
From Digital Phenotype Identification
To Detection Of Psychotic Relapses

Niki Efthymiou
School of ECE

NTUA
Athens, Greece

nefthymiou@central.ntua.gr

George Retsinas
School of ECE

NTUA
Athens, Greece

gretsinas@central.ntua.gr

Panagiotis P. Filntisis
School of ECE

NTUA
Athens, Greece

filby@central.ntua.gr

Christos Garoufis
School of ECE

NTUA
Athens, Greece

cgaroufis@mail.ntua.gr

Athanasia Zlatintsi
School of ECE

NTUA
Athens, Greece
nzlat@cs.ntua.gr

Emmanouil Kalisperakis
Lab. of Cognitive Neuroscience

Univ. Mental Health RI
Medical School, NKUA

Athens, Greece
mcasper23@hotmail.com

Vasiliki Garyfalli
Lab. of Cognitive Neuroscience

Univ. Mental Health RI
Medical School, NKUA

Athens, Greece
vasiaog@gmail.com

Thomas Karantinos
Lab. of Cognitive Neuroscience

Univ. Mental Health RI
Athens, Greece

tkarantinos@gmail.com

Marina Lazaridi
Lab. of Cognitive Neuroscience

Univ. Mental Health RI
Medical School, NKUA

Athens, Greece
ma.lazaridi@gmail.com

Nikolaos Smyrnis
Lab. of Cognitive Neuroscience

Univ. Mental Health RI
Medical School, NKUA

Athens, Greece
smyrnis@med.uoa.gr

Petros Maragos
School of ECE

NTUA
Athens, Greece

maragos@cs.ntua.gr

Abstract—Timely detection of relapses constitutes an impor-
tant step towards improving the quality of life in patients with
psychotic disorders. In this paper, we design a novel framework
for discovering indications of psychotic relapses by modeling the
digital phenotype of the patients who wear smartwatches. We
start by designing deep neural network architectures that can
use biosignals for person identification with high discriminatory
performance. Then, we show how these networks can be em-
ployed to identify indications of psychotic relapses by looking
at the per-person misclassification rate of the network and the
corresponding changes in the output classification probability
distribution, during different periods of the disorder (normal,
pre-relapse, relapse). In order to prove the effectiveness of our
approach for detecting relapses, we apply it to one of the
largest datasets collected for biometrics in patients with psychotic
disorders, with more than 18k days of collected data, and verify
the output probability distribution change through extensive
statistical analysis.

Index Terms— relapse detection, person identification, psychotic
disorder, biometrics, smartwatch

I. INTRODUCTION

Millions of people worldwide experience symptoms of psy-
chotic disorders, with schizophrenia and bipolar disorder being
the most common. Specifically, these diseases are classified as

This work has been financed by the European Regional Development
Fund of the EU and Greek national funds through the Operational Pro-
gram Competitiveness, Entrepreneurship and Innovation, under the call RE-
SEARCH–CREATE–INNOVATE (project code:T1EDK-02890, acronym: e-
Prevention).

chronic diseases and are accompanied by repeated periods of
relapse. Predicting psychotic relapses early, which could help
patients live better, remain a major clinical issue that has not
been solved yet. To this end, it could be useful to employ
wearable consumer products that have enabled the reliable,
unobtrusive, and remote collection of numerous behavioral
and biometric signals through their sensors [1], [2]. This
so-called “digital phenotyping” [3] has enabled significant
advances in wearables for health purposes, leading to the
fact that next-generation wearable technologies are about to
transform hospital-centered healthcare practice into proactive
and individualized care. Behavioral and biometric indexes have
already been used in general medicine and sports, and nowa-
days, the evidence indicates that they could also be introduced
into clinical psychiatry [4]. Using such signals to detect early
indication of symptoms and prevent psychotic relapses is now
one of the major research areas in psychiatry [5]–[7].

Some previous works have attempted to detect psychotic
relapses from wearable/smartphone data. Valenza et al. [8]
used Markov chains to model the mood in patients with bipolar
disorder, using signals collected from a wearable shirt. Other
methods have focused on a more statistics-based approach,
such as [9], [10], where smartphone data were used to
identify statistically significant anomalies in patients with
schizophrenia.

