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Figure 1. Even a state-of-the-art model [16] overfits the object context and ignores spatial common sense, e.g. it predicts overconfident
(p > 0.7) wear connections between every person-glasses pair, simply because wear is the predicate with the most samples in
this context. When semi-supervised by our Grounding Consistency Distillation (GCD) scheme, the same model is able to overcome such
biases, resulting in more precise scene graphs. However, current recall metrics ignore unlabeled pairs and get satisfied with both graphs,
failing to capture their obvious differences. To improve visibility we omit predictions of spatial relations. Best viewed in color.

Abstract

Scene Graph Generators (SGGs) are models that, given
an image, build a directed graph where each edge repre-
sents a predicted subject predicate object triplet.
Most SGGs silently exploit datasets’ bias on relationships’
context, i.e. its subject and object, to improve recall and
neglect spatial and visual evidence, e.g. having seen a glut
of data for person wearing shirt, they are overconfi-
dent that every person is wearing every shirt. Such
imprecise predictions are mainly ascribed to the lack of
negative examples for most relationships, which obstructs
models from meaningfully learning predicates, even those
that have ample positive examples. We first present an in-
depth investigation of the context bias issue to showcase
that all examined state-of-the-art SGGs share the above
vulnerabilities. In response, we propose a semi-supervised
scheme that forces predicted triplets to be grounded con-
sistently back to the image, in a closed-loop manner. The
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developed spatial common sense can be then distilled to a
student SGG and substantially enhance its spatial reason-
ing ability. This Grounding Consistency Distillation (GCD)
approach is model-agnostic and benefits from the superflu-
ous unlabeled samples to retain the valuable context infor-
mation and avert memorization of annotations. Further-
more, we demonstrate that current metrics disregard unla-
beled samples, rendering themselves incapable of reflecting
context bias, then we mine and incorporate during evalu-
ation hard-negatives to reformulate precision as a reliable
metric. Extensive experimental comparisons exhibit large
quantitative - up to 70% relative precision boost on VG200
dataset - and qualitative improvements to prove the signif-
icance of our GCD method and our metrics towards refo-
cusing graph generation as a core aspect of scene under-
standing. Code available at https://github.com/
deeplab-ai/grounding-consistent-vrd.

1. Introduction
“Multiple people wearing the same shirt, sitting

on the same chair and having the same hand”. Embarrass-
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Figure 2. Objects’ location distribution relative to their subject
(green box) for all subject-wear-object triplets. When using
ground truth (a) or a state-of-the-art model’s [11] predicted high
confidence (p > 0.7) triplets on labeled samples (b), only 1%
of objects lies outside the subject’s box. Incorporating unlabeled
samples in evaluation (c) unveils an important misalignment be-
tween predictions and ground truth that was previously unobserv-
able. Dimensions are normalized w.r.t. the subject’s box.

ingly, as Fig. 1 implies, this is how a current state-of-the-art
Scene Graph Generator (SGG) perceives our world. Per-
forming inference on unlabeled object pairs reveals that all
architectures, simple or sophisticated, lack a fundamental
level of understanding of relationships. Instead, they heav-
ily rely on dataset context bias, i.e. the statistical priors
between predicates and subject-object categories, to overfit
a handful of frequent predicates and minimally improve re-
call metrics that are unable to capture this fragile behavior.

Previous approaches [36, 32, 41] attribute bias to the
long-tail distribution of predicates: the frequent ones over-
shadow the rare. Thus, they develop techniques that aim
to boost recall on the tail-classes. However, Fig. 1 reveals
an other implication of bias: models seem to seriously lack
spatial common sense, even for some of the head classes
commonly found in popular datasets such as wear and on.

