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ABSTRACT

The prominent strategical approaches regarding the prob-
lem of guitar tablature transcription rely either on fingering
patterns encoding or on the extraction of string-related audio
features. The current work combines the two aforementioned
strategies in an explicit manner by employing two discrete
components for string-fret classification. It extends older few-
sample modeling strategies by introducing various adaptation
schemes for the first stage of audio processing, taking advan-
tage of the inharmonic characteristics of guitar sound. Phys-
ical limitations and common standards of human perform-
ers are incorporated in a genetic algorithm which constitutes
a second contextual-based module that further processes the
initial audio-based predictions. The proposed methods are
evaluated on both annotated guitar performances and isolated
note recordings.

Index Terms— few-sample strategy, inharmonicity, ge-
netic algorithm

1. INTRODUCTION

Automatic Music Transcription is the problem of extracting
formal notation from the music signal. While music scores
have been the prominent notational form for western music,
in the case of guitar, tablature-notation has gained much pop-
ularity in the last decades, especially among novice and self-
taught guitar players. Guitar tablature represents musical per-
formances as sequences of string-fret combinations. The typ-
ical music score leaves out this information. Due to the gui-
tar’s design, same pitch notes can be played in more than one
position on the fretboard, a feature that renders tablature tran-
scription a challenging task.

Several research teams have worked on playable guitar
tablature generation by taking advantage of contextual infor-
mation given a series of note events in symbolic notation (i.e.
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code: T1EDK-00508).

music scores or MIDI), by employing graph representations
and dynamic programming [1, 2, 3] or optimization algo-
rithms [4, 5, 3]. Others have worked on audio signal analysis,
mainly for polyphonic performances, still relying mostly on
playability constraints and multi-pitch estimation [6, 7, 8].
Other works have focused on developing audio-based ac-
curate string classification models by exploiting the signal
properties in relevance to the strings’ physical characteristics,
such as inharmonicity, facing note instances (or chords) as
independent events in time. Some of these methods require
several annotated note instances for training and thus remain
restricted to the guitars involved in the employed training set
[9, 10, 11, 12]. Neural networks applied on audio spectral
features suffer from the same limitations [13, 14, 15]. It is
also unclear whether the latter manage to implicitly encode
both string-related audio properties and sequential informa-
tion. Finally, some audio-based approaches have introduced
more agile adaptation strategies relying on just a few samples
drawn from one fret per string [16, 17].

This work is motivated by the claim that the articulated
notes in a performance cannot be seen as independent events.
Our main contribution is that audio-based and context-based
processing are explicitly combined in a successive and com-
plementary setting. The first stage of string-fret classifica-
tion relies on the extraction of the inharmonicty coefficient
(β) from each note instance. Onsets and pitches are consid-
ered known. For the contextual-based stage of processing, we
incorporated physical constraints of guitar playing to a ge-
netic algorithm (GA) that encodes the most possible string-
fret transitions. This second stage of string classification pro-
vides the final tablature.

A phase of adaptation is required for the audio-based clas-
sification in order to acquire first estimates of each string’s in-
harmonic behavior, while no training is required for the GA.
We regard our string detector as a potentially applicable com-
ponent of an easy to train tablature transcription system that
processes undistorted guitar signals. Such a system can be de-
ployed in a realistic scenario where a guitar player provides a
small amount of note samples in order to ”tune” the system on
a specific guitar, rendering it practicable for personal use. We
study several novel few-sample adaptation settings with vary-

771978-1-6654-0540-9/22/$31.00 ©2022 IEEE ICASSP 2022

IC
A

SS
P 

20
22

 - 
20

22
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 A
co

us
tic

s, 
Sp

ee
ch

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g 
(I

C
A

SS
P)

 | 
97

8-
1-

66
54

-0
54

0-
9/

22
/$

31
.0

0 
©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
A

SS
P4

39
22

.2
02

2.
97

47
16

9

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on July 18,2023 at 15:09:36 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Flow diagram of the proposed method.

ing impact on the accuracy of the audio-based string classifier
and varying effort required from the user for the sample col-
lection.

