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Abstract— Online human leg tracking and gait analysis
are crucial functionalities for mobility assistant robots, like
intelligent walkers. Usually, such walkers are equipped with
various sensors for the extraction of human-related features
for adaptive human-robot interaction and assistance. We treat
the gait detection problem jointly, presenting a novel method
for detecting and recognizing gait features from 2D range
data produced by a laser sensor mounted on a robotic walker.
We propose an effective Convolutional Neural Network (CNN)
as a powerful feature extractor for detecting the user’s leg
centers in range data represented as occupancy grid maps. We
couple the CNN with a Long Short Term Memory (LSTM)
network for learning the legs’ motion temporal dynamics while
walking, improving the prior detection, and providing better
leg occlusion handling. Moreover, we perform gait analysis
by recognizing gait phases over both legs by feeding the
leg tracking output to a subsequent LSTM. Our proposed
lightweight framework has been trained and tested on real
patients-data. The presented experimental results show our
method’s efficiency in providing accurate detections compared
to state-of-the-art and application to an online system due to
its high frequency, making it a competitive method for gait
detection on robotic mobility assistants.

I. INTRODUCTION

Functional walking is an integral part of every person’s
daily life. When mobility disabilities emerge, usually with
age, depriving a human of a vital ability taken for granted,
they affect the individual physically and emotionally [2]. A
mobility-impaired person can also be prone to fall incidents,
which can easily cause injuries that could provoke further,
often more severe, problems. Conventional walkers and canes
have played a significant role in assisting mobility-impaired
humans, without unfortunately eliminating falling incidents,
nor being easily adaptable to every patient’s specific needs
[1], [6]. The current technological advances, especially in
robotics, can help every individual retain normalcy in their
everyday life, and their independence and self-esteem [3]–
[5]. This work’s motivation is to equip such a walker with
technologies to assess the individual’s needs and adapt to
assist as optimally as possible. A context-aware robotic
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Fig. 1: Up-Left: A patient using an intelligent robotic walker. Up-
Right: Sketch of the walker design. A Hokuyo laser scans the
walking area at a height ∼ 35cm above the ground. Down: 2D
range data (blue) from the laser scanner, whose origin is marked by
a red circle. Due to the existence of obstacles other than the patient’s
legs, only the laser points lying in the bounding box (yellow) are
considered for leg detection and gait analysis.

walker could improve on patient-supporting, guiding, fall
prevention, or even rehabilitation [8].

Among all different functionalities, there is one necessary
feature that a robotic walker has to be equipped with: a gait
tracking and analysis mechanism. Leg tracking refers to the
accurate estimation of human legs’ position throughout time.
The way a human walks can suggest much about them,
such as disabilities [9], [10], an inclination to fall [27],
etc. Therefore, an intelligent walker with efficient tracking
and gait analysis system can also be employed for more
sophisticated functionalities that correspond to the user’s
needs. However, the proximity of the user to the robot during
the supportive actions of walking (Fig. 1), along with the
pathological aspects that alter the gait patterns and walking
frequencies, make the leg tracking very challenging, while
the gait analysis task from partial 2D observations is in-
creasingly demanding – in close proximity depth cameras are
performing poorly, fast 3d range-scanners are prohibitively
expensive and elderly patients are skeptical to wearable
sensors. Notably, only a few works in the literature consider
gait tracking using range data for robotic walkers [22].
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This paper presents a novel deep learning framework for
Leg Tracking by detection and Gait Analysis from 2D range
data (LTGADnet). The proposed approach uses a CNN for
leg detection, followed by an LSTM network for exploiting
temporal information in walking and revising CNN’s detec-
tions in challenging situations like leg occlusions. Finally,
a second LSTM is used to extract the high-level temporal
interaction of the legs, which can provide evidence about
the occurring gait phase, resulting in a real-time gait analysis
system. Our key contribution is a highly accurate leg tracking
by detection method, thanks to the deep feature extraction,
and an implementation that can be deployed as an off-the-
shelf leg tracking method for any robotic mobility assistant,
due to its effectiveness and high-frequency, without the need
for extra calibrations or thresholds. We provide experimental
evidence about our algorithmic solution using our novel Leg
Tracking and Gait Analysis from 2D range data (LTGAD)
database, which comprises data and annotations from real pa-
tients using mobility devices, and we compare with the most
recent algorithm that was developed for such applications
[22], showcasing the performance increase of our method.