Our work explores the effect and origin of context bias
as well as the most suffering classes. To mitigate it, we then
introduce a semi-supervised distillation training scheme
called Grounding Consistency Distillation (GCD). In GCD,
a teacher SGG network is further constrained to predict rela-
tionships that can be grounded back to the image, through a
pretrained grounding network. The spatial common sense
knowledge developed by the teacher is then distilled to
a student SGG model. This model-independent scheme
forces models to additionally reason for unlabeled samples,
supplying out-of-distribution examples that challenge the
network’s perception of the dominant classes. We further
contribute two negative graph completion rules used dur-
ing testing to generate negative labels for unlabeled samples
and support metrics that are more reflective of the models’
ability to interpret predicates. Lastly, we re-implement and
evaluate six state-of-the-art models, that demonstrate pro-
found gains when adopting our scheme, even over related
alternatives. Our experiments emphasize the importance of
precision as a long sidelined aspect of scene graph gener-
ators that would encourage their deployment in real-world

scene understanding problems.

2. Experimental Evidence on Context Bias
As a springboard for our investigation we examine the

level of understanding models have for wear, a head class
in most popular datasets. Human common sense dictates
that for a subject to wear an object spatial proximity must
apply, i.e. subject’s and object’s boxes should be intersect-
ing. Most state-of-the-art models achieve close to 100% re-
call on wear but do they possess the aforementioned spatial
common sense? Fig. 2 proves that ignoring predictions on
unlabeled samples falsely leads us to believe that they do.
In fact, even when keeping only high confidence predictions
(p > 0.7) 10% of them appear to be wrong.

Intrigued to further probe the detectors’ incapability of
interpreting visual predicates, we contrive a toy sliding box
experiment: for a given subject-predicate-object triplet, we
slide the object’s bounding box upon the image to extract a
binary map indicating whether the predicate wear is pre-
dicted in that position. Fig. 3 depicts three alarming facts.
First, a state-of-the-art model [54] that aggregates visual,
semantic and spatial information, predicts the person is
wearing the shirt regardless of the latter’s location and
appearance. Second, a baseline using only visual features
[12] also suffers from these limitations and predicts wear
when the shirt’s box is placed upon any person. Third,
an even weaker spatial baseline [12], aware only of the
two bounding boxes, is the most precise and predicts wear
when the two boxes overlap. These observations indicate
that semantic and visual features are both responsible for
the memorization of the context bias and the lack of spatial
common sense, e.g. wearing a shirt while having zero
intersection with its box is not plausible [6].

Nonetheless, context information is itself a measure
of a relationship’s plausibility. Considering a person
and a chair, humans have an instinctively high prior
for sitting on, before even viewing the image. Sub-
sequently, human annotators “apply their own subjective
judgments on what to ignore and what to mention” [28],
causing a reporting bias [38]. Relations that are more use-
ful for scene understanding are far more likely to be anno-
tated, e.g. we rarely expect a person next to shirt
to be a salient concept, despite being equally observable to
a person wearing shirt.

Towards validating this, we illustrate predicate distribu-
tions for different subject-object labels in Fig. 4a,b for two
popular datasets, VRD [25] and VG200 [47]. For the man-
chair case, most of the annotations concern sitting
on and its synonyms in, on which share the same meaning
in this context [12]. Under these constraints, a frequency
baseline achieves a deceptively high recall score [54]. Frus-
tratingly, state-of-the-art models only slightly deviate from
- or even build on - this frequency baseline [23] and, as we



Figure 3. Sliding box experiment for three models: we fix the person’s box, slide the shirt’s box upon the image and visualize a binary
heatmap representing whether wear is predicted. Motifs-Net [54] seems to neglect visual and spatial evidence, predicting wear almost
everywhere. The visual baseline from [12] confuses different instances of person. Unaware of the classes of the referred objects, the
spatial baseline from [12] employs common sense: the two boxes should intersect to predict wear.

Figure 4. (a) and (b): Context bias is a result of reporting bias. Most subject-object pairs are not annotated with a predicate, only those that
the annotators subjectively consider significant in the scene’s description. This results in biased conditional predicate distributions where a
cluster of synonyms, e.g. wear, has and in in the case of person-shirt, dominates other classes. (c) If we measure the mean entropy
for the contexts at which a class is prevailing, we observe that predicates which demand a spatial proximity between the involved objects,
e.g. has, have lower entropy values, meaning that they create stronger bias.

will show in section 5, achieve disconcertingly low preci-
sion scores. On the other hand, there are many unlabeled
samples (97% of VG and 87% of VRD) that could serve as
negative examples, yet they remain unexploited.

