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ABSTRACT

Some of our research efforts towards building Automatic
Speech Recognition (ASR) systems designed to work in
real-world conditions are presented. The methods we pro-
pose exhibit improved performance in noisy environments
and offer robustness against speaker variability. Advanced
nonlinear signal processing techniques, modulation- and
chaotic-based, are utilized for auditory feature extraction.
The auditory features are complemented with visual speech
cues from the speaker’s face, in scenarios where a video
stream captured by a simple image-capturing device is
available. Speaker adaptation is achieved at the signal level
by exploiting certain characteristics of the speech signal
which depend on the physical properties of the vocal tract.
The proposed methods are overall evaluated on noisy and
audiovisual speech databases, i.e. AURORA and CUAVE,
and compare favorably to conventional speech recognition
systems.

1. INTRODUCTION

Despite intense research, Automatic Speech Recognition
(ASR) systems do not yet exhibit acceptable performance
in many real life environments. This has seriously under-
mined the role of ASR as a pervasive Human-Computer In-
teraction (HCI) technology and has limited the applicabil-
ity of speech recognition systems to well-defined applica-
tions like dictation and low-to-medium vocabulary transac-
tion processing systems.

These shortcomings of traditional ASR systems have
attracted considerable research in the area. Building robust
ASR systems is a very active research field and a variety of
methods may be applied to improve speech recognition per-
formance under adverse conditions. These methods encom-
pass improvements at various levels of ASR systems, such
as robust feature extraction in the acoustic frontend, adap-
tation of the ASR system to the environment conditions or
to the speaker’s characteristics, better statistical modeling in
the classifier, enhancement of the acoustic channel with ad-
ditional cues and better language modeling, to name a few.

Along these lines, this paper highlights the main re-
search directions pursued by our group towards building
Automatic Speech Recognition (ASR) systems designed
to work robustly in adverse conditions. We first describe
acoustic feature extraction schemes which better capture the
non-linear dynamics of speech through modulation- and/or
chaotic-based modeling of the physics underlying the pro-
duction of speech. We then describe speaker adaptation
methods which better match a multi-speaker ASR system to
the distinctive characteristics of a new speaker. Finally, our
work in enhancing the speech features with visual cues in an
Audio-Visual ASR (AV-ASR) system is presented. Quanti-
tative results on speech recognition in noisy and audiovisual
speech databases demonstrate the improved performance of
the proposed methods.

2. ROBUST NON-LINEAR ACOUSTIC FRONTEND

2.1. Robust AM-FM Featuresfor Speech Recognition

Robust ASR is an active research field and a variety of al-
gorithms can be used to improve speech recognition perfor-
mance under adverse conditions including speech enhance-
ment techniques, robust feature extraction and model com-
pensation. In this work, we focus on robust feature extrac-
tion schemes.

Motivated by strong evidence for the existence of am-
plitude and frequency (AM-FM) modulations in speech sig-
nals [30], a speech resonance can be modeled by an AM-FM
signal,

ri(t) = ai(t) cos <27r /0 t fi(T)dT> )

and correspondingly the total speech signal as a superpo-
sition of a small number of such AM-FM signals (one for
each formant). Most often, the number of observable for-
mants does not exheed the 6, and henceforth the speech
sounds will be modeled by 6 such AM-FM signals. The
estimation of their instantaneous frequencies f;(¢) and am-
plitude envelopes |a;(t)] is referred to as the ‘Demodulation
Problem’ and is significant for speech applications.
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2.1.1. Multi-band Demodulation and Feature Extraction

The AM-FM model suggests the decompaosition of speech
signals into a series of a few instantaneous frequency and
amplitude signals. These signals can be considered as time-
frequency distributions containing acoustic information that
is not visible in the linear part of the speech spectrum. In
[12] preliminary ASR results have indicated that significant
part of the acoustic information cannot be modeled by the
linear source-filter acoustic model and thus, the need for
nonlinear features becomes apparent. These features, which
are based on either the FM- or the AM-part, provide addi-
tional acoustic information. The modulation features have
two major advantages compared to the linear MFCC fea-
tures. They can model the dynamic nature of speech and
capture some of its fine-structure and its rapid fluctuations.
Second, they appear to be relatively noise resistant and thus
yield improved results, especially for speech recognition in
noise, when a mismatch in the training and testing condi-
tions is present.

The AM-FM model suggests that the formant fre-
quencies are not constant during a single pitch period
but they can vary around a center frequency. These
variations are partly captured by the Frequency Modu-
lation Percentages (FMP) features defined as FMP; =
B;/ F; for each speech resonance i, where B; is the mean
bandwidth (a weighted version of the f;(¢)-signal devia-
tion [39]) and F; is the (amplitude) weighted mean fre-
quency value of resonance ¢. F; and B; are estimated

as follows from the information signals a;(t) and f;(t)

L OLHOL _IF e+ —FZaZ @)lde .
Fi= JF aZ(tyar Bi= 1T aZ(v)at Where i =

1,...,6 is the speech resonance index and T the time win-
dow length. Another frequency-related feature investigated
in this work is the short-time weighted mean of the instan-
taneous frequency signal f;(t), i.e. the Instantaneous Fre-
guency Mean (IF-Mean). The proposed features provide in-
formation about the speech formant fine structure taking ad-
vantage of the excellent time-resolution of the ESA. Transi-
tional phenomena and instantaneous formant variations are
mapped onto these FM features.

Next, we attempt to model the fine structure of the am-
plitude envelope signal (AM) with the Mean Instantaneous
Amplitude (IA-Mean) feature set that is defined as the short-
time mean of the instantaneous amplitude signal |a;(t)| for
each speech resonance <. The IA-Mean features parametrize
the resonance amplitudes and capture part of the nonlinear
behaviour of speech, e.g. the modulation pulses appearing
within a single pitch period.