Recently, a number of works have also successfully used
biometric data from wearables in order to identify the identity
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Fig. 1. The proposed framework for psychotic relapse detection via person identification. During training, our model learns the behavioral patterns of different
wearers. Then, at inference, we look at the misclassification rate and the shift in the output score distribution at different periods of a psychotic disorder and
detect relapses.

of the wearer [11], [12]. This result points to the fact that deep
learning methods can now be successfully used to identify
discriminating patterns of behavior. We argue that detecting the
behavioral patterns that identify a person can be beneficial for
detecting psychotic relapses since, during a psychotic relapse,
the patient tends to adopt different behavioral patterns. This
means that if we train a neural network to detect the behavioral
patterns of a patient during remission, and then test it on the
same patient during relapse, we should find changes in the
distribution of the output probabilities of the network and,
consequently, increased misclassification rate.

This paper presents a novel method for identifying relapses
in patients with psychotic disorders using behavioral and
cardiovascular signals obtained from long-term continuous
wearable monitoring. Per our previous surmise, we first design
a state-of-the-art architecture for digital phenotype classifi-
cation (i.e., user identification). After that, we leverage the
trained networks in order to show that they can successfully
be used for discovering diverging behavior patterns when a
user has transitioned to a psychotic relapse. Our contributions
can be summarized as follows:

1) We introduce a novel method for detecting psychotic
relapses by casting the problem of relapse detection as
one of misclassification in neural networks trained for
person identification. We also verify the changes in the
output probability distribution scores for each person in
different periods of a psychotic disorder (normal, pre-
relapse, relapse), with thorough statistical analysis.

2) We design and build deep learning architectures for
person identification using behavioral and cardiovascular
signals from a wearable watch. We perform extensive
exploratory studies regarding the architecture of the net-
work, different input features, as well as different data
augmentation strategies. The models achieve high classi-
fication rates, verifying the effectiveness of our models.

3) We train our models and validate our assumptions by
detecting psychotic relapses on one of the largest ever
collected datasets of biometric wearable data, including
a total of 29 patients and ∼ 18, 000 days of recording
data, spanning up to 2.5 years of continuous monitoring.

II. PERSON IDENTIFICATION FROM DIGITAL PHENOTYPES

A. Framework Architecture

Our proposed methodology for detecting relapsing states
in psychotic patients through person identification is outlined
in Fig. 1. Our motivation for developing this framework
stems from the fact that psychotic relapses are linked with
considerable behavioral alterations. As a result, we intend
to examine if this is reflected in the digital phenotype of
patients and whether a trained network capable of identifying
users based on phenotypes during remissions could efficiently
identify users while confronting psychotic relapse or reveal
abnormalities.

We first extract sequences of features from data collected
continuously from wearable devices, aggregate them in a
small temporal scale, and perform random sampling through
their temporal dimension to reduce their dimensionality. The
sampled feature sequence is then fed into a deep temporal
modeling network architecture, which we train on the task of
person identification, so that we can obtain the user’s digi-
tal phenotype (the behavioral, circadian, and cardiovascular
signals). We note that in this phase, training is carried out
utilizing information from individuals with psychotic diseases
who are currently in remission, while after training, we assess
the trained network using data from the patient while they are
in remission as well as during and right before a psychotic
episode. Finally, we investigate how these behavioral shifts
are reflected on the output distribution probability and classi-
fication accuracy of the network.

B. Training and Inference

The model input consists of a multidimensional signal
SL
t ∈ RN , where L denotes the number of timesteps and

N the extracted features, which corresponds to the daily
recordings of a wearable user. Since the amount of the col-
lected data varies throughout different days (see Section III-C),
we randomly sample feature values from K input timesteps,
resulting in a multidimensional signal SK

t ∈ RN of fixed
length K. Sampling is performed so that the resulting time
series is temporally coherent; i.e., the temporal order of the
samples in the original signal is retained. This technique is
inspired by temporal segment networks [13] and allows us



to efficiently process signals of different lengths, which, as
discussed in Section III-C, is a major obstacle in processing
data collected via wearables. Also, it acts as a form of data
augmentation, improving the ability of the resulting trained
model to generalize. In addition, it helps model the long-range
structure of the signals throughout the day and allows us to
ignore redundant information in consecutive samples, helping
avoid overfitting.

After temporal sampling, we augment the original signal SK
t

by concatenating it with two sinusoidal features, which denote
the daily temporal cycle (similar to positional encoding [14]).
Then, the fixed length sequences are fed into the temporal
modeling network, which outputs an embedding vector of
fixed size 512. The feature vector is now concatenated with
a vector of additional high level features: the hours of the
corresponding day that the user slept, and temporal weekly
cycle information (day of the week). Finally, this augmented
feature vector is fed into two fully connected layers, which
output the identification scores; cross-entropy loss is used for
training. After training the model and during inference, we
perform the random sampling for each day five times and sum
the unnormalized log scores in order to obtain the final score.