II. RELATED WORK

A. Leg Tracking Algorithms

Human leg tracking has been a popular subject on robotic
applications, mostly for human detection, tracking, and fol-
lowing. Data derived from various sensors, including lasers,
cameras, markers, etc., are used and often fused to estimate
the position of human legs in sequential time frames. A
fusion of RGB-marker and IMU data has been proposed for
leg detection, combined with an extended Kalman filter for
leg tracking [14]. Biometric data have also been used for
human detection [15].

As most mobile robots are equipped with a 2D Laser
Imaging Detection and Ranging (LIDAR) sensor, due to
their reliability and affordability, there has been plenty of
proposed work on learning algorithms for processing the
laser sensor data for human detection and tracking. Many of
those methods, either used a leg pattern recognition scheme
[11] [12], boosted classifiers [16] or clustering methods
[17] [13] and Kalman filters for the tracking part. Leg
tracking and gait analysis using two particle filters, one per
leg, and probabilistic data association with an interactive
multiple model scheme have also been proposed by [22].
Such implementations, however, have a high computational
cost, and thus the high frequency of modern laser scanners
cannot be fully exploited.

On the other hand, deep learning methods have also been
considered in human tracking due to their scalability and fast
inference. The use of CNN is presented in [18] for detecting
people in crowds from range data. A U-Net architecture [21],
commonly used for biomedical image segmentation, has also
been proposed in [20]. These methods, though, perform
person detection and do not consider learning the human
legs’ dynamic motion that can be exploited for tracking,
which is crucial for further gait analysis.

B. Deep Learning Detection

Deep neural networks have achieved exceptional results
in object detection in general. The widely popular YOLO
architecture [23] can detect multiple objects and suggest a
bounding box for every one of them.

For this architecture to be used in our work, a specific and
extensive dataset including bounding boxes would have to be
created, which should not be mandatory for our task. The leg
tracking problem can not be solved by a single frame object
detection neural network, as occlusions can temporarily make
a leg invisible. Due to the necessity for an assistive walker
to have a consistent awareness of the patient’s leg position, a
neural network architecture with temporal awareness is called
for. For this purpose, two ways of extending a CNN were
considered.

The first one was the use of a Long Short Term Mem-
ory (LSTM). In [24], for the exploitation of the temporal
information that a video provides, a neural network with
a Single Shot Multibox Detector (SSD), followed by two
LSTM layers for object detection on video streams, was
presented. Similarly, in [25], an LSTM layer was used after
a YOLO for improving detection performance.

The second one was the use of a Temporal Convolutional
Network (TCN). As TCNs have shown promising results
and often a better performance than LSTMs, a Dilated TCN
layer, similar to the one proposed in [26] for motion capture,
was added after the CNN. This TCN uses exponentially
increasing dilation between consecutive 1D convolutional
layers for associating the features between successive data.

Our proposed architecture includes two neural networks,
one for leg detection and tracking and one for gait analysis.
It uses a CNN for leg detection and an LSTM for handling
occlusions. We also propose the use of an LSTM for gait
analysis. Furthermore, computer-generated (CG) data have
been developed to train both networks, proving to improve
performance significantly. The neural networks developed to
show high accuracy on both the leg detection and the gait
phase extraction. Moreover, due to the use of a laser scan
and neural networks, our framework has a low computational
cost and can be easily applied to any walker.