2.1.2. Feature Extraction Algorithm

Two significant parts of the feature extraction system are
the filterbank and the single-band demodulation algorithm.
The AM-FM features are computed from the instantaneous

frequency and amplitude signals of each speech resonance.
To extract the resonance signals r;(t) a fixed 6-filter mel-
spaced Gabor filterbank is used. The Gabor filters are cho-
sen for several reasons listed in [30], including their opti-
mal time-frequency discriminability. The filter placing and
bandwidths are dictated by the mel-scale and the need for
constant-Q filterbanks. The bandwidth overlap of adjacent
filters is fixed and equal to 50%. Once the resonance sig-
nals r;(t) are extracted, they are demodulated and the f;(),
|a;(t)| are obtained.

Among the various demodulation approaches to esti-
mate the model parameters of a single resonance, we use
the Energy Separation Algorithm (ESA), due to its ex-
cellent time resolution and low complexity [30]. This is
based on the continuous-time Teager-Kaiser energy op-
erator (TEO) ¥ = 2 — x#. The ESA estimates of
the instantaneous frequency and amplitude signals are
given by f(t) = (1/2m) \/¥[z(t)]/¥[z(¢)] and |a(t)| =~
U[z(t)]//®[£(t)]. There is also an ESA for discrete-time
AM-FM signals [30]. In this work, we use a more robust
ESA where the discrete-time signal is expanded over the
continuous-time domain and then, the continuous-time ESA
is applied upon.

In order to obtain robust AM-FM features it is crucial
that the demodulation algorithm can provide smooth and ac-
curate estimates for f;(¢) and |a;(t)|. There are cases when
the demodulation algorithms presented above produce es-
timates that have singularities and spikes which should be
eliminated before the feature measurement process. For this
purpose a binomial smoothing of the energy signals is done
to smooth out the highpass modeling error of the ESA. Also,
a post-processing scheme is applied upon the demodulated
instantaneous signals that employs a median filter with a
short window.

2.1.3. Recognition Results

We have applied the proposed features to the Aurora-
3 Speech Database (Spanish task). The ‘TIMIT+Noise’
databases are created by adding babble, white, pink and car
noise to the test set of the TIMIT database which is sam-
pled at 16 kHz; the SNR level is set equal to 10 dB. The
ASR experiments have been performed using the HMM-
based HTK Tools system [55]. Context-independent, 14-
state left-right word HMMs were used; each state contains
16 gaussian mixtures. For the TIMIT recognition tasks, the
HMM models are 3-state, left-right HMMs with 16 mix-
tures. The grammar used for both cases is the all-pair, un-
weighted grammar. Finally, for the TIMIT+Noise cases, the
HMM models are trained in the clean speech training set
and tested in the noise-corrupted versions of the testing set.

The input vectors are split into two different data
streams, one for the standard features MFCC and the other
for the modulation-based features. The data streams are as-
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Scenario | WM MM HM Aver. Rel.
Features Average Improv.
Aurora Frontend (WI007) | 92.94 | 80.31 | 51.55 74.93 -
MFCC+CMS (Baseline) | 93.68 | 92.73 | 65.18 83.86 35.62
MFCC+CMS+IA-Mean 93.22 | 91.35 | 71.35 85.31 41.40
MFCC+CMS+IF-Mean 90.71 | 89.52 | 72.36 84.20 36.98
MFCC+CMS+FMP 94.38 | 92.46 | 72.79 86.54 46.31

Table 1. Correct Word Accuracies (%) for Modulation Features on the Aurora-3 (Spanish Task) Database.

Phoneme Accuracy for the TIMIT Tasks (%) for SNR=10 dB
TIMIT | NTIMIT | TIMIT+ | TIMIT+ | TIMIT+ | TIMIT+ | Aver. Rel.
Babble White Pink Car Improv.
MFCC 58.40 42.42 27.71 17.72 18.60 52.75 -
MFCC+IA-Mean | 59.61 43.53 39.25 26.03 31.05 56.50 17.62
MFCC+IF-Mean 59.41 43.70 38.56 26.05 32.81 56.75 19.13
MFCC+FMP 59.92 43.69 38.60 26.15 32.84 55.97 18.17

Table 2. Correct Phoneme Accuracies (%) for Modulation Features on the TIMIT Tasks.

sumed independent. The augmented feature vector consists
of 57 coefficients, 39 samples for the ‘standard’ features
(normalized energy, MFCCs, 1°¢ and 2"¢ time-derivatives)
and 18 for the modulation features (6 coefficients plus their
1%t and 274 time-derivatives). Cepstral Mean Subtraction
(CMS) is applied to the standard feature stream only for
the Aurora-3 database to combat convolutional mismatches
(for the MM-scenario there is microphone mismatch). The
frame length is set equal to 30 msec with frame-period
equal to 10 msec. The weights of the two independent
data streams are optimized on held-out data. In practice,
the stream-weight for the AM-FM features decreases with
the SNR level, another indication of the robustness of the
proposed features. More specifically, for the clean case i.e.
the TIMIT task, the stream weights are set s; = 1.00 and
so = 0.20 for the MFCCs and the modulation features, cor-
respondingly. For the low SNR cases the stream weights
are s; = 1.00 and s2 = 0.50 or s = 1.00 depending
on the noise-level. In Table 2.1.3 and 2.1.3 the recogni-
tion results are presented for the Aurora-3 and the TIMIT
tasks, respectively. By combining MFCCs with AM-FM
features we achieve a performance improvement for the
clean and especially for noisy conditions. The improve-
ment is larger for the HM-scenario of the Aurora-3 database
and the TIMIT+Noise tasks where additive noise is the main
source of degradation. On the other hand, for the NTIMIT
and the Aurora-3 WM-, MM-scenarios, where the convolu-
tional noise is dominant, the modulation features yield mod-
est results.