C. Temporal Modeling Network

For the temporal modeling network, we design two different
architectures. One architecture is CNN-based and uses 1D
convolutional kernels, while the second is based on Long
Short-Term Memory (LSTM) layers. The CNN-based network
consists of a fully connected layer followed by a ReLU
activation and dropout. Then, five convolutional blocks follow,
each consisting of a convolutional layer, ReLU, and dropout.
The output of the last convolutional block is then fed into
an adaptive average pooling layer in order to obtain a fixed
feature vector of size 512. Finally, we use two consecutive
fully connected layers (with ReLU in-between) on the feature
vector to obtain the unnormalized log scores. In the LSTM-
based architecture, the convolutional blocks are replaced with
two bidirectional LSTM layers with dropout, and we get the
output of the last time step as the feature vector. Note that, as
we mentioned in Section II-B, the fixed feature vector output
from the CNN or LSTM network is also concatenated with a
vector that includes high-level information.

D. Data Augmentation

Training a person identification network, especially on lim-
ited amount of data, as in our case, may result to over-fitting
phenomena. One extreme case of this was previously reported
in [11], where unique signal patterns from the smartwatch
sensors could lead to a system that recognizes the sensor
(i.e., the smartwatch) rather than the actual person wearing
it. Despite the fact that this behavior is more evident in
raw signals, as in [11], similar “over-fitting” cases can also
affect our study. To this end, we introduced an augmentation
step, consisting of three distinct augmentation operations.
Specifically, we considered:

• Noise: Perturbation of the data by sampling a normal dis-
tribution and applying this noisy signal to the initial signal
in a multiplicative manner, as follows: sn = s(1 + rnn),
where s the initial signal, sn its augmented counterpart, n
is the noise signal, which is realized as a random variable
sampled from N (0, 1), and rn a user-defined hyper-
parameter that controls the scale difference (used as 0.1
in our experiments). We used this multiplicative variant,
instead of typical additive Gaussian noise, in order to
preserve the scale of the initial signal and introduce only
“high-frequency” noise that does not significantly affect
the outline of the signal.

• Random Mask: We also used a dropout-inspired aug-
mentation that has been proven effective to a wide
range of deep learning applications, where we apply
a random mask on the input signal. Since the input
data are multidimensional (consisted of several features),
this mask is a 2D sparse binary matrix that zeroes out
specific input values in an unstructured way, i.e. in our
experiments, the probability of masking each value is
sampled from Bernoulli distribution with p = 0.05. This
augmentation strategy pushes the network to learn useful
representations even in the absence of particular features,
thus increasing the generalization abilities of the network.

• Mixup: Finally, we also employed the state-of-the-art
augmentation technique of mixup [15], where we merge
two inputs x1 and x2 as λx1 + (1 − λ)x2, where λ is
sampled from a beta distribution, defined by a = β = 0.2.
The augmented output is expected to be an interpolated
version of the respective outputs y1, y2, with the same
mixup factor λ. The simplicity of this approach, along
with its notable regularization and generalization abilities,
make it an ideal addition to our pipeline.

III. DATABASE AND FEATURES EXPLORATION

A. Database Collection

During the e-Prevention project, 38 people with psychotic
spectrum illnesses were recruited and given a Samsung Gear
S3 smartwatch by the University Mental Health Research
Institute ”Costas Stefanis”. The participant signed an informed
consent to disclose their data, which are anonymized in
accordance with General Regulation(EU) 2016/679 [16]. The
watch continuously monitored the user’s linear and angular ac-
celeration, heart rate, heart rate variability, sleeping schedule,
and steps. Users were instructed to wear their smartwatches
throughout the day, seven days a week, with the exception
of charging and bathing. The charge time for the smartwatch
was approximately two and a half hours, and daily charging
is typically required. During charging, the data were uploaded
and stored on a cloud-based platform [17].