The limited cognition of scene graph generators, even
for predicates with copious examples, underlines the need
to re-evaluate which are the most problematic classes. In
response, we measure the entropy of predicate distributions
per context and then, for each class, we average the entropy
for the contexts at which this class is the most prevalent. A
detailed formulation of entropy ranking is presented in the
suppl. material. This entropy ranking analysis (Fig. 4c) un-
veils that proximal predicates, i.e. predicates that demand
a spatial pixel-wise proximity for the subject and the object
(e.g. wear, on, has), tend to lead to higher context bias
(lower entropy). The three aforementioned classes capture
more than 40% of VRD’s samples, fact that completely dis-
proves prior belief that only tail-classes suffer from biases
[36, 32]. Instead, it is the proximal predicates that display
the most severe lack of spatial common sense.

3. Grounding Consistency Distillation
The above analysis highlights three key properties our

solution has to incorporate: (1) use unlabeled samples to
create a distribution shift against context bias, (2) resolve
conflicts between entities of the same category that con-

fuse the network to predict the dominant class, e.g. two
persons holding the same umbrella, (3) be model-
agnostic. We address these challenges with a semi-
supervised distillation training scheme utilizing three dif-
ferent networks: a Grounder, a teacher SGG and a student
SGG. Both the teacher’s spatial common sense acquisition
as well as its infusion to the student are the result of two
losses Lt and Ls respectively that complement the standard
cross-entropy. First, the teacher is trained with Lt forcing
its predictions to be accurately grounded back to the im-
age. Then, during the student’s training, Ls distills [15] this
knowledge from the teacher.

Inspired by CycleGANs [60], we call this scheme
Grounding Consistency Distillation (GCD), since predicted
relationships have to be consistent with the grounder’s abil-
ity to relocate them. GCD is indifferent to the teacher or
student model peculiarities and is applicable to unlabeled
samples, that serve as out-of-distribution negatives for the
per-context dominant classes.

Teacher training As the teacher SGG we employ
ATR-Net [11] and assume an existing trained and frozen
grounder, i.e. a model that, given a relationship triplet, lo-
calizes the bounding boxes of the referring subject-object
entities. Training now obtains a closed-loop form, with
the teacher predicting a predicate for a pair of entities
and the grounder re-estimating their spatial configuration



Figure 5. Teacher and Student training pipelines. Teacher: an un-
labeled object pair is given as an input (1) to predict a relationship
triplet (2), then a Grounder attempts to locate the referring entities,
i.e. the subject and the object, back to the image (3). A misguided
grounding, e.g. predicting the person (blue) is wearing the
shirt (red), leads to a grounding inconsistency (4) that penalizes
the relationship classification (5). Student: predictions on unla-
beled samples are used to distill knowledge from a trained teacher
while standard cross-entropy is applied when labels are available.

(Fig. 5). Based on the grounding quality we penalize or
reward a detected relationship, e.g. in Fig. 5, a spatially-
inconsistent prediction back-propagates the grounding error
to the teacher.

Formally, let f(S,O) → pt be the teacher relation-
ship detector that maps subject S = (sv, ssem, ssp) and
object O = (ov, osem, osp) information (visual, semantic,
spatial) to a probability distribution on predicates P . If
r = argmax(pi

t) then, inversely, the grounder is a func-
tion g defined as g(ssem, r, osem) → (hs ∈ RH×W ,ho ∈
RH×W ), that spatially grounds a relationship r to heatmaps
measuring the confidence of the localization of each entity
upon a H ×W image representation.

We quantify the grounding quality q ∈ [0, 1] by aver-
aging the maximum confidence value predicted inside the
subject’s and object’s bounding boxes:

q =
max(hs �ms) +max(ho �mo)

2
(1)

where ms,mo are H ×W binary masks that are non-zero
inside the ground-truth boxes, � is the Hadamard product.
Lt is the cross-entropy between the grounding quality q

and the probability pr
t of the predicted predicate r:

Lt = −[q log pr
t + (1− q) log (1− pr

t )] (2)

Note, that error backpropagates only through pr
t . Intu-

itively, highly probable predicate predictions should en-

sure high-quality grounding of the referring entities. On
the other hand, a spatially implausible predicate causes a
mismatch between the estimated heatmaps hs,ho and the
ground-truth boxes that imposes a penalty on the detection.
Our total objective is the sum of the standard cross-entropy
loss with Lt:

Ltotal
t = Lce + α(t)Lt (3)

where α(t) is a time-dependent regularizer which increases
over time to balance between memorization (recall) Lce and
generalization (precision) Lt.

