-Supplementary Material-
Grounding Consistency: Distilling Spatial Common Sense for Precise Visual
Relationship Detection

1. Outline

In order to provide more insight into our main paper, we
present additional information regarding:

 implementation details to aid the reproducibility of our
results (section 2)

¢ the grounder employed for our experiments and the
positive attributes of two-step grounding (section 3)

* the mathematical formulation of entropy ranking anal-
ysis that motivates the focus on proximal predicates
(section 4)

* negative graph completion statistics (section 5)

* the problem of annotation redundancy in VG200 caus-
ing artificial Precision bounds (section 6)

* additional quantitative and qualitative results of exper-
imentation with GCD (section 7)

2. Implementation details

Software/Hardware used All code is written in Python
using the PyTorch framework. We perform all experiments
in an Ubuntu 16.04 machine with 64GB RAM and a sin-
gle NVIDIA 2080Ti GPU. In our Grounding Consistency
Distillation (GCD) scheme, teacher training lasts on aver-
age 9 minutes for VRD and 75 minutes for VG200 per
epoch. These times decrease to 3 and 55 minutes respec-
tively in student training since inference on grounder is not
performed and teacher’s predictions can be pre-computed.
On average, models need 16 epochs to converge on VRD
and 8 on VG.

Hyperparameters We apply the Adam optimization al-
gorithm [5] with weight decay equal to 5 x 10~* for VRD
and 5x 105 for VG200. We consider batches of 16 images,
that correspond to an average of 128 positive examples of
relationships. The learning rate is initialized to 0.002 and
dynamically adjusted during training. We find this setup
reasonably efficient for all tested models.

Re-implementations We utilize the PyTorch implemen-
tation of Faster-RCNN [7] as a per-ROI feature extractor
and freeze its parameters in order to isolate the effects of
GCD with respect to different model architectures. Mod-
els are re-implemented according to the respective authors’
publicly released code. When this is not available, we make
the appropriate assumptions according to their architecture
descriptions. As shown in Table 1, our re-implementations
are consistent with the originally reported results, despite
optimization parameters are not always given by the au-
thors. We observe a large improvement for VTransE due
to finetuning and a drop for ReIDN, mainly ascribed to not
jointly training the backbone network.

Tasks Depending on the information of the ground truth
graph provided to a SGG model the following tasks are de-
fined:

¢ Predicate Detection (PredDet): Given objects’ boxes,
categories as well as which of them interact, classify
relationships of interacting object pairs.

 Predicate Classification (PredCls): Given objects’
boxes and categories predict relationships for all ob-
ject pairs.

e Scene Graph Classification (SGCls):Given objects’
boxes, classify them and predict relationships for all
object pairs.

* Scene Graph Generation (SGGen): Nothing is given.
Detect and classify objects, then predict relationships
for all object pairs. A detection is considered positive
if the subject’s and object’s boxes have IoU > 0.5
with ground truth.

e Phrase Detection (PhrDet): Same as SGGen but a
detection is considered positive when the predicate
box (minimum box containing subject’s and object’s
boxes) has IoU > 0.5 with ground truth.

Since GCD focuses on solving context bias induced
by the annotations’ statistics, incorporating object detec-
tion/classification accuracy as part of relationship detection



Model Original | Ours | Dataset
VTransE [10] 4476 | 53.17 | VRD
Motis-Net [9] 65.20 | 62.54 | VG200

RelDN [11] 68.30 | 57.83 | VG200
ATR-Net [2] 5840 | 57.69 | VRD
UVTransE [4] 55.50 56.88 VRD
HGAT-Net [6] 59.54 | 57.00 | VRD

Table 1. Comparison of originally reported R@50 performance to
our re-implementations.

would be to no purpose. This is the reason why we choose
to evaluate our method on PredDet and PredCls avoiding
interference with object detection errors. Typically, micro-
Recall@50 on PredDet is reported for VRD and macro-
Recall@50 on PredCls for VG200. In micro-Recall, the
true positives to positives ratio is calculated across all sam-
ples while in macro-Recall it is averaged across all images.