Compared to previous projects, our database is among the
largest [9], [18] ever recorded, spanning a maximum of 2.5
years of continuous patient monitoring, with more than 40
relapses recorded, both psychotic and non-psychotic. Relapses
are common in psychotic diseases, and they play an important
role in cognitive impairment, functional deterioration, and poor



TABLE I
STATISTICS OF THE RECORDED DATASET DURING E-PREVENTION [16]

mean std sum

Days of participation 736.7 168.9 21,365
Days in database 613.0 187.71 17,777
Days in database (relapsed) 29.27 43.59 849.0
Hours per day 14.53 1.94 -

treatment response. A psychotic relapse is a clear clinical
deterioration of a patient with the reoccurrence of psychotic
symptoms (delusions, hallucinations) or manic, depressive, or
mixed episodes with psychotic symptoms. The end of a relapse
is defined as the moment when the symptoms lessen and the
patient returns clinically and functionally to the state before the
relapse. In terms of the pre-relapse period, there is no definite
time when the patient approaches a psychotic relapse. In our
study, the pre-relapse period is defined as four weeks before
the annotated onset of the relapse, based on the clinicians’
recommendations. This period’s precise definition may help
identify pre-relapse signs and forecast relapse.

Throughout the trial, our clinical staff conducted monthly
follow-up examinations to check various psychiatric symptoms
linked with their psychosis. At the start of data collection,
patients were in a remission phase of their psychotic disorder.
Relapses were recognized and examined using a monthly
clinical examination of volunteer patients, changes in psy-
chopathology as measured by the PANSS scale, and infor-
mation gathered from treating psychiatrists, patients’ families
and carers, and clinic personnel. Relapses were noted by
psychiatrists as mild, moderate, or severe based on their
severity.

B. Experimental Dataset

According to our analysis of the collected data, the mean
recording length for the entire dataset is approximately 14
hours per day, lower than the expected average of 18-20 hours
per day in patients with good compliance. Among the causes
for this are the following: a) ineffective photoplethysmography
provided by the watch (for example, due to sweaty wrists), b)
failure of the recording watch application, c) typical errors
in use (not charging before the battery runs out, forgetting
to wear), d) poor patient compliance, e) network issues.
Nonetheless, the acquired data is of considerable magnitude
and includes objective measurements of patients’ everyday
lives. Consequently, we will employ the recorded biosignals
to examine the digital phenotypes of patients and their fluctu-
ations during the course of their psychotic disorders.

After the initial collection of raw data, we extracted features
using short-time analysis (five-minute interval windows). The
preprocessing procedure is explained thoroughly in [16]. For
our analysis here, we leverage a subset of the dataset con-
sisting of data collected from 29 patients (2 with Schizoaf-
fective disorder, 2 with Schizophreniform disorder, 15 with
Schizophrenia, 8 with Bipolar I disorder and 2 with Bipolar
II disorder), who have more than 180 days of recordings after

data preprocessing. In our experimental dataset, eleven patients
experienced 16 psychotic relapses over the study period.

C. Features Exploration

Our first goal is to find a concrete representation of each
patient’s digital phenotype in order to identify them using
biosignals. In previous studies, we examined various fea-
tures extracted from the raw signals and conducted extensive
statistical analysis to reveal differences in physical activity
and autonomic function patterns [16], [19]. Also, in [20],
results indicate that heart rate measurements and RR intervals
(time between successive heartbeats) correlate with patients’
psychopathology changes. Considering the above and delving
into the identification capabilities that the plethora of extracted
features offer, we present an exploratory analysis to find an
efficient representation to first use for the identification task.

Length of Data Sequence: First, we split the data into
daily slots constituting the smallest possible measurement for
detecting behavioral patterns by aggregating the five-minute
feature values from 00:00 to 23:59. Therefore, if a patient
wore the watch for the entire day, we would aggregate 288
values per feature (twelve five-minute intervals per hour).
In Table I, the statistics for the recordings are accumulated.
As noted previously, one of our study’s greatest obstacles is
that there is neither a steady amount of daily data collected
for each user nor a fixed recording interval. This variation
could have a negative impact on model training and introduce
bias to the person identification task.To be more precise, if
we use long sequences, we could remove users who only
wear the watch for a few hours per day, while the network
could learn to differentiate persons based on the recorded
hours. Therefore, we prefer to create each data sequence by
randomly choosing 5-minute interval vectors throughout the
day, concatenating them, and sorting them by time. Therefore,
a random representation of the day is generated. To determine
our daily representation policy, we undertake trials with feature
vectors of varying lengths and combinations of both network
designs.

