Sessions: We make use of a single classifier unifying features from all available EEG channels. The model consists of a Standard Scaler and a Support Vector Machine (SVM) with an RBF kernel. Experiments consider valence or arousal in binary format. We perform 5-fold cross validation to compensate for the limited dataset size.

Stationarity: Physiological signals like the EEG are widely researched as noisy and non-stationary, due to external stimuli, interfering physiological operations and complex neural assemblies of brain functioning.

- ADF Test: evident strict stationarity, negative correlations
- observed after applying bandpass filtering
- Fractional Gaussian Noise (H close to 0)

Stationarity: Physiological signals like the EEG are widely researched as noisy and non-stationary, due to external stimuli, interfering physiological operations and complex neural assemblies of brain functioning.

- ADF Test: evident strict stationarity, negative correlations
- observed after applying bandpass filtering
- Fractional Gaussian Noise (H close to 0)

Utilized Features:

- Baselines: EEG Power Spectral Density, Higuchi Fractal Dimension
- MFD: 15 sec. windows on each signal. 30 linearly sampled features extracted out of each window's MFD, then summarized using theit mean, median and standard deviation.
- MFDFA: 10 scales / 16 moments for half signals, h(q), D(q) features

< □ > < □ > < □ > < □ > < □ > < □ >

- 2 Multifractal Algorithms
- 3 Feature Extraction
- 4 Experimental Evaluation

Comparison to Baselines

Features	Channels	Raw Signal	Alpha Band	Beta Band	Gamma Band	Combined
PSD		0.642 — 0.652	0.598 - 0.645	0.629 - 0.639	0.635 — 0.620	0.631 - 0.648
HFD	Front	0.615 - 0.638	0.605 - 0.655	0.591 — 0.643	0.601 - 0.634	0.638 — 0.645
MFD	Left	0.620 - 0.661	0.626 — 0.669	0.591 — 0.653	0.594 - 0.636	0.612 — 0.661
MFDFA		0.577 — 0.662	0.571 — 0.643	0.577 — 0.649	0.592 — 0.651	0.586 - 0.658
PSD		0.627 - 0.644	0.616 - 0.645	0.637 — 0.641	0.623 - 0.627	0.623 - 0.646
HFD	Front	0.606 - 0.644	0.604 — 0.655	0.595 — 0.633	0.572 - 0.627	0.623 - 0.644
MFD	Right	0.607 - 0.655	0.605 - 0.652	0.566 - 0.652	0.602 - 0.641	0.597 - 0.657
MFDFA	_	0.587 — 0.655	0.573 — 0.641	0.603 — 0.650	0.573 - 0.620	0.586 - 0.652

SUBJECT DEPENDENT TASK ACCURACY IN THE FORM: VALENCE — AROUSAL

SUBJECT INDEPENDENT TASK ACCURACY IN THE FORM: VALENCE — AROUSAL

Features	Channels	Raw Signal	Alpha Band	Beta Band	Gamma Band	Combined
PSD		0.554 - 0.569	0.547 - 0.564	0.549 - 0.562	0.553 - 0.570	0.546 - 0.564
HFD	Front	0.541 — 0.601	0.552 - 0.588	0.541 — 0.616	0.545 - 0.584	0.585 - 0.621
MFD	Left	0.553 - 0.606	0.566 - 0.631	0.545 — 0.618	0.554 — 0.580	0.559 — 0.615
MFDFA		0.569 — 0.630	0.546 - 0.600	0.545 - 0.598	0.532 - 0.545	0.553 - 0.608
PSD		0.553 - 0.580	0.557 - 0.560	0.558 — 0.573	0.552 - 0.579	0.555 - 0.575
HFD	Front	0.525 - 0.573	0.566 - 0.582	0.544 — 0.595	0.549 - 0.567	0.571 — 0.605
MFD	Right	0.552 - 0.601	0.556 - 0.605	0.547 — 0.587	0.545 — 0.588	0.560 — 0.607
MFDFA		0.555 — 0.619	0.552 - 0.580	0.549 — 0.591	0.539 - 0.584	0.544 — 0.599

- Raw PSD efficient in the SD setting, drops significantly across subjects.
- Multifractal features more robust across subjects, especially in arousal.
- Raw EEG and the alpha rhythm provide better performance.

Feat/s	Exp	Raw	Alpha	Beta	Gamma	Comb
Left	Subject	0.663	0.670	0.657	0.637	0.656
Right	Dep.	0.654	0.662	0.618	0.640	0.655
Left	Subject	0.613	0.641	0.612	0.580	0.614
Right	Indep.	0.604	0.610	0.591	0.582	0.615

MFD-HFD AROUSAL ACCURACY

- $\bullet\,$ MFD and HFD provide better arousal scores when combined, mainly α band.
- Single features adequate instead of combined / Left hemisphere preferred
- The differences are significant in the subject independent setting.

- 2 Multifractal Algorithms
- 3 Feature Extraction
- 4 Experimental Evaluation

- We analyzed the structure of EEG signals and demonstrated their multifractal properties (stationarity and fragmentation).
- We developed 2 novel algorithms, based on Multiscale Fractal Dimension and Multifractal Detrended Fluctuation Analysis.
- The proposed methods perform strongly against widely used baseline features, particularly in the SI setting and in arousal recognition.
- Ablation Study: Higher scores are achieved when raw EEG or alpha band signals are considered, especially of the left hemisphere. Also, fractal features perform better when aggregated.
- Future Work: feature extraction algorithms for determining asymmetrical multifractal properties, examination of multi-band energy EEG features, obtained through energy separation algorithms.