2. METHOD DESCRIPTION

The proposed method is presented in Fig. 1. First, we need
to adapt the audio-based detector to the specific instrument
which is to be used. The inharmonicity coefficient β is com-
puted only for a small amount of recorded note instances
(from 1 to 3 frets for all 6 strings) using partial tracking. We
generalize our estimations for each fret n and string s, based
on the measurements (β̂) from these few samples. This way,
we acquire a function β∗(s, n) that describes the expected in-
harmonic behavior of each string s across the fretboard. For
the inference phase, we similarly compute the inharmonicity
coefficients (β̂) for each detected note instance in a recorded
performance and assign to it the string label with the closest
β∗. This rudimentary tablature estimation is subsequently fed
to a genetic algorithm which assigns string labels to incon-
clusive note instances (see Section 2.1) and modifies certain
predictions to improve overall results.

2.1. Inharmonicity Coefficient Computation

An instrumental timbre can be analyzed as a superposition
of sinusoids with varying amplitudes and frequencies. These
(partial) frequencies are considered to be harmonic when they
are placed ideally at the fundamental frequency’s (f0) inte-
gral multiplies. On many stringed instruments though, such
as guitar and piano, a notable deviation of the partials from
the harmonics can be observed [18], mainly due to the stiff-
ness of the strings [19]. The kth overtone can be estimated
by:

fk = k · f0 ·
√
1 + β · k2. (1)

Inharmonicity coefficient β differs also among frets n of the
same string s following the relation below [16]:

β(s, n) = β(s, 0) · 2n
6 . (2)

For the purpose of inharmonicity coefficient computation, we
employ a variation of the algorithm proposed in Barbancho et

al. [16] for monophonic performances. Our method follows
the aforementioned approach in the first stage of β measure-
ment with partial tracking, using shifted frequency windows
of f0/2 width. Yet, we do not restrict ourselves to measur-
ments from the open string instances, and instead we mea-
sure β for whichever fret needed, since we regard this value
as a feature for classification. We apply the FFT algorithm
on 60ms audio segments, which corresponds to 16th notes
played on 250bpm, an adequate window for most guitar per-
formances in general. We account only for the first 30 par-
tials. When the inharmonicity coefficient computation algo-
rithm does not provide valid results (i.e. very small or large
computed β̂ values relative to the estimated β∗), we mark
those note instances as inconclusive.

2.2. Audio-Based String Classifier

As a first step towards accurate string classification, a straight-
forward method is proposed, based on the measured inhar-
monicity coefficient. The note instance under inspection with
measured coefficient β̂ is assigned to the string-fret label with
the closest estimation β∗. Preliminary testing has revealed
that a more nuanced classification approach involving maxi-
mum a posteriori probability (MAP) estimates (as in Hjerrild
and Christensen [17]), did not work well in the context of re-
alistic guitar performances. Furthermore, our method permits
the use of even a single adaptation sample per string. Michel-
son et al. [12] manage to employ a similar Bayesian classifier,
with the cost of relying on many annotated data for training. It
is for these reasons that we proposed a more straight-forward
classification method (i.e. Euclidean distance criterion).

In order to apply the classifier for inference, an adaptation
phase is preceded to extract the estimated values β∗. We sug-
gest four schemes for adaptation. For the most basic scheme
that we call 1Fret method, we measure the β(s, 0) coefficient
of every open string and estimate the β(s, n) associated to
each fret n with equation (2). This method is in the same line
with the adaptation settings proposed in [16] or [17], and per-
mits the fastest sample collection in a realistic scenario, since
it requires one (or just a few) samples for each string.

Instrument-specific irregularities like neck warping are
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Fig. 2. Irregularity of inharmonic behavior for each string.

common in guitars, so we assume that, in some cases, as the
hand moves towards the body of the instrument, equation (2)
may not hold as strong. Our assumption is supported by mea-
surements on the GuitarSet dataset [20]. We computed the
median inharmonicity coefficients β̂med of all note instances
for the first 12 frets. Choosing a string s, by calculating
6 · log2(β̂s,med(n)/β̂s,med(0)) and plotting the results for
each fret n ∈ {0, ..., 12}, we would expect an approximation
of a y = x curve, based on equation (2). However, in the
case of some strings, there occur slight but notable deviations
from the expected results (see Fig. 2).