Overall, the AM-FM features provide robustness to
additive noise tasks but less so for convolutional noise.
Relative error rate reduction up to 46% for mismatched
noisy conditions is achieved when these features are com-
bined with MFCCs. We have presented strong indications
that modulation features can model and classify different
phoneme classes better and more efficiently than the clas-
sic MFCC features, especially in the presence of additive

noise. In our on-going research we are investigating (i) the
usefulness of 2"?-order statistics of the modulation signals,
and (ii) ways of optimally combining linear and modulation
features for ASR tasks.

2.2. Robust Dynamical Processing & Fractal Features
for Speech Recognition

2.2.1. Introduction

There has been strong experimental and theoretical evi-
dence for the existence of important nonlinear aerodynamic
phenomena in the vocal tract during speech production.
Such phenomena [48, 20, 49] include non-laminar flow,
flow separation in various regions, generation and propaga-
tion of vortices and formation of jets. The above phenomena
can lead to the generation of turbulent flow while the air jet
may be modulated either by the vibration of the walls or by
the generated vortices. It has been conjectured that methods
developed in the framework of chaotic dynamics and fractal
theory might be employed for the analysis of turbulent flow,
for example modeling of the geometrical structures in tur-
bulence (spatial structure, energy cascade) utilizing fractals
and multifractals [28, 5].

Numerous methods have been proposed [26, 31, 34, 4,
30, 12] that attempt to exploit turbulence related phenom-
ena of the speech production system [48, 20], that the linear
source-filter model cannot take into consideration. Some of
them are based on concepts of fractal theory and dynamical
systems. Early work in this area includes the application of
fractal measures on the analysis of speech signals [29, 31],
application of nonlinear oscillator models, [43, 50, 25] gen-
eralized fractal dimensions and multifractal analysis [3, 1].
Additional momentum in the field has been introduced by
ideas concerning state-space reconstruction. Methods that
follow this approach do not make any assumptions about
the underlying model and their mathematical background is
based on the embedding theorem [45]. Early works in this
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field are [43, 50, 34, 26], while recent approaches can be
found in [4, 23].

We present an alternative denoising scheme from the
dynamical systems’ perspective for speech processing. The
application of such methods is limited in the current liter-
ature [4, 17] especially as far as experiments on extended
databases are concerned. In the subsections that follow,
we employ methods to filter the signal in the reconstructed
space [22, 44, 7, 8] based on the assumption that the un-
folded signal is closer to the dynamics of the speech produc-
tion system when compared to the scalar signal. We further
measure invariant quantities of the filtered set (correlation
dimension) and use them as acoustic features that quantify
the underlying complexity. Next, we evaluate fractal and
modulation related features independently on selected parts
of the Aurora 2 database. Finally, we merge the twofold
nonlinear information in a hybrid feature set and observe
that the combination of features relevant to the fractal and
the modulation structure of speech can provide additional
acoustic information and increased robustness against noise
when compared to the typical MFCC features.

2.2.2. Robust Embedding - Fractal Dimensions

We assume that the speech production system may be
viewed as a nonlinear dynamical system X(n) —
F[X(n)] = X(n + 1). A speech signal segment s(n),
n =1,...,N,isconsidereda 1D projection of a vector func-
tion applied to the unknown multidimensional state vari-
ables X (n). A question that naturally arises is whether
there exists a reverse procedure by which a phase space
Y = Y(n) can be reconstructed - using information pro-
vided by the scalar signal - satisfying the requirement to be
diffeomorphic to the original phase space, so that determin-
ism and differential information of the dynamical system
are preserved.

According to the embedding theorem [45] the vector :
Y (n) =[s(n),s(n+Tp),...,s(n+(Dg—1)Tp)] formed
by samples of the original signal delayed by multiples of
a constant time delay Tp defines a motion in a recon-
structed D g-dimensional space that has many common in-
variants with the original phase space of X (n), like fractal
dimensions. Thus, by studying the constructible dynami-
cal system Y(n) — Y (n + 1) we can uncover useful in-
formation about the original unknown dynamical system
X (n) = X(n + 1) provided that the unfolding of the dy-
namics is successful [21], e.g. the embedding dimension
Dg is large enough.

The time delay corresponds to the constant time dif-
ference between the neighboring elements of each recon-
structed vector. The smaller T, gets, the more the succes-
sive elements get correlated. On the contrary, the greater
Tp gets, the more random will the successive elements
be and any preexisting ‘order’ will be lost. To compro-

mise between these two conflicting arguments Average Mu-
tual Information I is estimated for the signal s(n) [21]:
TSN P(s(n),s(n+T) Yog, | szt =] where P(-) is
a probability density function estimated from the histogram
of s(n). I(T) equals the mutual information for a pair of
observed values s(n), s(n + T'). Then, the ‘optimum’ time
delay is selected as : Tp = min{argming>o I(T)}. An
alternative method utilizes in a similar heuristic way the lin-
ear autocorrelation function.

The final step in the embedding procedure is to set
the dimension Dg of the reconstructed vectors. As a
consequence of the projection, manifolds are folded and
different distinct orbits of the dynamics are intersecting.
A true vs. false neighbor criterion is formed by com-
paring the distance between two points S,,S; embed-
ded in successive increasing dimensions. If their dis-
tance dp(Sp,S;) in dimension D is significantly differ-
ent from their distance dp41(Sn,S;) in dimension D +
1, i.e. RP(Sn,S;)=(dp+1(SnS;)=dp(Sn,5;))/(dD(Sn,S;)) €X-
ceeds a threshold (in the range [10, 15]). The dimension D
at which the percentage of false neighbors goes to zero (or
minimized in the existence of noise) is chosen as the embed-
ding dimension Dg. A review of methods for the selection
of the embedding parameters can be found in [21].

