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Although human perception appears to be automatic and unconscious, com-
plex sensory mechanisms exist that form the preattentive component of un-
derstanding and lead to awareness. Considerable research has been carried
out into these preattentive mechanisms and computational models have been
developed for similar problems in the fields of computer vision and speech
analysis. The focus here is to explore aural and visual information in video
streams for modeling attention and detecting salient events. The separate au-
ral and visual modules may convey explicit, complementary or mutually ex-
clusive information around the detected audiovisual events. Based on recent
studies on perceptual and computational attention modeling, we formulate
measures of attention using features of saliency for the audiovisual stream.
Audio saliency is captured by signal modulations and related multifrequency
band features, extracted through nonlinear operators and energy tracking.
Visual saliency is measured by means of a spatiotemporal attention model
driven by various feature cues (intensity, color, motion). Features from both
modules mapped to one-dimensional, time-varying saliency curves, from which
statistics of salient segments can be extracted and important audio or visual
events can be detected through adaptive, threshold-based mechanisms. Au-
dio and video curves are integrated in a single attention curve, where events
may be enhanced, suppressed or vanished. Salient events from the audiovisual
curve are detected through geometrical features such as local extrema, sharp
transitions and level sets. The potential of inter-module fusion and audiovi-
sual event detection is demonstrated in applications such as video key-frame
selection, video skimming and video annotation.

1.1 Approaches and Applications

Attention in perception is formally modeled either by stimulus-driven, bottom-
up processes, or by goal-driven, top-down mechanisms that require prior
knowledge of the depicted scene or the important events [21]. The former,
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bottom-up approach is based on signal-level analysis with no prior informa-
tion acquired or learning incorporated.

In analyzing the visual and aural information of video streams the main
issues that arise are: i) choosing appropriate features that capture important
signal properties, ii) combining the information corresponding to the different
modalities to allow for interaction and iii) defining efficient salient event de-
tection schemes. In this chapter, the potential of using and integrating aural
and visual features is explored, to create a model of audiovisual attention,
with application to saliency-based summarization and automatic annotation
of videos. The two modalities are processed independently with the saliency
of each described by features that correspond to physical changes in the de-
picted scene. Their integration is performed by constructing temporal indexes
of saliency that reveal dynamically evolving audiovisual events.

Multimodal video analysis (i.e., analysis of various information modali-
ties) has gained in popularity with automatic summarization being one of the
main targets of research. Summaries provide the user with a short version of
the video that ideally contains all important information for understanding
the content. Hence, the user may quickly access and evaluate if the video is
important, interesting or enjoyable. The tutorial in [38] classifies video ab-
straction into two main types: key-frame selection which yields a static small
set of important video frames and video skimming (loosely referred to in this
chapter as video summarization) which results in a dynamic short subclip
of the original video containing important aural and visual spatiotemporal
information.

Earlier works were mainly based on processing only the visual input.
Zhuang et al. [41] extracted salient frames based on color clustering and global
motion, while Ju et al. [13] used gesture analysis in addition to the latter low-
level features. Furthermore Avrithis et al. [2] represent the video content by a
high-dimensional feature curve and detect key-frames at the curvature points.
Another group of methods is based on frame clustering to select representa-
tive frames [30, 37]. Features extracted from each frame of the sequence form
a feature vector and are used in a clustering scheme. Frames closer to the cen-
troids are then selected as key-frames. Other schemes based on sophisticated
temporal sampling [33], hierarchical frame clustering [30, 10], where the video
frames are hierarchically clustered by visual similarity, and fuzzy classification
[6] have also proposed summarization schemes with encouraging results.

In an attempt to incorporate multimodal or/and perceptual features in
the analysis and processing of the visual input, various systems have been
designed and implemented within a variety of projects. The Informedia project
and its offsprings combined speech, image, natural language understanding
and image processing to automatically index video for intelligent search and
retrieval [32, 12, 11]. This approach generated interesting results. In the Video
Browsing and Retrieval system (VIRE) [31] a number of low-level visual and
audio features are extracted and stored using MPEG-7, while MediaMill [26]
provides a tool for automatic shot and scene segmentation for general content.
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IBMs CueVideo system [1] automatically extracts a number of low- and mid-
level visual and audio features. The visually similar shots are clustered using
color correlograms. Going one step further towards human perception, Ma et
al. [20, 21] proposed a method for detecting the salient parts of a video that is
based on user attention models. They used motion, face and camera attention
along with audio attention models (audio saliency and speech/music) as cues
to capture salient information and identify the audio and video segments to
compose a summary.

We present a saliency-based method to detect important audiovisual seg-
ments and focus more on the potential benefits of feature-based attention
modeling and multi-sensory signal integration. As content importance in a
video stream is quite subjective, it is not easy to evaluate methods in the field.
Hence, in an attempt to assess the proposed method both quantitatively and
qualitatively, we present video summarization results on commercial videos
and samples from the MUSCLE movie database3, annotated with respect to
saliency of the scene evaluated by human observers. The reference videos are
clips from the movies “300” and “Lord of The Rings I”. Automatic and man-
ual annotations are studied and compared on the selected movie clips with
respect to audiovisual saliency of the depicted scenes.

The remaining of the chapter is organized as follows: Section 1.2 and Sec-
tion 1.3 describe the audio saliency and the visual saliency modules, respec-
tively. Schemes for detecting salient events are proposed in Section 1.4 and
experimental evaluation and applications are given in Section 1.5. Conclusions
are drawn and open issues for future work are discussed in Section 1.6.