As follows, we suggest a more general version of (2) by
replacing n with the linear expression a · n + b. For the pro-
posed 3Fret method, we can compute a and b after the mea-
surement of the inharmonicity coefficient from two frets (i,
j) of our choice and an open string (0th fret) by solving the
system below for a and b: β̂(s, i) = β̂(s, 0) · 2

a·i+b
6

β̂(s, j) = β̂(s, 0) · 2
a·j+b

6 .
(3)

Estimates β∗(s, n) can then be acquired for all frets using the
suggested generalized version of (2). We devised two more
methods that require, for each string, the computation of β̂
from one fret and the open string. These extra schemes called
2FretA and 2FretB emerge from our previous analysis if we
assume b = 0 or a = 1 respectively.

2.3. Contextual-based Classification

In our analysis we aim to capitalize on the physical constraints
imposed by the guitar fretboard layout to achieve better re-
sults. Tablatures played by human performers hold a certain
structure that is convenient and logical. For instance, large
fret-wise distances are counter-intuitive when not necessary.
To that end, we employ a genetic algorithm that favors results

from the classifier’s output while accounting for the playabil-
ity of the tablature. This way, the genetic algorithm can si-
multaneously resolve unclassified note instances, and correct
evidently wrong ones (see Fig. 1). We model this task as an
optimization problem where a fitness function is minimized:

argmin
x∈T

(g(x)− 2 · h(x,x0)), (4)

where g represents a function that encodes the playability
of a tablature x of an entire piece (i.e. a sequence of vec-
tors (st, nt) ∈ {1, .., 6} × {0, ..., 22}, with t indicating the
note position index within the sequence) and h encodes the
similarity of the output with the audio-based prediction x0,
i.e. the rate of common (st, nt) vectors. T constitutes the
search space, that is all possible tablature layouts that realize
the pitches of the piece. A pool of 40,000 individuals (i.e.
random variations of tablature x0 with resolved inconclusive
notes) is evolved with elitist selection, employing tournament
parent selection of size 5, a typical two-point random cross-
over function and mutation. When individuals selected for
mutation (with probability 0.2), each of the string-fret combi-
nations (st, nt) are altered (with probability 0.1) given pitch
equivalent values.

Function g constitutes the sum of 5 different components
normalized by the length of x. Ideas concerning lateral hand
movement were drawn from [4] and were extended by con-
sidering vertical movement as well. Namely, these compo-
nents are: I) the number of times a different fret is pressed,
II) the sum of Euclidean (string-fret) distances between each
note and the average position of the 6 neighboring note in-
stances that do not span more than a time threshold of 1 sec,
III) the sum of fret-wise distances, IV) the sum of string-wise
distances, V) an open string reward.

3. DATASETS

The main dataset used for evaluation consists of 52 perfor-
mances picked out of 360 in total, contained in the GuitarSet
dataset [20]. Since we only accounted for monophonic per-
formances, we selected the audio tracks where all subsequent
notes had at least a gap of 60ms between their onsets. Gui-
tarSet includes 4 different versions of each track: the first is
recorded with a microphone, one with 6-channel recordings
using a hexaphonic pickup, one where the 6-channel tracks
are debleeded in order to reduce noise and artefacts, and one
where the 6 channels are mixed into one. We only made
use of the one-channel versions. We also tested our audio-
based string detector on the dataset presented by Hjerrild and
Christensen [17] which contains recordings of isolated note
instances for all string-fret combinations up to the 12th fret,
for two guitars, an electric (Les Paul Firebrand) and an acous-
tic (Martin DR). Every fret is recorded 9 times for the Fire-
brand and 10 for the Martin guitar.
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Adaptation Method Martin Firebrand
3Fret 99.9% 97.7%

2FretA 99.9% 97.7%
2FretB 99.9% 96.5%
1Fret 94.6% 97.5%

MAP-optimal [17] 100% 97.1%

Table 1. Accuracy measures of audio-based classification on
the dataset introduced in [17].