Student training employs the standard cross-entropy
accompanied by Ls: the Kullback-Leibler divergence from
pt to ps (student’s output distribution) regularized by a con-
stant hyperparameter λ. The student’s total objective is:

Ltotal
s = Lce + λDKL(pt ‖ ps) (4)

Since labeled samples already provide training information,
both Lt and Ls are only applied on unlabeled pairs.

The crux of avoiding directly using the teacher for rela-
tionship detection and instead employing distillation is that
Lt is not equally sensitive to all types of misclassification.
In fact, since the quality q is not a distribution on P but
rather an isolated plausibility score for r, any class ensur-
ing a high-quality grounding is going to be rewarded. This
means that occasionally q may be an overestimate of the
prediction probability pr

t inducing noise that, as we show
in section 5, has a negative effect on models’ Recall. The
student-teacher scheme attenuates this misbehavior by us-
ing the teacher to filter out that noise while doing a better
job in distilling its developed spatial common sense to the
student. That filtering is a result of KL divergence penaliz-
ing ps proportionally to its deviation from pt.

Grounding methodology The classic setup for ground-
ing referring relationships [20] matches a subject-predicate-
object triplet to the image by detecting both the subject and
the object. However, we find that this setup does not handle
ambiguous cases where the input triplet can be grounded
to more than one pair of entities, e.g. grounding person
wearing hat on an image showing two persons both
wearing hats. Since we use grounding as a scaffold for
learning precise relationships and not to compare to prior
literature, we modify the task to resolve such ambiguities
by conditioning the object’s localization to the subject’s
ground-truth bounding box and vice versa, thus solving two
independent grounding problems.

We break the grounding of each entity into two steps.
The first step estimates a plausible box that suits the image
scale: “how big should an elephant be given that this
person is riding it?”. We tackle this question as a re-
gression problem on the box’s dimensions. The second step
regresses aH×W heatmap assessing the spatial probability
distribution of the position of the estimated box’s center.



The GCD formulation is invariant to the exact choice of
grounder. Therefore, a more detailed presentation is out of
our scope and we refer the reader to our suppl. material.

4. Reorientation of Evaluation with Negatives
As already shown (Fig. 1, Fig. 2, Fig. 4a,b), only when

examining unlabeled samples we are able to ascertain the
effects of context bias, underscoring the importance of their
inclusion in evaluation. However, the most commonly used
metric Recall@k (R@k) [25], which measures the portion
of true positive relations in the top-k detections, does not pe-
nalize mispredictions on the unlabeled pairs. On the other
hand, precision metrics that regard unlabeled samples as
negatives are pessimistic, since they may penalize correctly
predicted relationships that are not annotated [25]. Further-
more, we experimentally prove that measuring precision
this way is not insightful. This urges to reexamine how to
utilize unlabeled samples in evaluation.

Negative Graph Completion We propose a method to
mine and incorporate unlabeled samples into meaningful
metrics that reflect context bias and spatial common sense
by introducing two negative graph completion rules that
generate negative labels for proximal predicates. Proximal
predicates, which suffer the most from context bias, can be
divided in two sets: possessive and belonging. Possessive
predicates denote a possession passing from the subject to
object, e.g. having and eating. Belonging predicates
have an inverse meaning, with the subject being a part of or
living on the object, e.g. of and sitting on. In gen-
eral, subjects in relations with possessive predicates do not
“share” the objects, e.g. in person has hand, the hand
belongs only to the referred person. Similarly, subjects
connected to objects with belonging predicates are not to be
“shared”, e.g. a person lying on sofa most probably
cannot be simultaneously lying on another sofa. WithRp,
Rb denoting the sets of possessive and belonging predicates
respectively, r(s, o) the relationship between the subject s,
object o with predicate r, we obtain the following rules:

• Possessive:∀r ∈ Rp,∀s, o, s′ : r(s, o) =⇒ ¬r(s′, o)

• Belonging:∀r ∈ Rb,∀s, o, o′ : r(s, o) =⇒ ¬r(s, o′)
Examples for these rules are depicted in Fig. 6. Full list of
Possessive/Belonging relationships in our supp. material.