Features of Interest: We gather five groups of features that
could prove useful in summarizing the users’ phenotypes. We
group the features as follows: a) heart rate variability statistics
(the mean of RR intervals, their minimum and maximum
values, as well as the Standard Deviation of RR intervals
(SDRR)) denoted as RR intervals in Fig. 2, b) heart rate (beats
per minute) average statistics (the mean value, the minimum,
the maximum, and the standard deviation of heart rate) denoted
as Heart Rate, c) features of group (a), the Root Mean Square
of Successive RR interval Differences (RMSSD) and number
of recorded intervals, denoted as RR intervals + RR stats , d)
features of group (a) and the normalized powers of the high
and low frequencies computed from the Lomb-Scargle power
spectral analysis of RR intervals, as RR intervals + Lomb-
Scargle feats, and e) features of group (c) and the norm of the
recorded linear acceleration. Note that we did not use angular
velocity, due to the fact that its norm is highly correlated with
the norm of the linear acceleration.



Fig. 2. Ablation study on different sets of features and length of time series for the classification task, reporting accuracy and balanced accuracy for both
CNN (dashed lines) and LSTM (solid lines) architectures.

IV. EXPERIMENTAL ANALYSIS

Experimental Setup: Experiments were evaluated on the
collected dataset described in Section III-A. Training and test-
ing were performed according to a five-fold cross-validation
scheme, using only normal periods of all 29 patients, as
expected. Both temporal modeling networks (CNN-based and
LSTM) are trained with RAdam optimizer [21] for 100 epochs
with an initial learning rate of 0.01, which drops to 0.001 at
75 epochs.

A. Feature Ablation

In the first ablation, we evaluate the performance of the
proposed CNN and LSTM person identification networks for
the different collected feature sets. In order to account for the
unbalanced nature of patient data, we display in Fig. 2 results
both in accuracy (on the left) and balanced accuracy (on the
right) for the identification task of 29 patients. In the same Fig.,
we also investigate the effect of varying the sequence length.
The x-axis represents the total duration of sampling per day in
hours; for instance, 10 hours corresponds to a feature vector
of 120 values length per feature (10 hours * 12 five-minute
intervals per hour).

Feature Sets. Concerning the feature types, heart rate
variability statistics perform slightly better than heart rate
statistics. Adding RMSSD and the number of the recorded RR
intervals, which could act as a certainty factor, we observe
a small increase in the overall accuracy, indicating a slight
improvement in the per-day classification. Finally, when we
also add linear acceleration information, the model achieves
the best results (in both balanced and unbalanced accuracy).
Note that adding as input the normalized powers of the low
and high frequency bands of the RR intervals did not result
in increased performance. We also conclude that differences
in network implementation have no substantial impact on the
superiority of one set of characteristics over another, so for
the rest of our experiments we proceed with the following set
of features: RR intervals + RR stats + acceleration.

Length of Data Sequence. From the same Fig. we also
see that the length of the input sequence also affects the
performance. We investigate a sample of daily recordings
spanning from 24 to 168 timesteps (i.e., from 2 to 14 hours).
We see that for the CNN architecture, random sampling at
a sequence length of 144 (=12 hours) achieves the highest
accuracy. For the LSTM implementation, a sequence length
of 120 yields better results compared to the CNN, especially
in terms of balanced accuracy. As a result, for the remainder
of this study, we employ a multi-dimensional feature vector
of 120 timesteps to represent each user’s daily information.
Another noteworthy conclusion we can draw is the difference
in the number of samples (sequence length) required for
the identification task between the two architectures. While
the CNN requires information for more than eight hours to
achieve high classification rates, LSTM networks, which are
known for their efficiency with time series data, build powerful
representations for a variety of sample sizes.

B. Architecture Ablation

Having explored different feature sets and discovered their
contribution to phenotype identification, we now proceed to
examine different architectures of the temporal modeling net-
work and their ability to distinguish relapses. Specifically, we
focus on comparing the two different temporal architectures,
i.e. CNN vs LSTM, by training them on the data of all
patients (29) under different augmentation schemes, namely
scaling noise, random mask and mixup. Specifically, we
add progressively each augmentation operation, forming an
augmentation chain, in the order mentioned above. We also
considered the architecture variations, where we included the
temporal encoding information (see Section II-B), in order
to understand if the information of the day cycle can be of
importance. The results are summarized in Table II, where
both accuracy and balanced accuracy - the arithmetic mean of
sensitivity and specificity - are reported.