Denoising of Embedded Speech Signals

Increased interest has appeared in the field of robust phase
space reconstruction [22, 44, 7, 8, 10, 4]. The methods de-
veloped may be grouped into global or local modeling tech-
niques. The former are based on the construction of a global
approximation model for the whole set. On the other hand,
local models process data in the vicinity of local neighbor-
hoods leading to more detailed and possibly more complex
models. Another point of discrimination of the different
methods is whether they exploit geometrical or dynamical
information or both (for a review see [24]).

We consider the clean scalar speech signal s(k) which
is contaminated with additive noise n(k) giving the ob-
served signal s, (k) = s(k) + n(k). The embedded signal
Y,, = Y, (k) will be corrupted by noise and will be charac-
terized by increased variance. Our objective is the suppres-
sion of the affected components of the contaminated signal.
Hence, the main concept is to apply some sort of transfor-
mation function (e.g. smoothing) to reduce the variance of
the affected components. This processing shall be applied
in the neighborhood N (k) = N™(Y (k)) of each reference
point Y (k) consisting of m points in the multidimensional
phase space. Local neighborhoods correspond to points that
are close, in the sense of the system’s dynamics.

A simple approach considered in [46] is to replace each
reference point by the neighborhood’s mean N (k) and leads
to modest results. A more advanced approach that ex-
ploits geometrical information of the local neighborhoods
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Fig. 1. (a) Noisy speech signal segment of length 950 ms
(Aurora 2, SNR: 5 dB); in dark color the 50 ms frame that
is processed, magnified in (b). Embedded frame: (c) before
and (d) after SVD projective cleaning. Trajectoriesin (d) are
more consistent to the geometry of the assumed dynamics,
compared to (b).

za

is formed by decomposing the neighborhood data points
by Singular Value Decomposition (SVD) [10] onto a set of
principal components:

Nk)=U-8-VT, 2)

where U is the matrix formed by eigenvectors of the struc-
ture matrix N(k)-N(k)T, S is a diagonal matrix that con-
tains the singular values ordered as |01 |>. . .|o;|>. . lon| >
0 and V is the matrix formed by the eigenvectors of the co-
variance matrix N (k)T - N (k).

In the case the noise variance is less than the variance of
the signal, the larger eigenvalues will correspond to the sys-
tem dynamics, whereas the smaller ones to the noise compo-
nents. To suppress these components we project the data on
a subset of principal components1.. . k, that accounts for a
percentage ) of the total variance of the local neighborhood
set N (k) i.e. Zf” o? =\ va o?. We apply this projection
step only on the central reference point and not on the whole
neighborhood considered, so as not to distort points that are
on the boundaries of the neighborhoods. Additionally, when
correcting each reference point we only apply a percentage
of the suggested correction and not the whole of it, so as not
to risk major corrections in the wrong direction. We adopt
this detail [44] in order to move the corrected points incre-
mentally to the positions suggested by the geometry of their
neighborhood and not directly at one step, which might in-
troduce instabilities. The projection step described above is
applied repetitively i.e. for successive passes over the whole
dataset. In case the clean signal is available, a simple end-
ing criterion by computing the SNR gain may be applied.

However, no standard approach exists for real data and more
advanced techniques should be employed e.g. by utilizing
dynamical information [24]. In this preliminary application
we adopt a heuristic approach by applying a fixed number of
iterations (e.g. from 8 to 12) that we have found to perform
satisfactorily in our case. A variation of the procedure of lo-
cal projections described above on which the results of the
next section are based is to apply a lowpass filter [44] on the
scalar noisy signal s, (k) before the embedding procedure.
However, the corrections that are computed via the local
projections are applied on the original noisy signal. Figure
1 shows a speech segment together with the corresponding
embedded frame, before and after applying the projection-
based cleaning procedure. One may notice that the trajecto-
ries in various regions are more compact, according to the
assumed dynamics geometry, compared to the noisy one.

In the unfolded phase space we measure invariant
quantities of the dynamically filtered set. Correlation di-
mension can be practically estimated employing a method
that belongs to the category of average pointwise mass
algorithms for dimension estimation [15]. A quantity
that is used for its estimation is the correlation sum C,
which is given for each scale » by the number of points
with distances less than r normalized by the number
of pairs of points: c(N,r)=yt—5 T, T 0(r—11X:—X; 1)
where 6 is the Heavyside unit-step function. The cor-
relation dimension, which belongs to a superset of gen-
eralized dimensions of probabilistic type, is defined as :
De=lim, 0 limy o 25£U1) and for small enough scales
and for IV large enough C(r) is proportional to rPc. It
corresponds to the number of active degrees of freedom
and indicates the underlying system complexity. After es-
timating C' and D¢ we create an 8 component feature vec-
tor (Filtered embedded Dynamics - Correlation Dimension,
FDCD) by including: the mean and the variance of the cor-
relation integral and the mean and the variance of the corre-
lation dimension (D¢) over all scales. We extend the above
components by the mean and the variance of D over half
of the smaller scales [min(r)...(maz(r)+min(r))/2] and half of
the larger scales [(maz(r)+min(r))/2...maz(r)] iN Order to in-
clude an estimate of local (as far as scale is concerned) in-
formation on the correlation dimension.