The negative labels enrich datasets’ test set with targeted
and challenging examples that demand models to be more
precise, e.g. a model predicting on each time it encounters
a jacket and a person would now miss a multitude of
negative examples for on. At the same time, precision is not
prone to incomplete annotations and can be safely measured
on the samples that have a positive or a negative label.

Why not simply rank background edges? Past ap-
proaches [54, 56] employ a “background” class and con-
sider the unlabeled samples as negatives for all classes.

Figure 6. Annotated relationships (green) are used to generate neg-
ative edges (red) following specific rules. Possessive: since a
person (yellow) is wearing the shirt, other persons can-
not wear it. Belonging: since the shirt is on a person, it
cannot be on another person.

This approach is inherently flawed, as all the unlabeled
samples in fact belong to existing classes. Moreover, the
two most prominent pruning strategies manually filter non-
intersecting pairs of object boxes as “background” [54] or
learn a separate “relatedness” task [11]. Although they
partly ameliorate ranking of edges, they conceal the lack of
spatial common sense: networks still classify the person
(blue box) of Fig. 6 as wearing the shirt (cyan box). Fi-
nally, arguing that mispredictions on unlabeled pairs show-
case low probability is disproved by Fig. 2c where a large
portion of mispredictions is overconfident (p > 0.7).

5. Experiments and Results
We evaluate a plethora of state-of-the-art scene graph

generators on two datasets aiming to: (1) quantitatively
show the context bias effects and validate GCD’s efficacy
for all tested models, (2) qualitatively explicate GCD’s ef-
fect towards more precise scene graphs and improved spa-
tial common sense, (3) exhibit the improved ability of our
metrics to capture context bias, (4) demonstrate GCD’s su-
periority against other alternatives.

Models, Datasets and Metrics Our model zoo com-
prises of six re-implemented models, VTransE [57], Motifs-
Net [54], RelDN [59], ATR-Net [11], UVTransE [16] and
HGAT-Net [27], all employing various feature types and
architectures. Implementation details are included in our
suppl. material. We train and test all models on VRD
[25] and VG200 [47] for predicate detection (PredDet) [25]
and predicate classification (PredCls) [47] respectively. In
PredCls object categories and boxes are considered known,
while in PredDet the additional information of objects inter-
acting is given. We choose those tasks so as to avoid inter-
ference with object detection errors. a(t) (eq. 3) is empiri-
cally set a unit step function that rises after the first epoch
and λ (eq. 4) equal to 80. We report R@50, micro Pre-
cision (mP) measured only on labeled samples, mP+ and
f-mP+ where + denotes additional evaluation on our mined
negative labels and f- focusing measurements only on prox-



Models VRD (PredDet) VG200 (PredCls)
R@50 mP mP+ f-mP+ HarMean R@50 mP mP+ f-mP+ HarMean

VTransE [57] 53.17 13.11 17.42 26.95 35.77 61.16 2.21 4.57 15.60 24.72
Motis-Net [54] 55.06 13.31 20.67 32.38 40.78 62.54 2.32 4.50 17.98 27.70

RelDN [59] 55.02 13.66 22.94 36.63 43.98 57.83 2.03 4.93 16.82 25.89
ATR-Net [11] 57.69 13.99 23.87 38.78 46.38 63.02 2.25 5.82 20.01 30.30

UVTransE [16] 56.88 13.46 21.63 34.69 43.10 62.69 2.24 4.60 15.57 24.88
HGAT-Net [27] 57.00 13.84 22.46 36.26 44.32 63.30 2.32 5.40 16.82 26.56
VTransE + GCD 54.01 12.92 20.46 36.62 43.65 60.64 2.28 7.18 24.63 34.79

Motifs-Net + GCD 55.12 13.06 25.58 42.43 47.95 63.30 2.27 7.36 25.28 36.08
RelDN + GCD 53.97 12.89 25.22 41.44 46.88 55.49 1.99 7.33 25.32 34.43