4. EVALUATION

4.1. Testing on Isolated Note Recordings

Firstly, we tested our method on the dataset provided by Hjer-
rild and Christensen [17]. We computed the medians of the
inharmonicity coefficients of all isolated instances available
from the 0th (open string), 3rd and 12th fret, according to
the employed adaptation NFret scheme. Since only the MIDI
notes are provided in the annotations, a basic f0 estimation
algorithm was employed for this experiment using peak esti-
mation around the expected frequency. In Table 1, we present
accuracy measures (i.e. correct predictions over all instances
including inconclusive ones) on the frets which were not used
for adaptation in each case. The 3Fret and 2FretA methods
exhibited the same performance outperforming the standard
1Fret scheme for both the acoustic (Martin) and electric gui-
tar (Firebrand). For those two schemes, the results are almost
identical (for Martin) or even better (for Firebrand) compared
to the MAP-optimal classifier proposed by Hjerrild and Chris-
tensen [17]. The rate of inconclusive instances for our model
was 0% for Martin and 1.1% for Firebrand, for all schemes.

4.2. String Detection in Guitar Performances

For the evaluation of our method on a realistic context of
recorded performances, we used the four few-sample schemes
proposed above for the audio-based string classification, and
a genetic algorithm to account for playability constrains. We
ran tests for both microphone and pickup recordings of the
monophonic subset that we drew from GuitarSet. For the
initial estimations of β from the adaptation phase, we chose
5 relatively clear recorded samples of all 6 strings for the
0th, 3rd and 12th fret. In a personalized adaptation scenario
where the samples wouldn’t have been picked from perfor-
mances, even one clear recording would be enough. In our
case though, in order to avoid biasing, the median value of β
was chosen for each of the above string-fret combinations.

As presented in Table 2, the 4 adaptation schemes raise
accuracy values which range from 82.2% to 85.1%. Pickup
exhibits slightly better results compared to the microphone
recordings, which is normal since more artefacts occur in the
latter case. We measured 2.3% inconclusive rate for pickup

Adaptation Audio Classification GA Classification
Method Accuracy Accuracy

Pickup
3Fret 84.4% 91.8%
2FretA 84.7% 91.6%
2FretB 85.1% 92.9%
1Fret 83.2% 90.8%

Microphone
3Fret 83.3% 92.1%
2FretA 83.6% 92.3%
2FretB 84.0% 92.2%
1Fret 82.2% 91.1%

Table 2. Accuracy of both classification stages on the mono-
phonic performances of the GuitarSet dataset.

and 2.6% for microphone. GA improves our results in ev-
ery case, adding up from 7% to 8.9%, with the 1Fret method
exhibiting the lower accuracy rates, as expected. It is clear
that, for each guitar, a high accuracy output of the audio-based
classifier favors the genetic algorithm’s results. In this exper-
iment, the 2FretB and 2FretA adaptation schemes led to the
best overall results for the pickup and microphone recordings,
respectively. The code for the experiments can be found on-
line1.

5. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we presented a system for string-fret classifica-
tion implementing few-sample adaptation strategies of vary-
ing complexity. Our results indicate that our audio-based clas-
sifier is on the right track for the generation of accurate guitar
tablatures, since it raises comparable results to another novel
and established method [17], and can perform well on real-
istic audio recordings. It was verified that the genetic algo-
rithms can be leveraged to provide substantial improvement,
by encapsulating playability constraints. Hence, we consider
our main novelties to be: I) a few-sample approach involv-
ing various adaptation schemes applicable to realistic perfor-
mances with the ability to manage guitar’s common physical
irregularities, II) the combination of an audio signal process-
ing approach with the analysis of symbolic representations in
a sequential context. A future challenge would be to gener-
alize the proposed method for polyphonic performances and
even study specific guitar techniques, like bending, which can
affect the string’s inharmonicity parameters. Interestingly,
polyphony and bends don’t occur very often in bass guitar
performances. So, we would expect that with adjustments
that address the idiosyncratic techniques of this instrument
(e.g. slapping), the current method would be quite apt in this
context. This task is also left as future work.

1https://github.com/estafons/inh-ga-tabs.git
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