TABLE II
COMPARISON OF CNN AND LSTM ARCHITECTURES FOR THE PERSON IDENTIFICATION TASK DURING NORMAL PERIODS ACROSS ALL 29 PATIENTS.

ACCURACY AND BALANCED ACCURACY IS REPORTED AFTER A 5-FOLD VALIDATION SCHEME FOR BOTH ARCHITECTURES (CNN & LSTM) OVER THE
INITIAL EXTRACTED FEATURES, ALONG WITH TEMPORAL ENCONDING, AND THEIR AUGMENTED VERSION.

Without Adding + Applying + Mixup
Augmentation Noise Random Mask Samples

CNN
Base Acc. 92.29 89.58 89.19 70.36

Bal.Acc. 90.72 88.42 87.58 65.41
+ temporal
encoding

Acc. 91.56 88.87 87.83 69.79
Bal.Acc. 89.81 86.78 85.60 64.01

LSTM
Base Acc. 93.20 91.32 92.89 91.54

Bal.Acc. 90.90 88.64 90.46 89.18
+ temporal
encoding

Acc. 92.03 90.27 92.31 92.57
Bal.Acc. 88.97 87.08 89.58 90.06

According to the reported results, the CNN models, as
in the case of the previous ablation study, are much more
sensitive than the LSTM variant. Specifically, adding noise
to the CNN input considerably decreases the network per-
formance. Contrary to such behavior, the LSTM network
shows stable behavior across all settings. Regarding the extra
temporal encoding information, we noticed a slight decrease
in most settings. Despite this decrease, we consider this extra
information important for the task at hand, since it can better
model the behavior cycle within a day and we will continue
its exploration in the upcoming evaluations. Note that the task
of intermediate evaluation, namely person identification, is not
perfectly aligned with the final task of relapse recognition and
thus minor performance decrease when using such intuitive
features is not considered a viable reason to drop them. No-
tably, the LSTM model, equipped with the temporal encoding
and the full set of augmentations achieve similar performance
to the top-performing system of base LSTM without any noise.
To this end, we continue our experiments by assuming LSTMs,
trained with the full augmentation pipeline, as the default
option.

C. Distinguishing Different Periods of Psychotic Disorders

Given the well-performing LSTM system of the previous
section, we now focus on the real problem: distinguishing the
periods of psychotic disorders. Specifically, we want to explore
if the information extracted from the person identification
pipeline can be effectively used to detect a psychotic relapse
(and ideally a pre-relapse) period following the concept of a
behavioral change in the patient.

To do so, apart from the typical identification accuracy
on the complete set of 29 patients during normal periods,
we also reported the performance on the reduced dataset of
eleven patients who faced relapses during the data collection.
For this subset, we split the classification results in the three
previously defined periods of a psychotic disorder: normal,
pre-relapse, and relapse. These period-related results are pre-
sented in Table III. Reported accuracy results correspond only
to balanced accuracy, since is more representative for the
unbalanced nature of the relapse data. To better understand the
detection ability of such a system, we also report the mean

and median classification probability scores of the users in
each period. This metric is more indicative of the model’s
outcomes because a biosignal could be classified on the right
user but the probability of classification could be lower, for
example, on the pre-relapse or the relapse period. In other
words, even if the person is correctly identified, a consistent
decrease in probability of detecting the correct person during
a period may be a very useful indication of partially-changed
behavioral patterns.

Table III, apart from providing information on the relapse
detection problem, also contains an important ablation over
the effect of a set of high-level characteristics, i.e., the sleep
percentage and an encoding of the weekly cycle information,
as mentioned in Section II-B. We consider the amount of sleep
to be a crucial feature, because it fluctuates during relapse
times, while the weekly cycle information may assist the
network to distinguish patterns of the same day over different
weeks.

Overall, we draw the following conclusions from the re-
ported results in Table III: 1) Regarding the accuracy, the
simplest version of the network (Base) with an extra feature
including the hours of sleep achieves the highest results.
However, when considering the set of 11 patients, we are
mostly interested in detecting accuracy changes when compar-
ing pre-relapse, relapse and normal periods. We observe that
in general, the addition of high-level features widens the gap
between normal and relapse phases in terms of accuracy. 2)
The mean and median classification probability scores of the
users in each period is indeed more indicative of the model’s
outcomes. 3) We conclude that all possible supplementary
features (temporal encoding, sleep, and day of the week
information) contribute to the detection of psychotic relapses
because they intuitively capture a full profile of a person’s
daily activities.

