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Waveforms & End-to-End Models

Waveform: Abstract representation of a sound wave

Complex, non-intuitive structure

Inherits noise from surroundings / equipment / sound event

Instead: Time-Frequency Representations (i.e CQT, STFT)

But: Which should we use? What is their computational cost?
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In Music Information Retrieval (MIR)

In MIR and Instrument Classification particularly, there is strong intuition
into utilizing frequency-related representations, since notes and
instruments are densely associated with specific frequency events.

Remark: Challenging and computationally expensive to design
specialized feature representations for each different recognition task.
Proposal: Take advantage of Deep Learning methods to build efficient
feature extractors from raw waveforms. Should handle:

High input dimensionality and noisy structure

Low-level temporal correlations and features

Reduced computational cost without performance loss
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Recurrent Networks (RNN)

Have been widely used in waveform and generally sequence modeling
thanks to their ability to handle long-range temporal dependencies.

Bidirectional GRU:

Lower computational cost compared to LSTM

Comparable performance to LSTMs for audio sequences

Considers both past and future features for dependencies

We experiment on the number of layers and utilized GRU units:

Number of Layers Number of Units
1 128 or 256
2 128, 64

Dropout (0.5)

Output Dense
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Convolutional Networks (CNN)

Traditionally operate on images or time-frequency features.

Already exhibited results in audio waveform processing [1].

Network based on [2] with alterations:

DCNN: 2 dense layers to predict - many trainable parameters

FCN: Dense layers → unit-kernel convolutions and filter pooling

RFCN: embed skip connections to the previous model

[1] W.Dai et al, in Proc. ICASSP 2017 [2] A.Kratimenos et al, in Proc. EUSIPCO 2020
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Combined Networks

CNNs concentrate on temporally local correlations in waveforms,
while RNNs are useful in modeling longer-term temporal structure.

We expect that by efficiently combining these networks we will
combine different kinds of discriminative features.

We attach the best-performing RNN model of our experiments
to the RFCN model in various positions.

Connection: The embedded model takes the output of the
corresponding CNN cell and its output is reduced to classes
through convolution and Global Average Pooling. The final
representation is the average of the 2 modules’ outputs.

Empirically search the optimal way of integrating the recurrent
model information into a robust classifier.
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Dataset & Pre-Processing

The IRMAS Dataset [3]: 11 instruments/classes

[ cello, clarinet, flute, acoustic/electric guitar, organ, piano, saxophone, trumpet, violin, voice ]

Training Set: A set of 3-sec monophonic audio chunks (music
tracks with a predominant instrument) for each class

Testing Set: A set of multilabeled polyphonic tracks

Each training track was:

cut to 1-sec segments

downsampled and downmixed

normalised by RMS energy

[3] J.J.Bosch et al, in Proc. ISMIR 2012.
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Training Protocol & Evaluation

5-fold Cross-Validation

Binary Cross-Entropy Loss (Multi-label Task)

Adam Optimizer (10−3 learning rate)

Learning Rate Reduction & Early Stopping

Utilized evaluation metrics:

Label Ranking Average Prediction (LRAP): Suitable for
multi-label tasks, ranking intuition, threshold independent

F1 Score: Comparable evaluation, class imbalance

IRMAS Testing Set: Tracks ranging from 5-20 sec. We average the
per-sec predictions to obtain a single prediction for each track. Labeled
instruments are active throughout the track.
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Architecture Comparison

A simple recurrent network cannot sufficiently decode the
information included in a waveform

BiGRU F1-micro % F1-macro % LRAP % #Params
1 (128) 43.76 ± 1.95 37.37 ± 1.90 57.26 ± 3.28 103.4K
1 (256) 43.51 ± 2.46 39.19 ± 2.23 58.47 ± 2.73 403.4K

2 49.28 ± 2.45 43.18 ± 3.11 67.07 ± 1.81 225.6K

1D CNNs are capable of extracting the most discriminative features
from raw waveforms, almost as well as 2D models on spectrograms.

FCN: in the absence of a dense layer, the network generalizes better
upon the information from spatial processing + less parameters

Models F1-micro % F1-macro % LRAP % #Params
DCNN 55.32 ± 0.55 48.30 ± 0.31 73.48 ± 0.38 1.14M
FCN 58.45 ± 0.36 49.96 ± 0.29 75.13 ± 0.32 81.8K

RFCN 58.55 ± 0.22 50.22 ± 0.35 75.14 ± 0.23 85K
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Architecture Comparison - Combination

Simply averaging the RNN and CNN model outputs lowers accuracy
→ inadequate standalone performance of the BiGRU

We thus inserted the BiGRU in various locations in the RFCN model:

Models F1-micro % F1-macro % LRAP % #Params
CRNN2 59.80 ± 0.66 53.20 ± 0.52 74.16 ± 0.66 1.03M
CRNN3 60.77 ± 0.26 54.31 ± 0.35 74.74 ± 0.39 1.07M
CRNN4 60.07 ± 0.67 53.73 ± 0.59 74.11 ± 0.50 1.08M
CRNN5 59.21 ± 0.56 52.18 ± 0.46 74.32 ± 0.65 1.03M

Table: The subscript denotes the CNN layer in which the RNN was connected.

No observed improvement in performance for the LRAP metric,
steady increase however for F1 scores

The combined models consist of significantly more parameters
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Literature Comparison

Models F1-micro F1-macro LRAP #Params
Bosch et al. [3] 0.503 0.432 – –
Pons et al. [5] 0.589 0.516 – –
Han et al. [4] 0.602 0.503 – –

Kratimenos et al. [2] 0.616 0.506 0.767 24.3M
Reduced [2] 0.520 0.458 0.689 1.20M

Proposed 0.608 0.543 0.747 1.07M

Table: Comparison of our work with previous studies on the IRMAS Dataset

F1 micro surpasses most studies on the task, while we observe
dominant performance at the more competitive F1 macro score.

Results obtained with a significantly reduced number of trainable
parameters, low training - testing time and minimal pre-processing.

[3] J.J. Bosch et al, in Proc. ISMIR 2012. [4] Y.Han et al, in IEEE/ACM Trans. Audio, Speech and Language Processing, 2017.

[5] J.Pons et al, in Proc. EUSIPCO 2017. [2] A. Kratimenos et al, in Proc. EUSIPCO 2020.
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Instrument-wise Analysis

We use the per-class F1 score for this experiment

We examine how each instrument can be discriminative in either
waveform or time-frequency representation.

Brass instruments (ex. clarinet, flute, saxophone) → Waveforms

Predominant and leading instruments (ex. guitars, piano, voice)
→ Constant Q Transform Spectrograms
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Contributions & Future Work

Experiments with various architectures
that are favourable towards waveform
modeling, like Fully Convolutional and
Residual Nets and information fusion.

A residual FCN-BiGRU model (1M
parameters) outperforms the
state-of-the-art with CQT
spectrograms (24M parameters)

Brass instruments are being identified
easier through waveforms, while
leading instruments benefit more from
time-frequency features.

Future work: alternate methods to
exploit RNNs / enhance performance
of predominant instruments / ways
to deal with inherent noise
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Thank you
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