Enhancing Affective Representations of Music-Induced EEG through Multimodal Supervision and Latent Domain Adaptation

K. Avramidis, avramidi@usc.edu

C. Garoufis, <u>cqaroufis@mail.ntua.qr</u> A. Zlatintsi, P. Maragos <u>nzlat@cs.ntua.gr</u> maragos@cs.ntua.gr

The Multimodal Approach

Concept: Utilize stimulus info to drive feature extraction from EEG

- Fusion using neural signals incorporates additional goals
- Disentangle noisy signals from artifacts other than the stimulus
- Enable dynamic (temporal) modeling of emotion induction
- Mapping of both representations onto a **common latent space**
- Multimodal Supervision instead of directly contrasting embeddings
- Inverse **Domain Discriminator** to reduce the distribution shift
- a. Gradient Reverse Layer [1] shifts the gradient to opposite direction
- b. By reversing the gradients of produced modality predictions (EEG or Music), we can extract modality-invariant features.

Metric	$\mathcal J$	ℓ_a only	$ eg = \ell_{dd}$
Acc _{EEG}	70.4 % – 68.9 %	67.8% - 68.0%	67.9% – 63.4%
P@10	63.8 % – 65.0%	57.3% - 53.1%	63.4% – 66.7 %
mAP	59.1% - 67.8%	51.9% - 55.8%	59.8% - 68.1%

Table 3. Ablation on the Objective Function for (Valence – Arousal). Here we solely consider mean aggregated scores over 32 subjects.

- → Ablation study on the optimization objective: $\mathcal{J} = \lambda_{11}\ell_a + \lambda_{12}\ell_b + \lambda_2\ell_{dd}$
- → Higher overall recognition performance for the joint objective
- → Conditioning the common space on music crucial for retrieval
- GRL breaks modality-specific clusters but skews retrieval metrics 🦯 \rightarrow

1 - EEG

\star 1 - Music

Looking at the Common Latent Space

Introduction: Music Perception

• A powerful form of emotion induction • Greatly influences brain and body function • Efficient tool to study human emotions • Easy to see the affective impact of music • **Challenge**: Map this effect to informative brain activity features of affect EEG over fMRI for a time-series analysis

Results

Dimension	Non-Aggregated	
Valence	62.9% - 71.5%	
Arousal	63.3% - 88.0%	

Table 1. Emotion Accuracy Scores for (EEG – Music) modalities, reporting mean values over 32 subject-specific models.

Dimension	Precision@10	
Valence	19.4% - 63.8%	
Arousal	18.4% - 65.0%	

Table 2. (Track – Emotion) Retrieval Scores on EEG input queries, reporting mean aggregated scores over 32 subjects.

 \rightarrow Music discriminates better in both dimensions, as expected

 \rightarrow Both modalities benefit from aggregation \rightarrow temporal variance

 \rightarrow Valence improves more \rightarrow less uniform emotion alignment

- \rightarrow Exact track retrieval emerges a challenge not effective \rightarrow Again signs of uniformity for arousal in the common space \rightarrow Valence provides much lower mAP – fragmented space

 - 32 personalized subject-specific models within 5-fold cross-validation Binary Classification – Binarizing VA labels at median, 5 Aggregation: Classification is correct when for at least half samples

- Aggregated 70.4% - 78.7% 68.9% - 91.9%
- mAvg. Precision 18.8% - 59.1% 19.9% - 67.8%

- Utilized Dataset: **DEAP** [2]
- EEG Features: **Differential Entropy**

$$h(X) = -\int_X f$$

• We compute variance using STFT for the major freq. bands • Music Features: Pre-trained popular model MusiCNN [3]

Prospects – References

Concrete baseline for future work on dynamic modeling of music affect

[1] Y. Ganin and V. Lempitsky, "Unsupervised Domain Adaptation by Backpropagation," in Proc. ICML 2015, Lille, France, 2015 [2] S. Koelstra et al., "DEAP: A Database for Emotion Analysis Using Physiological Signals," IEEE Trans. Affect. Computing, 2011 [3] J. Pons et al., "End-to-End Learning for Music Audio Tagging at Scale," in Proc. ISMIR 2018, Paris, France, 2018.

Temporal Modeling of Emotion

- Retrieval scores for arousal across time
- Each score is averaged on all participants for the corresponding music clip sample
- Significant variability despite averaging
- Indicates salient moments in a music track
- Each track elicits emotion differently
- Similar findings for valence scores

0.68 0.66 0.64 0.62 -

icassp 2022 Singapore, China, Online

#6829

Signal Analysis and Interpretation Lab, USC School of ECE, National Technical University of Athens

- EEG Stream: Double LSTM + Dropout
- Lightweight attention head for EEG
- Music Stream: Pre-trained Embeddings
- Multimodal Supervision through BCE Losses against affect labels of both modalities
- Gradient Reversal Layer [1] as adversarial discriminator to reduce distribution shift
- Concurrent training of all modules

Feature Extraction

• 32 participants, 34 stimuli music videos of 1min • Single global annotations of valence and arousal • EEG from 32 channels sampled at 128Hz

• Assuming an EEG sample X with (gaussian) distribution f(x), its differential entropy DE is defined as

 $f(x)\log(f(x))dx = \frac{1}{2}\log 2\pi e\sigma^2.$

• **Direction**: Emotion as a condition to the latent space – alternate labels • **Direction**: Exact stimulus retrieval – poor outcomes so far