D. Per-Person and Per-Period Identification Scores

To further understand the relapse detection ability, we now
conduct a per-person specific study for each period (normal,
pre-relapse, and relapse) and for each person, as presented
in Table IV. Following its effectiveness form our previous
analysis, we report the mean value of the per-person iden-



TABLE III
ABLATION STUDY OF EXTRA FEATURES (SLEEP AND DAY INFORMATION) FOR THE CASE OF LSTM ARCHITECTURE ON BOTH THE WHOLE COLLECTION

OF 29 PATIENTS AND ON THE SUBSET OF 11 PATIENTS WHO FACED RELAPSES. BALANCED ACCURACY, MEAN AND MEDIAN PROBABILITY OF EACH
EXPERIMENT AND PERIOD ARE REPORTED OVER THE THREE CONSIDERED PERIODS: NORMAL, PRE-RELAPSE AND RELAPSE.

Metrics Balanced Acc.
(29 patients)

Balanced Accuracy
(11 patients)

Mean Probability
(11 patients)

Median Probability
(11 patients)

Extra Features Normal Normal Pre-Rel. Relapse Normal Pre-Rel. Relapse Normal Pre-Rel. Relapse

Base

None 90.13 87.53 75.15 74.83 0.8685 0.8243 0.8227 0.9708 0.9096 0.9433
Hours of sleep (HS) 90.19 88.37 77.44 72.52 0.8794 0.8215 0.8124 0.9873 0.9109 0.9472
Day of Week (DW) 89.40 86.46 75.88 70.12 0.8632 0.8156 0.7756 0.9859 0.9332 0.8898
HS + DW 89.76 87.65 76.88 70.35 0.8744 0.8076 0.7902 0.9909 0.8809 0.8980

+ Temporal
encoding

None 89.04 85.93 75.02 71.53 0.8564 0.8288 0.8027 0.9465 0.9120 0.8947
Hours of sleep (HS) 88.85 85.65 76.81 70.20 0.8579 0.8076 0.7812 0.9895 0.8832 0.8724
Day of Week (DW) 88.07 85.16 75.20 68.84 0.8486 0.8032 0.7712 0.9687 0.8506 0.8791
HS + DW 88.67 86.00 74.28 69.86 0.8634 0.7954 0.7593 0.9690 0.8734 0.8498

tification probability for each period. The reported results
correspond to the LSTM model with all the additional extra
information (temporal encoding, sleep information, day of
the week) that achieved notable distinction between different
periods in Table III.

In the Table IV, we also provide the absolute drop in mean
identification probability for each user, for convenience. Our
first observation is that we have a significant drop in the mean
identification probability of the network, both during the pre-
relapse and during the relapse periods. This shows that the
network was relatively “confused” by the digital phenotype
of the user when they went into relapse and right before it
(pre-relapse). This motif of absolute drop can be seen in most
users, with some exceptions, such as user #7, who had high
identification probabilities throughout all his periods. Note that
the availability of larger amount of data and mostly a larger set
of patients could further help the discrimination between them
and consequently the detection of different psychotic periods.
In the next subsection we also include a statistical analysis of
the per-patient scores.

The proposed rationale of phenotype identification can also
be visually validated by Fig. 3, depicting the identification
results for user #2 during a range of almost two and a half
years. We can observe that, for the examined patient, the
majority of the days during normal periods lead to correct
identifications, while during relapses, a high percentage of
miss-classifications occurs, indicating an anomaly.

Fig. 3. Visualizing identification predictions of patient #2 : correct predictions
are visualized with green color, while miss-classifications are denoted with
red. The three normal periods are shaded with blue color, the three relapse
periods with purple and the three pre-relapse periods with yellow.

E. Statistical Analysis of Scores

We also performed further statistical analysis on the outputs
of our trained network. First, we collected for each patient
across all folds the identification scores for each different
phase and conducted pairwise single tail Mann-Whitney U-
tests with Bonferroni correction. The results can also be seen
in Table IV; each value in the absolute change section that
is in bold denotes that scores during the phase at the left
of the arrow (in the column title) were significantly greater
than scores during the phase at the right of the arrow. While
there are some cases (patients #7 and #11) where the detected
changes are not significant, in the large majority of patients
changes detected between the normal and pre-relapse and
normal and relapse periods are significant and in the case of 3
patients, scores during the pre-relapse period are significantly
greater than scores during the relapse period.