3. Grounder

Description The task of grounding is to locate the refer-
ring entities of a subject-predicate-object triplet to the cor-
responding image regions. For example, given the triplet
dog wear shirt, the grounder has to locate, if existent,
the dog and the shirt it wears.

A triplet can refer to more than one pairs of an image.
For example, in Fig. 1b, grounding the triplet person on
street could be achieved by both persons. In order to
resolve this ambiguity, we split the subject/object localiza-
tion into two independent problems by conditioning the ob-
ject’s grounding to the subject’s ground-truth box and vice
versa. An example is depicted in Fig. la. First, given the
jeans (red box), we detect the person (green box) who
is wearing them. Simultaneously, conditioning on the
person, we ground the jeans. This way, despite the fact
that both persons wear jeans, only the ground-truth
are grounded.

Architecture The overall Grounder’s architecture is pre-
sented in Fig. 3. Let us consider the case where we predict
the object’s bounding box (the inverse is symmetric). We
represent the normalized coordinates of the subject’s box
center as S = [Sc,z, Scy] € R? and the normalized width
and height as s, = [sp.4, Sp.n] € R?. The subject’s and ob-
ject’s semantic information Sge,, Osem, along with the rela-
tionship detection network’s prediction r compose the pre-
dicted triplet t =< Sgem, T, Osem >. The probability distri-
bution Pr(op, 0..) of the object’s dimensions and center can
be modeled as:

Pr(op,0.) = Pr(op, oclt, s, Sp)
= Pr(oc|t, ¢, sp, o) Pr(opt, sc, Sp)

and we assume that the object’s dimensions oy are indepen-

dent of the subject’s location s, leading to:
Pr(op,0.) = Pr(oc|t, sc, Sp, 0p) Pr(op|t, sp)

Inspired by [1], we model Pr(op|t, sp) as a sequence of lin-
ear layers with ReLU activation units which, given ¢ and s,
regresses the normalized height and width of the object’s
bounding box ;. This stage is supervised using an MSE
Loss.

To model Pr(oc|t, sc, sp, Op), We regress a heatmap as-
sessing the probability that the object’s box is centered at
each position. We first encode the image with ResNet-50
[3] into an H x W x D feature map F, where H, W are
the spatial dimensions and D the feature dimension. Then,
we calculate a language-guided attention [8] mask A, of
size H x W, as the inner product of the feature map F and
a learnable D-dimensional vector constructed from the ob-
ject’s word embedding. This mask is applied on the feature
map to obtain Fo;y = F x Agyy.

In order to evaluate all possible locations for the object,
we convolve each channel of F',;; with an all-ones kernel of
spatial dimensions determined by 0p. This operation results
inan H x W x D feature map F g, where each feature vec-
tor represents the gathered visual information of a bounding
box being centered at the respective location. Lastly, we
concatenate each D-dimensional feature vector with an S-
dimensional vector of spatial information extracted from the
subject’s box s, and the object’s box, as if the latter is cen-
tered at the corresponding position. This H x W x (D + )
feature map is used to regress the spatial distribution of the
box’s center, resulting in the heatmap h, of the main paper.

Qualitative Examples Fig. 1b showcases that the
Grounder is able to locate all pairs the input triplet can
refer to. However, it often struggles with disambiguation
of same instance entities that lie too close. As an exam-
ple, in Fig. 1c multiple persons are on different pairs
of skis. When conditioning on the skis (in red box),
the grounder identifies the correct person but also the one
next to him. Similarly, both the correct pair of skis and the
one next to it are detected. Although such errors are not sig-
nificant when evaluating a grounder, they negatively impact
teacher’s training. This behavior explains the gap between
GCD and oracle negative mining supported with NCE (see
Table 3 of main paper).