2.2.3. ASR Experiments. Hybrid Fractal-Modulation Fea-
tures

We extract features based on the nonlinear models presented
in the previous section and concatenate them with the typ-
ical MFCCs. At first, we present ASR results for the dou-
ble stream case (i.e. MFCC plus the FDCD) showing rela-
tive improvement in the recognition rates and then augment
MFCCs with both FDCD and Frequency Modulation Per-
centages (FMP) presented in the previous section ([12]).
The ASR experiments have been performed on parts
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of the Aurora 2 [19] database using the HMM-based HTK
Tools system. Context-independent, 18-state, left-right
word HMMs with 3 gaussian mixtures are used. The gram-
mar used is all-pair and unweighted. Finally, the HMM
models are trained in the clean speech training set and
tested in several noisy test sets.The input vectors are split
into different data streams, one for each feature vector and
are assumed independent. The augmented features include
13 elements for the ‘standard’ features (MFCCs plus nor-
malized energy) augmented by 6 feature vector elements
for the modulation features and an 8 dimensional feature
vector for the fractal features. All feature vectors are ex-
tended by their first and second time-derivatives, while Cep-
stral Mean Subtraction (CMS) is applied to the MFCCs to
deal with noise mismatches. The frame length is set equal
to 30 ms with frame-period equal to 10 ms; for the frac-
tal features, additional information surrounding each frame
is considered by utilizing 50 ms frames. In this way we
include both short-time resonance information (FMP) and
the complexity information at various scales that may re-
side in longer frames (FDCD). In Tables 3 and , 4 we
present the recognition results for the baseline together with
the relative improvements by the augmented feature sets
(FDCD). Relative improvement percentage is defined as
(WPA—W PApas.)/(WPAs.,.) Where WPA is the Word Per-
cent Accuracy using the augmented features. In almost all
cases the improvements are increased as the SNR drops (in 5
dB SBR, average improvement of 42.5%). The average im-
provement over all the presented tests and SNRs is 20.5%.
Next, in Table 5 by combining MFCCs with the AM-FM
related features (FMP) we achieve a slight performance
improvement for higher SNRs and noticeably better im-
provements for the middle and lower SNRs. Finally, when
we combine information from both feature types (FMP +
FDCD) (Table 5), we achieve improvements either of the
same magnitude as each feature set on its own, or even
higher (e.g. SNR of 5 dB). The average improvement for
the hybrid augmented features for the presented SNRs is
29.3%.

3. USER ROBUSTNESS

3.1. Introduction

User robustness is a major issue for state of the art au-
tomatic speech recognition systems. Their performance
may severely degrade due to inter-speaker variations. To
tackle this problem, research has moved in two general di-
rections in the last decade: a) Speaker Adaptation, includ-
ing techniques (Maximum Likelihood Linear Regression,
Maximum A Posteriori) that adapt the parameters of the
recognition models using speech data by a new speaker and
b)Speaker Normalization, that is based on the idea that it
is possible to process the new speaker’s speech signal in a

way that the extracted features better match the Speaker In-
dependent recognition models that have been acquired dur-
ing the training phase. We have mainly focused on the latter
approach.

3.2. Vocal Tract Length Normalization

Probably the most effective method currently used for
Speaker Normalization is Vocal Tract Length Normaliza-
tion. VTLN tries to explicitly compensate for variations in
Vocal Tract Length (VTL) among speakers. Variations of
the vocal tract shape (especially the VTL) are generally re-
garded as one of the major sources of inter-speaker variance.

In this context, research on normalization of paramet-
ric representations of the speech signal for the purpose of
reducing the effects of inter-speaker differences first ap-
peared for vowel identification [14, 51]. Normalization was
performed using linear and nonlinear frequency warping
functions to compensate for variations in formant positions
among speakers. These procedures attempted to solve the
difficult problem of estimating the formant positions that
correspond to the "true” vocal tract shape of each speaker,
and then compensating for these differences. This problem
was avoided by [2] that introduced VTLN in Large Vocab-
ulary Continuous Speech Recognition (LVCSR). A maxi-
mum likelihood approach in the ASR framework was sug-
gested to find the best transformation of the signal and a
flurry of research activity was sparked. Many variations
and improvements of this method have appeared in the lit-
erature ever since. Conceptually, three issues are involved
in VTLN: 1.Choosing the proper normalization mapping of
the speech data, i.e. the proper warping of the spectrum in
the frequency axis. 2.Estimation of the speaker-dependent
parameters of the mapping, given the speech data, i.e. the
warping factor. 3.Application of the normalization map-
ping.

For the first issue, various warping functions have been
proposed and evaluated. Such functions may have the gen-
eral form: f' = h(f) where f is the original and f’ is
the new frequency. The warped spectrum is: Y,(f) =
X(h(f)) = X(f"). Both linear and nonlinear transforma-
tions have been proposed. The method presented in [2] cor-
responds to a linear frequency warping: f' = af where
a is commonly referred to as the warping factor. Theoret-
ically, this warping can compensate for VTL variations in
the cases when the lossless uniform tube model of the vocal
tract applies, i.e. for open vowels such as /AA/ [13]. Piece-
wise linear warping functions that allow for different factors
for different parts of the spectrum are commonly used in or-
der to allow the invariance of the bandwidth of the warped
spectrum [27].