III. PROBLEM STATEMENT

The problem we aim to solve is to perform accurate,
efficient, and robust leg tracking and gait analysis on a patient
using a smart walker equipped with a 2D LIDAR. Given
readings of the laser sensor at each time frame t, i.e., dis-
tances from the laser to detected objects, our goal is twofold:
(1) to find the relative coordinates of the centers (xr[t], yr[t])
and (xl[t], yl[t]) of the patient’s right and left leg w.r.t. the
laser’s position and (2) given these centers, to estimate the
patient’s gate state. These states represent specific phases of
walking, as defined in gait analysis literature. The gait states
we are considering in this work are shown in Table I. These
gait states are a part of a Markov chain, where every state
at every time frame can either stay the same or transition to
the next one in the chain.
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Fig. 2: The architecture of our proposed framework for leg tracking by detection composed of Convolutional and Linear Layers followed
by an LSTM. The output of the leg detection is fed into a single LSTM that recognizes the gait phase according to the one-hot key
encoding of Table I.
TABLE I: Gait State representation as in [22] and their one-hot
key encoding.

State Code One-Hot Key Code Name Definition
s1 [1, 0, 0, 0] LDS Left Double Support
s2 [0, 1, 0, 0] LS/RW Left Swing/Right Stance
s3 [0, 0, 1, 0] RDS Right Double Support
s4 [0, 0, 0, 1] RS/LW Right Swing/Left Stance

IV. PROPOSED METHOD

A. Network Input

The network’s input is an occupancy grid derived from
the 2D laser data. The distances and angles of the objects
provided by the laser are converted to (x, y) coordinates in
the Cartesian system relative to the position of the laser. Only
the objects lying in a prespecified bounding box, as explained
in section IV, are considered valid (the human interacting
with the robotic assistant should be in specific proximity to
the robot to start the interaction). We specify an occupancy
grid of size 112×112, in which 1 indicates that an object was
detected in this grid cell, while 0 refers to no object detection.
This occupancy map is fed into our neural network, which
we describe in the following paragraph.

B. LTGADnet Architecture

Our proposed LTGADnet framework is depicted in Fig.
2. The tracking by detection architecture comprises CNNs,
linear layers, and finally, an LSTM layer. We took inspiration
from the YOLO framework to design our architecture, as it
is a successful neural network for real-time object detection.
However, our problem lacks dimensionality compared to the
object detection problems that YOLO architectures tackle.
Hence, we have redesigned our architecture to propose a
novel tracking by detection framework for the dynamic
problem of leg tracking. Our architecture takes as input an
image of size 112×112, the occupancy grid, and it segments
the image in a 7×7 grid, named the detection grid. For each
grid cell, it outputs a vector containing for every leg (1) the
probability that the leg was found, (2) the x of the center
of the leg, and (3) the y of the center of the leg. From the

6 outputs, the first three always correspond to the right leg
and the next three to the left.

The CNN layers are the following: 7 × 7 × 32 ÷ 2
Convolution (e.g. kernel size 7, number of channels 32, stride
2), 3×3×32 Convolution, 2×2÷2 Max Pooling, 3×3×32
Convolution, 3×3×32 Convolution, 3×3×32 Convolution,
2× 2÷ 2 Max Pooling, 3× 3× 32 Convolution, 3× 3× 32
Convolution. The output of these layers is of size 7×7×32
and is flattened, in order to be fed to the linear layers.

Then, two linear layers follow, of size 1568 × 512 and
512×294, where 294 = 7×7×6. This is the detection output
of the CNN. Also, every single layer is followed by batch
normalization and ReLU activation function. For training, we
applied dropout 0.5 after the first linear layer.

Lastly, a one-layer LSTM receives as input a sequence of
detection frames, namely the output of the last linear layer
for consecutive frames, and produces the corrected detections
for these frames, which have the same size as the LSTM’s
input. The LSTM’s output is computed as described in [29].
From the output of the LSTM, we extract the legs’ centers
by picking the coordinates of the grid cell with the highest
confidence probability and summing them with the relative
coordinates produced by that cell. Finally, these 4 coordinates
of the leg centers are given as input to a five-layer LSTM.
The LSTM gives an output of size 4, which represents the
one-hot encoding of the estimated gait state. For the training
of this LSTM, dropout 0.3 was applied between the layers.