ATR-Net + GCD 57.59 13.93 28.98 48.33 52.56 63.35 2.32 7.34 25.17 35.92
UVTransE + GCD 56.72 13.72 28.2 46.77 51.26 62.36 2.28 7.70 26.45 37.04
HGAT-Net + GCD 56.24 13.34 25.8 42.66 48.52 62.83 2.31 7.42 25.50 36.28
Teacher ATR-Net 57.21 13.98 29.43 48.97 52.77 62.78 2.52 7.15 25.55 35.58

Table 1. Results of re-implemented models with and without GCD. We measure Recall@50 (R@50), micro Precision (mP), mP+, f-mP+

and the Harmonic Mean of R@50 and f-mP+. + indicates additional evaluation on mined negative labels, f- focusing evaluation only on
proximal predicates. Teacher included for reference. We conduct experiments for five random initializations. Maximum standard deviation
for VRD: R@50 ±0.42, mP ±0.18, mP+ ±0.66, f-mP+ ±1.16. For VG200: R@50 ±0.04, mP ±0.02, mP+ ±0.22, f-mP+ ±0.39.

Figure 7. Top: GCD manages to focus the distribution of objects
on the subject for ATR-Net’s wear predictions. Bottom: Slid-
ing box experiment for the phrase person wearing shirt.
Originally, Motifs-Net predicts wear even if the shirt is located
in background regions. When trained with GCD, it acquires a ba-
sic level of spatial common sense and predicts wear only upon or
very close to the subject.

imal predicates. Lastly, we compute the Harmonic Mean
(HarMean) of R@50 and f-mP+ as an overall metric.

Context bias and Grounding Consistency The results
for all re-implemented baselines are included in the upper
half of Table 1. HarMean changes the ranking between
models on both datasets, since models with similar R@50,
e.g. UVTransE-Net and HGAT-Net, display significantly
different precision gains. The lower half of the Table 1

contains the results when the same models are additionally
semi-supervised using the proposed scheme (+GCD). We
notice large improvements on mP+ and f-mP+ (up to 35%
relative on VRD and 70% on VG200 for UVTransE) with
non-substantial R@50 sacrifice. In total, HarMean is in-
creased, up to 22% relative on VRD and 49% on VG200.

Spatial common sense and sparser graphs Models
semi-supervised by GCD are able to generate sparser graphs
(Fig. 8) and develop a basic level of spatial common sense
(Fig. 7). Note, for instance, how ATR-Net (Fig. 8 upper left)
is able to perfectly resolve conflicts between all persons
and clothes, indicating an improved understanding of
predicates’ meanings. For more qualitative results refer to
our supp. material.

What do models predict in place of the most frequent
predicate? A model that penalizes a predicate in favor of
a synonym [12], e.g. predicting person on chair in-
stead of sit on for a sample where on is false, is equiv-
alently ignorant of predicate interpretations. Visualizing all
edges and predictions upon the graph (top and middle right
column of Fig. 8) indicates that models trained with GCD
harness implicit spatial features and give reasonable predic-
tions for all samples, e.g. a person falsely being on skis
is now next to them (Fig. 8 top right).

Metric comparisons Despite the above qualitative evi-
dence, R@50 or mP do not captivate a quantitative improve-
ment. On the other hand, mP+ clearly quantifies GCD’s
benefits for all models, due to the employment of targeted
negatives in evaluation that penalize relentless biased pre-
dictions based on context. We further validate that f-mP+

better captures the models’ behavior compared to mP+,
without significantly altering the ranking. This can be at-
tributed to the nature of non-proximal predicates: most of



Figure 8. Qualitative comparison of three models’ predictions on images with proximal predicates trained with standard cross-entropy (CE)
and with our method (GCD). With the exception of top and middle of right column, non-proximal predicates are filtered out for clarity.
GCD creates graphs with sparse connected components. Most edges incorrectly classified as proximal predicates are now associated to a
reasonable geometric predicate. Best viewed in color.