For the estimation of the warping parameters (i.e. «)
given the speech data, various approaches have been used.
They may be classified in two broad categories: 1. Fea-
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Set A Subway Babble
SNR(dB) || clean| 20 15 10 5 0 clean| 20 15 10 5 0
MFCC 98.68| 95.64| 89.41| 7191 | 4227 | 2222 | 98.45| 96.01| 87.34| 64.38 | 33.61 | 11.63
+FDCD -0.13 | +0.40| +2.92| +15.38| +43.60| +18.77| +0.06| +1.40| +7.91| +28.91| +69.77| +80.22
Set A Car Exhibition
SNR(dB) || clean| 20 15 10 5 0 clean| 20 15 10 5 0
MFCC 98.72| 96.31| 90.45| 72.49 | 44.48 | 17.25 | 98.98| 94.72| 87.71| 66.87 | 33.40 | 11.57
+FDCD -0.12 | +0.32| +3.08| +17.29| +34.15| -26.26 | -0.24 | +1.20| +4.10| +20.76| +71.29| +56.61

Table 3. Recognition results (Aurora 2/Test A): Baseline (MFCC) and relative improvement percentage

Set B Restaurant Street
SNR(dB) || clean| 20 15 10 5 0 clean| 20 15 10 5 0
MFCC 98.65| 95.86| 86.72| 66.59 | 38.29 | 14.13 | 98.42| 96.40| 91.07| 7151 | 44.06 | 19.79
+FDCD -0.14 | +0.87| +6.82| +21.19| +46.28| +77.21| +0.06| +0.49| +3.45| +17.23| +38.13| +22.54
Set B Airport Train-Station
SNR(dB) || clean| 20 15 10 5 0 clean| 20 15 10 5 0
MFCC 98.75| 96.10| 88.44| 69.63 | 43.30 | 20.99 | 99.02| 96.59| 88.92| 71.63 | 4247 | 15.85
+FDCD -0.07 | +0.40| +4.22| +20.42| +40.55| +22.77| -0.23 | +0.68| +5.49| +18.18| +41.75| +11.29

Table 4. Recognition results (Aurora 2/Test B): Baseline (MFCC) and relative improvement percentage .

Test Set Subway Babble Car Exhibition
SNR (dB) 20 10 5 20 10 5 20 10 5 20 10 5
MFCC 95.64| 71.91| 4227 | 96.01| 64.38| 33.61 | 96.31| 72.49| 44.48 | 94.72| 66.87 | 33.40
+FMP -10 | +74 | +30.8 | +0.7 | +23.8| +61.2 | -05 | +84 | +23.0 | +0.3 | +9.6 | +43.6
+FMP+FDCD -0.2 | +13.8| +496 | +1.1| +31.8| +839 | +0.0 | +11.7| +39.8 | +1.0 | +18.7| +70.7

Table 5. Recognition results (Aurora 2, selected tests): Baseline (MFCC) and relative improvement percentage .

ture Based, that exploit properties of the features (e.g. for-
mant locations) to determine the value of the warping fac-
tor. 2. Maximum Likelihood Based, that choose the proper
factor value from a predetermined set, based on the likeli-
hood of the warped speech data. In [2, 27, 40, 42, 56, 16]
the researchers get a Maximum Likelihood (ML) warping
factor estimate related to the degree of mismatch between
the speaker’s warped utterances and the speech recognition
Hidden Markov Models. The main concept is that the fac-
tor may be given by: & = argmazac aP(X{ |\, W;). X
is the speaker’s utterance warped in frequency by a , A is
a given HMM set, W is a transcription of the utterance ei-
ther known beforehand (training) or obtained after decoding
the unwarped data (testing). In this approach, « is usually
chosen from a predetermined set A of values. For the lin-
ear warping function for example, o may be chosen from a
discrete set A of values between 0.88 and 1.12, which is a
range that reflects the 25% range of VTLs of adults [27]. To
maintain a stronger link to the VTLN’s physiological back-
ground and avoid the computational load of possibly mul-
tiple decoding passes that the ML approach involves, Eide
and Gish [13] estimated the factor based on the position of
the 3rd formant in the speaker’s utterances.

The way frequency warping is applied to the data may
also vary. In [2] the data was properly resampled in the
time-domain. Equivalently and more efficiently, Rose et Al
[27, 40] warped properly (using the inverse warping factor)

the center frequencies of the Mel-Frequency filterbank at
the front-end. For example, the speech signal is compressed
in the frequency domain if the frequency scale of the fil-
ters is stretched. Similarly, if the filterbank frequencies are
compressed, the signal frequency scale is stretched. Equiv-
alently, Welling et Al [53], Zhan and Waibel [56], Wegman
et Al [52] apply the warping to the speech spectrum just
before the filterbank.

Integration of VTLN in an LVCSR system has been re-
ported to work in many different scenarios. In most cases,
the speech recognition HMMs are trained using Vocal Tract
Length Normalized Utterances. This is straightforward in
the approaches for which the estimation of the warping fac-
tor is feature-based. Normalization may be independent
from training. For the approaches that estimate the warp-
ing factor based on ML however, training procedure may
be more complex, since the models are involved in the esti-
mation of the factors that are used to normalize the training
data.

To cope with this situation, a conceptually simple
method is proposed in [53] is . It consists of three steps:
1.An acoustic model consisting of a single Gaussian density
per HMM state is trained from the nonnormalized acous-
tic vectors of all training speakers. 2.For each speaker a
warping factor is chosen by ML based on the model trained
in the previous step. Forced time alignment is used, since
transcriptions of the training utterances are known. 3.The
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training utterances are normalized and they are used for the
training of a normalized model.

For decoding, a warping factor is estimated on a per-
utterance basis in most cases. Firstly a hypothesized tran-
scription is obtained using the unwarped data. Then the data
is warped by every factor in the predetermined set A and
by time alignment, given the hypothesized transcription, the
most likely warping factor is chosen. A final decoding pass
is performed using the corresponding warped utterance to
get the recognition result [27, 57]. An improved two-pass
strategy is given by [53] who show that using an unnormal-
ized model to get the preliminary hypothetical transcription
may give better results.