4. Entropy Ranking

We define a context-conditioned predicate distribution
as:

pi;j (k) = Pr(predicate = k|subj = i, 0bj = j)

We do not consider the background (unlabeled) samples
since background is not treated as a class. Further-
more, to reduce noise, we exclude some contexts that are



Figure 1. Grounding examples. (a) Conditioning on a ground-truth box to estimate the other mitigates conflicts such as the coexistence of
multiple persons wearing jeans. (b) Our grounder is able to locate all entities related to a ground-truth box, such as two persons
both standing on the street. (c) Objects of the same category lying closely are a common grounding pitfall. Here, the grounder is
confused by two persons both on skis and incorrectly associates the person in green box with the skis next to the red box.
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Figure 2. Left column: qualitative comparison of GCD with the oracle NCE of Table 3 in main paper. In cases where objects are in close
proximity GCD has a hard time disambiguating the graph due to grounder imperfections. On the other hand the oracle model, since it is
trained with mined negatives, develops a more precise understanding of relationships’ spatial attributes. Right: supplementary qualitative
results for UVTransE [4]. For clarity only proximal relationships are shown. Best viewed in color.

naturally biased and do not capture reporting bias e.g.
sky-above-person and filter out contexts with a very
small amount of samples. Each context is represented by
the class with the most samples:

k(i, j) = argmaz pi; (k)
k
and the set of contexts that are represented by a class k is
Cu = {i.J : k(i,5) = k}
Finally we calculate the mean entropy of each predicate
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where E() is the Entropy function. In Fig. .4 we present
the entropy ranking for VG200 predicates. Similarly to
VRD, proximal predicates tend to be more biased on con-
text (lower entropy).

5. Negative Graph Completion

Table 2 contains all proximal predicates for VRD and
VG200, as well as the way they are categorized to Pos-
sessive and Belonging. Additionally, Fig. 5 compares the
subject-object overlap distribution of proximal predicates
to that of all predicates, validating an increased overlap be-
tween the boxes of the referring entities that are connected
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Figure 3. Architecture of the grounding network. We first regress
the box’s size. Then, we employ attention and convolutional lay-
ers to create a feature-map representing spatially gathered visual
information. Lastly, we concatenate spatial and visual information
and assess the probability heatmap of the entity to be grounded.
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Figure 4. Entropy ranking for VG200. We notice a similar pat-
tern to VRD, with the proximal predicates, e.g. has, of, in,
displaying the lowest entropy and thus creating the most biased
per-context distributions.

Rules VRD VG200 \
Possessive carry, contain, cover, carrying, eating, has,
drive, eat, feed, holding, playing, riding,
fly, has, hit, using, wearing, wears,
hold, kick, play with, with
pull, ride, touch,
use, wear, with
at, drive on, in,
inside, lean on, lying on,
on, park on,rest on,
sit on, skate on, sleep on,
stand on

Belonging at, attached to, belonging to,
flying in,for,from,
growing on, hanging from, in,
laying on, looking at, lying on,
made of,mounted on, of,
on, painted on, parked on,
part of, says, sitting on,
standing on, to,walking in,
walking on, watching
Table 2. Sets of predicates that each rule applies to in order to mine

negative samples.

with a proximal predicate.

Proximal predicates are further used to extract negative
samples and augment test sets with challenging examples.
In Fig. 6 we compare the number of positive samples with
the generated negatives for the top proximal predicates in
VRD’s test set. We observe that negative samples surpass
almost an order of magnitude positives, due to the combina-
torial nature of our rules, thus overfitting context is heavily
penalized in our mP* and f-mP* metrics.
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Figure 5. Distributions of Intersection over Minimum area (IoM)
for all classes and proximal classes. By definition, proximal pred-
icates display a characteristic larger IoM.
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Figure 6. Comparison of the number of negative samples, gener-
ated from our rules, to positives on VRD test set. Our rules pop-
ulate VRD in a way that each one of the dominant classes takes
advantage of a significant number of negatives. Best viewed in
color.
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Figure 7. (a): Predicate distribution for person-shirt context.
(b): Re-distribution of previously unlabeled samples after popu-
lating the graph with negatives. Unlabeled samples that do not
acquire a negative label are shown in red. Best viewed in color.