Method R@50 mP+ f-mP+ HarMean
GCD-G +0.50 +5.23 +6.24 +4.03
GCD-D -2.41 +16.36 +20.53 +10.22

GCD -0.33 +19.28 +26.19 +14.61
Table 2. Ablation on GCD’s structure reporting the average rel-
ative gains for R@50, mP+, f-mP+ and HarMean across the six
baselines of Table 1. Removing grounding (GCD-G) or distillation
(GCD-D) will respectively cancel out Precision gains and restrict
models from optimally developing spatial common sense.

Method R@50 mP+ f-mP+ HarMean
Spatial Baseline* 47.08 20.09 32.87 38.71
Oracle Teacher* 56.44 33.13 55.61 56.02

SpatDistill -0.09 +12.67 +15.10 +8.82
GraphL +0.27 +17.95 +23.25 +13.35

GCD (Ours) -0.33 +19.28 +26.19 +14.66
oracle with NCE (Ours) -0.09 +39.03 +45.47 +24.03

Table 3. Average relative performance gains across the six base-
lines of Table 1. GCD outperforms other approaches in distilling
spatial common sense and is comparable to the oracle NCE that
uses ruled-based negatives. For models with * the absolute results
are reported for reference only.

them are geometric and alternatively used for each other,
e.g. next to, near and adjacent to. [12] show that
in such cases, models tend to predict the most frequent syn-
onym per context. Resolving that type of bias is a hard prob-
lem and outside the scope of this work. Instead, proximal
predicates clearly benefit from GCD, as f-mP+ reflects.

Ablation study Combining grounding and knowledge
distillation is key to effectively acquiring spatial common

sense. To validate this, we perform an ablation study with
two structural variations of GCD: removing the Grounder
(GCD-G) and applying Lt directly on the baseline models
without an intermediate distillation step (GCD-D).

Table 2 showcases the mean relative performance gain
across the six baselines presented in Table 1. GCD-D in-
troduces a high relative Recall drop while having inferior
Precision boost in comparison to GCD which manages to
both maximize Precision and retain minimal Recall penalty.
GCD-D proves that simply using the teacher’s soft-labels
on unlabeled samples to distill knowledge is not able to im-
prove models’ spatial reasoning ability.

Comparison to other approaches While retaining the
teacher-student part of GCD we experiment with alterna-
tive sources of spatial common sense besides a Grounder.
Motivated by our analysis that networks biased to context
neglect spatial features, we employ the spatial baseline of
Fig. 3. We call this approach SpatDistill. A second ap-
proach is to directly use the oracle negatives derived from
our rules and apply the Negative Cross-Entropy loss (NCE)
of [18] to the teacher (Oracle Teacher). Distillation from the
Oracle Teacher serves as an upper bound of GCD since net-
works do not have to reason, using an imperfect grounder,
about whether an example is a negative. Lastly, we com-
pare GCD to the graphical contrastive losses (GraphL) of
[59], that learn to rank negative samples based on rules.

The resulting mean relative performance gains are pro-
vided in Table 3, where GCD has an obvious advantage
over SpatDistill and GraphL. Although precise, the spatial
baseline is naive (Table 3) and constrains models’ ability to



learn the good context prior. GraphL deteriorates precision
gains as it incorrectly regards all unlabeled pairs as nega-
tives for all classes, yet these do belong to a class; in fact,
there are many unlabeled positives even for proximal predi-
cates. Lastly, targeted negatives (NCE) have a great impact
on the precision metrics. Note, that, in contrast to GCD,
GraphL and NCE depend on rules that, although valid on
VRD and VG200, may not generalize for all datasets. See
supplementary for the expanded versions of Tables 2, 3.

Limitations of GCD The grounder employed by our
pipeline is not perfect: it can be confused by instances that
lie too close (Fig. 8 bottom right), while incorrect predicate
predictions may result in correct grounding. Nevertheless,
our experiments prove that GCD achieves a basic level of
spatial common sense and is comparable to the oracle NCE
while being semi-supervised.