3.3. VTLN Implementation

We have implemented a baseline Speaker Normalization
setup applying VTLN by utilising the tools provided in
the Hidden Markov Model Toolkit (HTK). The setup has
been initially implemented for the AURORA 4 Database.
In HTK, a piecewise linear warping function is used [16].
Warping is applied in the Mel - filterbank domain as de-
scribed in [27]. We trained 5-state, 6-mixture triphone-
HMMs and used MFCCs along with their derivatives, ac-
celerations and after cepstral mean subtraction. We have
experimented with the application of VTLN in the testing
phase. We evaluated a supervised scenario for which we
estimated per speaker warping factors based on 2 ((adap-
tation)) utterances and using the ML-criterion as described
above. These utterances were chosen as a subset of the one
half of the standard set of Aurora 4 testing utterances (164)
and we used the other half (166 utterances) for evaluation
for the various testing conditions. We have also evaluated
VTLN in the testing phase only for Speaker Independent
Models trained in multiple (SIM) conditions.

As far as the testing phase is concerned the warping fac-
tor for each speaker in the test set, in the supervised scenario
is estimated as follows : 1. For o € [0.8, 1.2]sampled every
0.025, testing utterances are warped according to the piece-
wise linear function of HTK . 2. The warped utterances are
aligned by the normalized speech recognition models with
the known transcription (supervised scenario). The factor
chosen is the one for which the warped data (as a whole)
exhibit the maximum likelihood. 3. The speaker’s testing
utterances are then warped by the per speaker chosen warp-
ing factor and decoded. Results are given in Table 6 for
the cases of both clean and multicondition training of the
Speaker Independent recognition models (CSI, MSI respec-
tively).

Word Error Rate (%)
Method Clean | Car | Tr. Station
CSI, No VTLN 13.15 | 24.75 57.5
CSI+VTLN (2 Utts) || 11.60 | 21.40 53.96
MSI, No VTLN 19.45 | 16.50 29.65
MSI + VTLN (2 Utts) || 17.53 | 14.66 28.21

Table 6. Results of VTLN (AURORA 4).

4. AUDIO-VISUAL AUTOMATIC SPEECH
RECOGNITION

4.1. Introduction

Commercial Automatic Speech Recognition (ASR) systems
are uni-modal, i.e. they only use features extracted from
the audio signal to perform recognition. On the other hand,
speech recognition by humans is fundamentally multi-
modal. Although audio is the most important source of
information for speech recognition, people also use visual
cues as a complementary aid in order to successfully per-
ceive speech. The key role of the visual modality is ap-
parent in situations where the audio signal is either un-
available or severely degraded, as is the case with hearing-
impaired listeners or very noisy environments, where seeing
the speaker’s face is indispensable in recognizing what has
been spoken. The audiovisual nature of speech recognition
is lucidly manifested in well known psychological illusions,
such as the McGurk effect [33]. These findings provide
strong motivation for the Speech Recognition community
to do research in exploiting visual information for speech
recognition, thus enhancing ASR systems with speechread-
ing capabilities [37, 47].

Research in this relatively new area has shown that mul-
timodal ASR systems can perform better than their audio-
only or visual-only counterparts. The first such results
where reported back in the early 80’s by Petajan [37]. The
performance gain becomes more substantial in scenarios
where the quality of the audio signal is degraded, as is the
case with particularly noisy environments such as a vehi-
cle’s cabin [38].

However, the design of robust audio-visual ASR sys-
tems, which perform better than their audio-only analogues
in all scenarios, poses new research challenges. Two new
major issues arise in the design of audio-visual ASR sys-
tems [41], namely: (1)Selection and robust extraction of
visual speech features. From the extremely high data rate
of the raw video stream, one has to choose a small number
of salient features which have good discriminatory power
for speech recognition and can be extracted automatically,
robustly and with low computational cost. (2)Optimal fu-
sion of the audio and visual features. Inference should be
based on the heterogenous pool of audio and visual features
in a way that ensures that the combined audiovisual system
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outperforms its audio-only counterpart in practically all sce-
narios. This is definitely non-trivial, given that the relative
quality of the audio and visual features can vary dramat-
ically during a typical session. In the following, we will
briefly describe our ongoing research in the area and how
we have tried to address the aforementioned challenges in
our audiovisual ASR system.

4.2. Visual Front End Design

The main steps in the processing of the visual modality in-
put are a) the detection and tracking of the speaker’s face de-
tection and b) extraction of salient visual features from the
Region Of Interest (ROI) around the speaker’s mouth. These
features can be shape-based or appearance-based [18, 41].

In our system, the output of a face detector [54] is used
as initial condition for an Active Appearance Model (AAM)
[9, 32] of faces. AAM have proven particularly effective
in modeling human faces for diverse applications, such as
face recognition or tracking. In the AAM framework an ob-
ject’s shape is defined by a set of landmark points {z;,i =
1... N}, whose coordinates constitute a shape vector s of
length 2N. We allow for deviations of the shape of ob-
jects from a mean face shape so by letting s lie in a low-
dimensional manifold. Typically a linear n-dimensional
subspace is utilized, yielding: s = so + Y., pis; The de-
formation of the mean shape s, to another shape s defines
a mapping of the landmark points. This mapping can be
extended to the whole face area by imposing regularity con-
straints, utilizing e.g. thin plate splines. This procedure
yields a wrap W (z; p) mapping each pixel of the face tem-
plate to a pixel on the exemplar face. The spatial defor-
mation W (x; p) brings the face exemplar I into registration
with the face template A.

Analogously, we linearly approximate the face appear-
ance (grayvalued or color) A(z) at point z using a set of
“eigenfaces” {A;}: A(z) = Ag(z)+Y v, NiAi(z), where
Ay is the mean appearance of faces. This allows modeling,
among others, lighting variability and person identity.