Laslty, Fig. 7 depicts the predicate distribution shift
caused by negative examples. Previously biased contexts,
such as person-shirt, are calibrated with a multitude
of generated negatives that span the predicate space. Most
importantly, more frequent classes have more negative ex-
amples, facilitating the learning of their meaning.



Models VRD (PredDet)
R@50 [ mPT | f-mPT | HarMean
VTransE [10] 53.17 | 17.42 | 26.95 35.77
Motis-Net [9] 55.06 | 20.67 | 32.38 40.78
RelDN [11] 55.02 | 2294 | 36.63 43.98
ATR-Net [2] 57.69 | 23.87 | 38.78 46.38
UVTransE [4] 56.88 | 21.63 | 34.69 43.10
HGAT-Net [6] 57.00 | 22.46 | 36.26 44.32

VTransE + GCself-D 51.98 | 18.35 | 28.76 37.03
Motifs-Net + GCself-D || 54.81 | 22.92 | 37.45 44.50
RelDN + GCself-D 53.82 | 25.95 | 42.90 47.74
ATR-Net + GCself-D 57.59 | 28.98 | 48.33 52.56
UVTransE + GCself-D || 5542 | 27.61 | 46.16 50.37
HGAT-Net + GCself-D 56.87 | 23.49 | 38.23 45.72
Table 3. Instead of using ATR-Net [2] as a universal teacher, both
teacher and student share the same architecture (GCself-D). Re-
sults are reported in the same format as Table 1 of main paper for
the VRD dataset.

Example of redundant annotations on humans

Ground Truth Annotations
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Figure 8. Example of redundant object annotations in VG200.
Even though only two people are depicted, there are six separate
object annotations assigned to a person, with each being related to
other objects in different ways. In the test set, we measure 12%
redundancy in annotations of people (JoU > 0.5) when we con-
sider all object categories representing a person equivalent (e.g.
person, woman, man, kid etc). Best viewed in color.
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6. The reason behind VG200’s seemingly low
precision

In Table 1 of the main paper Precision achieved on
VG200 appears to be noticeably lower in comparison to
VRD. This is the result of VG200’s annotations often be-
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Figure 9. The ratio of unlabeled to labeled samples seems to have
a similar effect in both teacher and student training. The more
unlabeled data we use, the higher precision (f-mP™) and Harmonic
Mean get, with a non-substantial recall (R@50) drop. We observe
a break point where we use all the available unlabeled data and
decrease the labeled samples. Although there is a steep R@50
drop, the plentiful amount of unlabeled data is able to retain a high
Precision. Showing results for ATR-Net [2].

ing redundant, meaning that an entity can at times be la-
beled more than once and even with a different category
e.g. a human is assigned two bounding boxes: one la-
beled as person and an other as woman. An example of
such redundancy is presented in Fig. 8. Adding to this, re-
dundant objects do not always share the same relationships
with other objects. For example, in Fig. 8 the same hu-
man (on the left) is annotated four times as either woman
or person and each time having different relationships to
other objects in the image. As a result, our negative graph
completion rules (section 4 of main paper) will occasion-
ally falsely generate negative labels that will bound Preci-
sion metrics to deceptively low values. Fixing annotation
redundancy is outside the scope of this work.

7. Supplementary experiments and results

Self-Distillation An alternative to using a single teacher
for all models is to utilize the same architecture both as
teacher and student (GCself-D). In Table 3 we present the
results of such a scheme. Different teacher architectures
showcase different capabilities in developing spatial com-
mon sense. This means that weaker models (e.g. VTransE-
Net) will not achieve maximum gains as they would with a
better teacher.