C. Training

For training the leg tracking and the gait analysis networks,
we used the following loss functions:

Confidence Loss =
7∑

i=1

7∑
j=1

2∑
k=1

(Cijk − Ĉijk)
2

Detection Loss =
2∑

i=1

(xi − x̂i)
2 + (yi − ŷi)

2

Loss = Confidence Loss + α · Detection Loss (1)



where Cijk is the expected confidence of the grid cell ij (1
if the cell contains leg k and 0 for the rest), Ĉijk the output
confidence of the grid cell ij for leg k, xi, yi the position of
leg i in the grid and x̂i, ŷi the position of leg i in the grid
as a result of the output.

In training, α = 5 proved to achieve the best results. After
some experimentation on the batch size with no obvious
impact, batch size 32 was used. Adam was used as an
optimizer, with a learning rate starting at 10−4 and decaying
at 10−5 and 10−6 at epochs 25 and 50 respectively. The
leg tracking network was trained for 100 epochs. The gait
analysis network was trained with Cross-Entropy loss and
batch size also 32. Adam was used as the optimizer, while
the learning rate began at 10−3 and decayed at 10−4, 10−5

and 10−6 at epochs 10, 20 and 40 respectively.
For both the training of the leg tracking and the gait

analysis networks, a technique similar to early stopping was
applied. Every time the loss at the validation set decreased,
we saved the current model. The last model to be saved was
the one to be finally used.

D. Inference

LTGADnet comprises a total of 1704694 parameters
(1703958 for tracking and only 736 for gait analysis), making
it a very lightweight solution, allowing it, e.g., when running
on a GeForce GTX 1060 6GB GPU, to provide real-time
leg detection and gait states predictions, easily following
the 40Hz frequency of our laser sensor, while it is able to
perform at a frequency of one order of magnitude higher
than the sensor.

V. EXPERIMENTAL RESULTS

A. Dataset

The dataset1 used for training, validating, and testing
the LTGADnet was created by the data produced by a
smart walker maneuvered by real patients and is the same
dataset used for the IMM-PF in [22]. All patients were
over 65 years old. Our dataset comprises annotated data
from 8 experiments realized by different patients. Crucially,
the ground truth (GT) labels for training the network were
extracted by a VICON motion capture system that was used
during the experiments, with markers placed on specific
areas of the patient’s body. The process of extracting GT
leg trajectories and identifying the GT gait states has been
thoroughly described in [22].

The collection of real experimental data from patients
is very challenging. Our dataset consists of approx. 33000
frames. Therefore, for improving the performance of LT-
GADnet, we applied data augmentation. We have used
mirroring and extensive shifting of the occupancy grids and
the leg centers. Moreover, we have included CG data for
training the network. For the fabrication of these data, we
“imitated” the walker set up, assuming that the laser sensor
lies at the origin (0, 0), as shown in Fig. 1 while simulating
hypothetical patient’s legs. First, we designed two circles

1https://robotics.ntua.gr/ltgad/

representing the legs. We assumed a sinusoidal motion on
the gait direction and another on its perpendicular direction,
but with a much smaller amplitude, frequency, and a slightly
irregular phase increase at each time step. The gait direction
also changes through time, creating virtual turning moves
and thus occlusions. The frequencies follow the analysis of
normal human gait, as found in [28]. The points in which
the laser beams and the leg circles intersect, if they exist, are
calculated and are shifted on the laser beam direction using
a Gaussian noise with zero mean and standard deviation one,
suitable to simulate the nominal error of the real sensor. We
have also simulated the faulty trailing patterns, which are
often present in 2D laser data. After a selective choice of
the annotated data and our extensive data augmentation, we
end up with approx. 210000 frames for training, validation,
and testing, which are also included in our public LTGAD
database. We used 6 real experiments for training, 1 for
validation and 1 for testing, as well as the CG data for
training, which are 58% of the augmented real data.

B. Evaluation metrics and analysis

For the leg tracking network, we use as metrics the
mean, max, and median euclidean distance between the
detected centers and the annotated ones. The max and me-
dian distances are provided, as rare occasions of one-frame
faulty detections from the CNN can skew the mean distance
upwards. For the gait analysis network, we calculated the
overall accuracy of the gait state detection and the Recall,
Precision, and F1 scores. For the latter three metrics, we use
the weighted mean over all gait states, as there exists an
inherent class imbalance in the data, with stance states (s1,
s3) covering only ∼ 38% of the dataset.