The shape eigenvectors {s;} in (4.2) and their appear-
ance counterparts { 4;} in (4.2) are learned during a training
phase, usually using a representative set of hand-labelled
face images [9]. The training set shapes are first aligned
by means of Procrustes’ Analysis and then a PCA of the
aligned training set shapes yields the main modes of shape
variation {s;}. Similarly, the leading principal components
of the training set appearance vectors constitute the eigen-
face set {A4;}. The first few eigenshapes {s;} and eigen-
faces {A;} extracted from the training set we used are de-
picted in fig. 2.

Model fitting then amounts to finding for each new
image the parameters V. = {p,A\} which minimize
the appearance reconstruction error in the convex hull
of the mean shape (denoted by =z € sg): V =

s~

D X N,
NN N AN 5 N

Fig. 2. Upper row: Mean shape s and the first eigenshapes
s;. Lower row: Mean appearance A4, and the first eigenfaces
A;.

2
argmin, \ 3¢, [Ao(@) + L7y Aii(w) = I(W(x)) |
A global similarity transform on the shape and a linear
brightness correction on the appearance (not included in eq.
(4.2)) are also allowed. Although this is a difficult non-
linear optimization problem if attacked straightforwardly,
there are efficient real-time approximate algorithms for iter-
atively solving it. An example of fitting a face by an AAM
with these algorithms is shown in fig. 3. Details on these
algorithms are beyond the scope of this paper. One can con-
sult [9, 32]. The fitting procedure uses the output of a face
detector as initial shape estimate for the first video frame
and it is repeated for each new video frame using the con-
verged solution at the previous frame as starting point. Ul-
timately a sequence of visual speech features V; = {p¢, At}
is extracted for each frame ¢, witht = 1...T.

step O step 15

Fig. 3. Example of the AAM fitting algorithm. As the face
mask better localizes the speaker’s face, the reconstruction
error decreases.

step 5

The parameters V' of the fitted AAM capture the main
modes of variation of both the face’s shape and appearance.
These parameters, after an optional step of further dimen-
sionality reduction by unsupervised techniques and/or dis-
criminatory training are used for statistical modeling of the
visual speech. Inclusion of their time derivatives AV and
AAV, as is usual in the speech recognition community, can
be used as an heuristic to capture some of the dynamics of
speech and empirically leads to increased recognition per-
formance [41].

Proc. 7th Hellenic-European Conference on Computer Mathematics & its Applications, Athens, Greece, 2005.



4.3. Audio-Visual Feature Fusion

Classical Hidden Markov Models (HMMs) do not suffice
in modelling the statistics of audiovisual speech. Statisti-
cal modelling of multimodal speech is complicated due to
issues, such as audio and visual speech asynchrony [6] and
varying relative speech discriminative power of the audio
and visual streams. Therefore successful audio and visual
feature integration requires utilization of advanced tech-
niques and models for cross-modal information fusion.

One can generally classify the various approaches to
multimodal feature integration into three main categories
[18], depending on the stage that the audio and visual
streams are fused, namely early, intermediate and late inte-
gration techniques. The early integration paradigm tries to
deal with the speech recognition problem utilizing a single
classifier (usually a conventional HMM), which acts on the
concatenation of the audiovisual features, often after they
have undergone an appropriate transformation. The inter-
mediate integration class comprises classification methods
that explicitly model the two different modalities and their
interaction. The overall class conditional likelihood used
in recognition with these models can then be computed by
combining the class conditional likelihood of each modal-
ity. The inference engines used for these models are usually
various HMM extensions, belonging to the general class of
Dynamic Bayesian Networks (DBNs) [11], which are re-
viewed in the context of audiovisual speech recognition in
[35]. Finally, late integration models utilize different, in-
dependent classifiers for the audio and visual features and
the final classification decision is reached by combining the
partial outputs of the uni-modal classifiers.

4.4. Preliminary Experimentson Audio-Visual Datasets

We have made some preliminary experiments in video-only
and audiovisual speech recognition, using the CUAVE au-
diovisual speech database [36]. The experiments reported
here have been conducted in collaboration with A. Potami-
anos of the Technical University of Crete, Greece.

The CUAVE audiovisual speech database consists of
videos of 36 persons, each uttering 50 connected digits.
From these sequences, 30 are used for training and the rest
6 for testing. The videos are NTSC-encoded at 29.97 fps. In
order to build the visual model, we have hand-labelled the
first frame of each video and used it to train the AAM. We
have retained 5 shape parameters and 10 appearance param-
eters (n = 5 and m = 10 in the notation of 4.2), resulting
in a visual feature vector V' of length 15. The sequence of
visual vectors V; was upsampled to 100 fps to match the
acoustic feature rate and was complemented with the time
derivatives AV and AAV. In our preliminary experiments
we have used the simplest form of feature fusion, namely
the multi-stream HMM [35] with fixed stream weights, de-

ferring more complete treatment for future work. We ex-
perimented with both visual-only and audiovisual scenar-
ios. In the HMM classifier 8-state left-to-right whole digit
models were utilized and the observation probabilities were
modeled by a single Gaussian pdf. In Table 7 we present
word accuracy results on two tasks: digit recognition with-
out endpointing and digit classification, given the ground
truth segmentation.

Scenario | Audio | Visual | Audio-Visual
Features
Recognition 98 26 78
Classification 99 46 85
Table 7. Correct Word Accuracies (%) for vi-

sual/audiovisual experiments on the CUAVE database.

These results highlight the difficulty in fusing the two
heterogenous streams, particularly in noiseless scenarios, as
in the reported experiment, where the audio stream is far
more reliable than the visual stream for speech recognition.
Research in the near future will concentrate on the explo-
ration of alternative DBN architectures for feature fusion
and on the principled selection of stream weights, depend-
ing on the relative reliability of the two streams.
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