6. Related work
Visual Relationship Detection and Scene Graph Gen-

eration (SGG) both refer to detecting objects and classify-
ing the predicate of each pair separately [56, 57, 59, 2, 11,
22, 31, 50] or jointly upon the graph [3, 4, 51, 52, 53, 37,
44, 43, 34]. All these works optimize recall on the datasets’
ground-truth and they are cursed to overfit the context bias
and sacrifice precision. Closest to ours, [59] also explore
qualitative errors attributed to confusing entities and use
contrastive losses to improve the average precision on spe-
cific classes. However, they treat all unlabeled samples as
negatives and provide limited insight on the predictions be-
tween “not related” entities. Orthogonal to the above, we
thoroughly analyze the context bias effects, mine targeted
negatives to enhance the resonance of our metrics and then
amplify the precision for all tested models.

Unbiased SGG Concurrent literature imputes the bias
to the long-tail distribution of relationships and applies low-
shot learning [5, 42, 30] or image manipulation [45, 8, 19] to
overcome the lack of samples for tail classes. [12] and [36]
expose the effects of mimicking context bias on few-shot
generalization. Our analysis on unlabeled samples and the
sliding box experiment universalize the inability to properly
interpret frequent predicates as well. Thus, we redefine the
suffering classes with a context-conditioned entropy rather
than a predicate-conditioned frequency ranking.

Grounding refers to the localization of an image re-
gion described by a natural language expression [26, 33].
Recent approaches align visual and language scene graphs
[48, 24, 40] to parse and disambiguate referring expres-
sions. Closest to ours, [20, 35] explicitly ground referring
relationships, i.e. subject - predicate - object triplets, but
their task differs in that they aim to detect both objects,
while we condition the subject to the object and vice versa.
Our grounder also draws inspiration from spatial common
sense works [49], particularly in breaking the detection in

two steps, an image-agnostic inference of objects’ layouts
given a relationship [6] and then a refinement on the image.

Grounding Consistency is inspired by recent semi-
supervised approaches [55, 17]. The original consistency
regularization loss [21] minimizes the difference between
the predictions f(x) and f(x′) for an input image x and its
perturbed version x′. Our formulation is reminiscent of the
adversarial Cycle Consistency Loss [60], where f and f−1

are jointly learned so that f−1(f(x)) approximates x. In
our case, we approximate f−1 with a pretrained grounder.
The only scene graph generator that shares a similar consis-
tency logic is that of [13], which auto-encodes images via
intermediate scene graph representations, but uses a gener-
ative model to reconstruct the image, while we re-ground
objects to enhance the detector’s spatial awareness.

Limited supervision for SGG has been an answer to the
surplus of unlabeled samples due to the sparsity of the anno-
tated scene graphs. A stream of works thus employ weakly-
supervised approaches [29, 58, 10, 51, 1] to take advantage
of both labeled/unlabeled data. [7, 11, 31, 32, 56, 9, 46] use
filters or multi-tasking to rank the labeled samples above
the unlabeled ones. Other approaches use semi-supervised
learning [5], self-training [2] or distillation [50, 31] to
estimate pseudo-labels for unlabeled samples. However,
pseudo-labels also suffer from context bias. Diametrically
opposite, our semi-supervised approach directly penalizes
predictions that are not grounded back to the image.

Scene Graph Completion A few works attempt to pop-
ulate the graph with predicate edges based on the existing
ones [39]. [14] apply rules for transitive and converse re-
lations, while [12] construct synonym classes of relation-
ships. These approaches generate positive examples to as-
sist training, while our rules mine targeted negative exam-
ples to enhance the insight of precision metrics.

7. Conclusions
Current state-of-the-art generators are yet far from sup-

porting visual graph reasoning. Instead, they overfit the
context bias to satisfy recall metrics of little insight. We
design a semi-supervised framework that grounds the pre-
dicted relationships back to the image to cultivate a ba-
sic level of spatial common sense. We further devise two
negative graph completion rules to enhance the test set
with meaningful negative examples able to capture context
bias and demonstrate significant gains under various setups.
However, spatial common sense is a single aspect of inter-
preting visual predicates. Future detectors should also in-
corporate concept reasoning as a higher level of knowledge
about the physical world, which is not limited to specific
types of object interactions. We are confident that our ap-
proach motivates a rethinking of the importance of unla-
beled data as an inherent element of both scene graph gen-
eration and, equally importantly, evaluation.
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