We compare our results with the ones in [22], which is
the state-of-the-art leg tracking and gait analysis algorithm
and the only one that tackles the same problem. We could
not compare with other works, such as [18], [20], as they
perform person tracking instead of individual leg tracking.

C. Ablation Study

To justify the architectural design choices of LTGADnet
of Fig. 2, we present an ablation study in Table III. We
specifically focus on ablating the tracking by detection part of
the framework, where various design choices had to be made.
The different architectures that we tested are compared based
on the mean and the max euclidean distances between the
GT leg centers and the produced ones in the validation set.
The different designs that were tested are (a) the CNN of Fig.
2 noted as CNN7, (b) a CNN without the last Convolutional
Layer, resulting to an output of size 9 × 9 × 32, which is
then fed to a first linear layer of size 2592 × 512 noted as
CNN9, (c) a full network (as in Fig. 2) with a one-layer
LSTM trained with loss function (1) with α = 5 plus an
additional leg association loss with a weight β = 0.1, noted
as LSTM1assoc, (d) a full network (as in Fig. 2) with a
one-layer LSTM trained with loss function (1) and α = 5,
noted as LSTM1, (e) a full network (as in Fig. 2), but with
a two-layer LSTM trained with loss function (1) and α = 5,



#400 #401 #408 #410 #411 #412#399
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Fig. 3: An example of the results of our architecture, when an occlusion occurs. The plots shown represent the results of the network
over consecutive frames. It is displayed that although in frames #400-#410 there is a scarcity of laser points on the right leg, making
it invisible, the network is capable of keeping track of it due to the use of the LSTM.

TABLE II: Leave-one-out validation results
Leg Tracking

Metric
Experiment

1 2 3 4 5 6 7 8 mean

Mean (cm) 2.42 2.04 3.28 4.11 4.57 2.46 3.26 3.68 3.23
Max (cm) 9.63 9.87 22.16 58.32 14.59 7.79 30.31 42.95 24.45

Median (cm) 2.21 1.81 2.60 2.95 3.74 2.18 2.75 3.31 2.69
Gait Analysis

Metric
Experiment

1 2 3 4 5 6 7 8 mean

Accuracy (%) 75.60 71.56 68.85 72.74 69.27 63.17 69.36 75.89 70.805
Precision (%) 78.88 71.36 68.87 74.80 70.76 67.85 69.38 77.50 72.425

Recall (%) 75.60 71.57 68.85 72.74 69.27 63.17 69.37 75.89 70.8075
F1 score (%) 76.57 71.28 67.62 72.10 68.68 61.94 69.21 76.24 70.455

TABLE III: Ablation Study

Architectures Mean distance (cm) Max distance (cm)
CNN7 3.67 37.05
CNN9 4.27 32.03
LSTM1 3.16 15.26
LSTM2 3.15 19.21
TCN 3.47 40.10

LSTM1assoc 3.21 13.51
TCNassoc 3.87 48.80

noted as LSTM2, (f) a full network (as in Fig. 2) with a
Dilated TCN with max dilation 8, trained with loss function
(1) and a = 5, noted as TCN, (g) a full network with TCN,
with max dilation 8, trained with loss function (1) plus the
leg association loss and parameters α = 5, β = 0.1, noted
as TCNassoc.

Inspecting the results in Table III, we notice that overall
an architecture based on LSTMs provides more accurate
results than TCNs. TCNs’ performance depends on the
training batch size and has a high memory cost as it needs
long sequences of data. Our dataset of real patient walking
instances limits us to short batch training, in which the LSTM
with its efficient memory handling beats TCN’s performance.
Moreover, the 2-layer LSTM (LSTM2) does not improve
the detection performance considerably. Notably, we found
that the addition of the association error in LSTMassoc,
TCNassoc does not seem to have a great effect on the
performance, but it rather complicates the training objective
providing slightly worse results. The best architecture was
the one with 1-layer LSTM (LSTM1), as the one depicted
in Fig. 2, trained with loss function (1). This shows that
the combination of the superior feature extraction of CNNs,
when combined with the ability of LSTMs to encode tem-

poral dynamics and predict the evolution of the targets over
time, is an effective method for challenging dynamic tasks,
including the leg tracking by detection from 2D range data.
Our lightweight architecture contains 1703958 parameters,
making it very efficient for real-time performance on any
mobile robotic assistant, like the one in Fig.1.