Qualitative results In Fig. 2 we present supplementary
qualitative results for UVTransE-Net [4], VTransE-Net [10]
and RelDN-Net [11]. It is worth noting that VTransE seems
to be in a disadvantage compared to other models. This is
due to the fact that it uses simpler spatial features that are



Models R@50 ‘ mPT ‘ f-mP+ ‘ HarMean || R@50 ‘ mP* ‘ f-mP+ ‘ HarMean || R@50 ‘ mP* ‘ f-mP+ ‘ HarMean
+GCD-D +GraphL +GCD
VTransE -3.67 +0.06 +2.19 +0.02 -0.88 +30.46 +17.92 +1.59 +35.88 +22.02
Motis-Net -2.20 | +19.59 | +26.28 +13.99 +1.54 +29.71 +17.63 +0.10 +31.04 +17.58
RelDN -2.04 | +17.52 | +21.62 +11.11 +0.65 +12.26 +7.31 -1.90 +13.13 +6.60
ATR-Net -1.46 | +21.16 | +26.28 +13.48 -0.28 +20.22 +10.76 -0.17 +24.63 +13.31
UVTransE -3.34 | +36.25 | +42.20 +20.66 -0.74 +32.20 +17.44 -0.29 +34.82 +18.95
HGAT-Net -1.77 +3.61 +4.63 +2.05 +1.32 +14.64 +9.07 -1.33 +17.65 +9.46
+GCD-G SpatDistill oracle with NCE
VTransE +0.17 | +12.11 | +13.17 +8.44 -0.53 | +11.08 | +13.73 +8.50 +0.47 | +35.30 | +41.97 +24.65
Motis-Net +2.92 | +11.47 | +14.18 +9.73 +1.63 | +21.96 | +26.41 +15.94 +2.40 | +49.25 | +59.11 +32.03
RelDN -1.09 -4.93 -4.45 -3.14 -0.67 +5.71 +7.89 +4.30 -0.78 | +24.98 | +29.70 +15.52
ATR-Net -0.72 -0.45 +0.77 +0.17 -1.88 +6.34 +8.69 +4.20 -1.25 | +35.61 | +42.32 +20.57
UVTransE +0.76 +7.91 +8.50 +5.43 -0.23 | +17.61 | +19.78 +11.32 -0.55 | +46.05 | +52.18 +26.73
HGAT-Net +0.95 +5.30 +5.24 +3.53 +1.11 | +13.31 | +14.12 +8.68 +0.25 | +42.97 | +47.55 +24.67

Table 4. Expanded parts of Tables 2 and 3 of main paper showing relative improvements for GCD-D, GraphL[11], GCD, GCD-G, Spat-

Distill and oracle NCE on all models.

not able to fully capture the spatial configuration between
objects, something also portrayed by its lower precision rel-
ative to other models (Table 1 of main paper). We also pro-
vide a comparison of oracle NCE (Table 3 in main paper)
with GCD (Fig. 2 top left). In cases where objects are in
close proximity oracle NCE can outperform GCD. As we
explain in the main paper this is a result of the grounder’s
imperfections (Fig. 1c).

How many unlabeled data? As shown in Fig. 9, by in-
creasing the ratio of unlabeled samples used during training
f-mP* and HarMean improve up to a saturation point. This
behavior is observed in both teacher and student training.
When labeled samples start decreasing (dashed vertical line
in Fig. 9) R@50 rapidly drops while Precision stays on the
same level as before. This shows that even with a smaller
amount of labeled samples, GCD is able to develop and dis-
till spatial common sense using the abundance of unlabeled
samples provided.

Expanded averaged metrics In Table 4 we present the
per-model relative improvements that produce Tables 2 and
3 of the main paper when averaged. From this, we can con-
firm that GCD outperforms GraphL in terms of precision
(blue and orange) while Distillation manages to consistently
reduce the negative effect on recall (gray), even though the
exact boost of both methods depends on the model architec-
ture.
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