In addition, we also collected all the identification scores
across all patients and folds. These amount to a total N =
7942 with 4012 scores for the normal periods, 1360 for
pre-relapse, and 2570 for relapse periods. First, we show in
Fig. 4 for each period the empirical cumulative probability
distribution (eCDF). This curve shows for each value p in
the x-axis the percentage of all scores that are lower than p.
As it can readily be seen, identification scores during relapse
periods of users tend to be lower than scores during the
pre-relapse periods and normal periods (since at all points
p of the curve, the percentage of relapse scores lower than
p is larger compared to the percentage in pre-relapse and
normals periods). The same holds when comparing the scores
of the pre-relapse periods to scores during normal periods.
The aforementioned conclusions are in-line with the analysis
of the previous section.

Pairwise single tail Mann-Whitney U-tests with Bonferroni
correction were also conducted for the overall scores and
showed that a) the identification scores during the normal
period were greater than scores obtained during the relapse
period (U = 4102847.5, p < 0.001), b) scores during the
normal period were greater than scores during the pre-relapse
period (U = 2413996.5, p < 0.001), c) scores during the
pre-relapse period were greater than scored during the relapse
period (U = 1578681, p < 0.001).



TABLE IV
PER-USER AND PER PERIOD (NORMAL, PRE-RELAPSE, AND RELAPSE) MEAN IDENTIFICATION PROBABILITY SCORES. WE SHOW FOR CONVENIENCE THE
ABSOLUTE CHANGE IN THE AVERAGE PROBABILITY BETWEEN ALL COMBINATION OF PERIOD TRANSITIONS. VALUES OF ABSOLUTE CHANGE (x → y) IN
BOLD DENOTE THAT THE SCORES DURING THE x PHASE WERE SIGNIFICANTLY (IN A STATISTICAL SENSE) GREATER THAN SCORES DURING THE y PHASE

OF THE PATIENT. SEE TEXT FOR MORE DETAILS.

Probability Absolute Change

ID normal pre-rel relapse normal →
pre-rel

normal →
relapse

pre-rel →
relapse

1 0.971 0.944 0.826 −0.027 −0.145 −0.118
2 0.952 0.928 0.872 −0.024 −0.080 −0.056
3 0.963 0.913 0.997 −0.051 0.034 0.085
4 0.853 0.784 0.726 −0.070 −0.127 −0.058
5 0.905 0.718 0.765 −0.187 −0.140 0.047
6 0.905 1.000 0.794 0.095 −0.112 −0.206
7 0.966 0.983 0.974 0.017 0.008 −0.009
8 0.659 0.672 0.496 0.014 −0.163 −0.176
9 0.693 0.407 0.541 −0.286 −0.152 0.134
10 0.961 0.986 1.000 0.025 0.039 0.014
11 0.703 0.406 0.358 −0.297 −0.346 −0.049
all 0.866 0.795 0.759 −0.0723 −0.107 −0.035

Fig. 4. Empirical cumulative probability distribution (eCDF) of identification
scores during normal, pre-relapse, and relapse periods. As it can be seen,
scores during the relapse and pre-relapse periods obtain lower scores more
frequently, compared to normal periods.

F. Discussion and Limitations

Our work paves the way towards correlating psychotic
disorders with phenotype identification, relying on the notion
that psychotic relapses change the daily behavioral profile of
the person and thus confuse an identification system. Our
extensive experimental analysis verified this notion since we
discovered significant changes in the output distribution scores
of the networks during relapse and pre-relapse period, as well
as a drop in the classification rate of the network. Further
aspects of our framework should be examined more thoroughly
to draw safe conclusions and assist clinicians. For example,
the network architectures could be enhanced, and their effects
on accuracy across the different periods fully demystified.
Nonetheless, our work can stimulate further research in this
direction.

V. CONCLUSIONS

We have introduced a novel framework for detecting re-
lapses in patients with psychotic disorders. To that end, we
have formulated the original problem as one of exploring mis-
classification rates and output probability score change of deep
networks trained for identification of the digital phenotype of
a specific user. The effectiveness of the proposed method has

been validated on one of the largest datasets ever collected
for biometrics in patients with psychotic disorders, where
we found out that our assumption correctly holds and helps
identify periods of psychotic relapse for specific users. We
believe that our work opens up unexplored future opportunities
for wearable-based health applications, through modeling of
the digital phenotype.
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