D. Validation and Testing

We further validated our proposed LTGADnet using a
leave-one-out cross-validation strategy. In this case, for every
training session, we exclude one experiment and use it for
testing, while another one is used for validation. The results
of the cross-validation are shown in Table II. We performed
tests both for tracking and gait analysis. Regarding the leg
tracking, our results show the overall good performance
of our method across different combinations of train/tests,
indicating the generalization ability of LTGADnet in tracking
legs of real patients, who suffer from various pathologies that
affect their walking performance (hence, variable dynamics
to be learned by our network). Notably, we report much
more accurate leg detection than [22], whose probabilistic
approach delivered an average mean distance error of 6.69cm
while requiring more resources, as the particle filter is com-
putationally more expensive, and therefore challenging to be
compatible with the laser scanner’s frame rate (40Hz) for
online performance. Our lightweight deep method achieves
an impressive 52% improvement over the state-of-the-art in
tracking accuracy, making it an efficient leg tracking method
to be employed in any mobility assistant robot equipped with
a 2D range sensor.

Moreover, we report our results on the Gait Analysis
problem. Here, our results are found sufficient yet not



optimal. Our average accuracy over all gait phases and all
tests is ∼ 71% with an F1-score of ∼ 70%. This result
stems from two major parameters. (i) Pathological walking
comprises great variability in the different gait phases [28].
The representation of the gait phases as in Table I, imposes
the difficulty of recognizing the joint state of the legs,
needing difficult dynamics to be extracted from 2D data.
Note that, for example, a swing phase initiates when the toe
leaves the ground [28], which is very difficult to be captured
by the 2D representation of the leg movement (especially
when detecting points on the tibia). Moreover, the DS phases
are very short subphases, though crucial for transitioning in
walking, but tough to be detected. In our dataset, only 19%
of the instances belong to the LDS and 18.6% to the RDS
phase, making our dataset highly imbalanced, reflected in
our results. (ii) Our dataset seems to be small for such a
demanding task. To understand how variable gait dynamics
are, we should consider that a normal gait cycle is usually
composed of 60% stance and 40% approx. [28], while in
our dataset, subject 1 has on average 62.60% stance and
37.40% swing, while subject 6 has 73.14% stance and
26.86% swing per gait cycle (subjects picked randomly).
Note that we only trained/tested on instances of walking
activity, as such detection is possible in our overall integrated
intelligent system, showcased in [1], and thus our results
cannot be directly compared with the ones in [22]. The high
variability in the duration of the phases, together with the
high sensitivity over the potentially different pathological
walking dynamics, demands a much broader dataset than the
one we are experimenting with.

VI. CONCLUSIONS

We proposed LTGADnet, a novel, lightweight deep learn-
ing architecture for efficient human leg tracking and gait
analysis from 2D range data. LTGADnet can be employed
as an off-the-shelf method to any mobility assistant robot
equipped with a laser sensor that scans the user’s walking
area. Our network architecture comprises a CNN followed
by an LSTM to effectively detect the user’s legs, using as
input an occupancy grid representation of the range data. The
superior feature extraction power of convolutions combined
with the ability of LSTMs in learning temporal dependencies
offers the possibility to learn the motion dynamics of walk-
ing, tracking both legs, and even dealing with challenging
cases of leg occlusions e.g., during turning. Moreover, we
feed the tracking network’s output into a simple LSTM
layer that learns a high-level classification of the human gait
phases. Our experimental results demonstrated the improved
performance of LTGADnet in the tracking by detection
problem w.r.t. the costly probabilistic state-of-the-art method.
While we got sufficient performance for the gait analysis
problem, we believe that the lack of a bigger dataset hinders
our method’s performance. In the future, we will seek to
collect more real-world data both from healthy subjects and
patients. We will also explore self-supervised learning meth-
ods to alleviate the need for annotations that are admittedly
difficult to produce.
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