1.2 Audio Saliency

Streams of audio information may be composed from a variety of sounds, like
speech, music, environmental sounds (nature, machines, noises), a result of
multiple sources that correspond to natural, artificial, man-made, on purpose
or randomly occurring phenomena. An audio event is a bounded region in
the time continuum, in terms of a beginning and end, that is characterized
by a variation or transitional state to one or more sound-producing sources.
Events are “sound objects” that change dynamically with time, while retaining
a set of characteristic properties that identify a single entity. Perceptually,
event boundaries correspond to points of maximum quantitative or qualitative
change of physical features [39].

Aural attention is triggered perceptually by changes in the involved events
of an audio stream. These may be changes of the nature/source of events,
newly introduced sounds, or transitions and abnormalities in the course of a
specific event, in real-life or synthetic recordings. Such transitions correspond
to changes of salient audio properties, e.g. invariants, whose selection is crucial
for efficient audio representations for event detection and recognition.

3 http://poseidon.csd.auth.gr/EN/MUSCLE_moviedb
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Biological observations indicate that one of the segregations performed
by the auditory system in complex channels is in terms of temporal mod-
ulations, while according to psychophysical experiments, modulated carriers
seem more salient perceptually to human observers compared to stationary
signals [17, 36]. Moreover, following Gestalt theories, the salient audio signal
structures constitute meaningful audio Gestalts which in turn define mani-
festations of audio events [24]. Thus, we formulate a curve modeling audio
attention based on saliency measures of meaningful temporal modulations in
multiple frequencies.

1.2.1 Audio Processing and Salient Features

Processing the audio stream of multimodal systems, involves confronting a
number of subproblems that compose what may be thought of as audio un-
derstanding. In that direction, the notions of audio events and salient audio
segments are the backbone of audio detection, segmentation, recognition and
identification. Starting from lower and going toward higher level, i.e., more
complicated problems, the subproblems of audio analysis can be roughly cat-
egorized as: a) detection, where the presence of auditory information is veri-
fied and separated from silence or background noise conditions [7]; b) atten-
tion modeling and audio saliency, where the perceptual importance is valued
[20, 21]; c) source separation, where the auditory signal is decomposed to dif-
ferent generating sources and sound categories (e.g. speech, music, natural or
synthetic sounds); d) segmentation and event labeling, where the aural activ-
ity is assigned boundaries and dynamic events are sought after [19]; and e)
recognition of sources and events, where the sources and events are matched
to stored lexicon representations.

Descriptive signal representations are essential for all the above subprob-
lem categories and much work has been devoted in robust audio feature ex-
traction for applications [27, 15, 19, 21]. Psychophysical experiments indi-
cate the nature of features responsible for audio perception [23, 36]. These
are representations both in the temporal and spectral domain, that incor-
porate properties and notions such as scale, structure, dimension and per-
ceptual invariance. Well-established features for audio analysis, classification
and recognition include time-frequency representations (e.g., spectrograms),
temporal measurements (e.g., energy, zero-crossings rate, pitch, periodicity),
spectral measurements (e.g., component or resonance position and variation,
bandwidth, spectral flux) and cepstral measurements like the Mel-Frequency
Cepstral Coefficients (MFCCs).

Recent advances in the field of nonlinear speech modeling relate salient
features of speech signals to their inherent non-stationarity and the presence
of micro-modulations in the amplitude and frequency variation of their con-
structing components. Experimental and theoretical indications about mod-
ulations in various scales during speech production led to proposing an AM-
FM modulation model for speech in [22]. The model was then employed for
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extracting various “modulation-based” features like formant tracks and band-
width, mean amplitude and frequency of the components [25] as well as the
coefficients of their energy-frequency distributions (TECCs) [5].

This model can be generalized to any source producing oscillating signals
and for that purpose it is used here to describe a large family of audio sig-
nals. Speech, music, noise, natural and mechanical sounds are the result of
resonating sources are modeled as sums of amplitude and frequency (AM-FM)
modulated components. The salient structures then are the underlying modu-
lation signals and their properties (i.e., number, scale, importance) define the
audio representation.

Audio AM-FM Modeling and Multiband Demodulation

Assume that a single audio component is modeled by a real-valued AM-FM

signal of the form x(t) = a(t) cos
(

∫ t

0
ω(τ)dτ

)

, with time-varying amplitude

envelope a(t) and instantaneous frequency ω(t) signals. Demodulation of x(t)
can be approached via the use of the Teager-Kaiser nonlinear differential en-
ergy operator Ψ [x(t)] ≡ [ẋ(t)]2 − x(t)ẍ(t), where ẋ(t) = dx(t)/dt [34, 14].
Applied to an AM-FM signal x(t), Ψ yields the instantaneous energy of the
source producing the oscillation, i.e., Ψ [x(t)] ≈ a2(t)ω2(t), with negligible ap-
proximation error under realistic constraints [22]. The instantaneous energy is
separated to its amplitude and frequency components by the energy separation

algorithm (ESA) [22] using Ψ as its main ingredient.
In order to apply ESA for demodulating a wideband audio signal, mod-

eled by a sum of AM-FM components, it is necessary to isolate narrowband
components in advance. Bandpass filtering decomposes the signal in frequency
bands, each assumed to be dominated by a single AM-FM component in that
frequency range. In the multiband demodulation analysis (MDA) scheme, com-
ponents are isolated globally using a set of frequency-selective filters [3, 25, 7].
Here MDA is applied through a filterbank of linearly-spaced Gabor filters
h (t) = exp(−α2t2) cos(ωct), with ωc the central filter frequency and α its
rms bandwidth. Gabor filters are chosen for being compact and smooth while
attaining a minimum joint time-frequency uncertainty [9, 22, 3].

Demodulation via ESA of a single frequency band, obtained by one Gabor
filter, can be seen in Fig. 1.1(b). The choice of the specific band corresponds
to an energy-based dominant component selection criterion that will be fur-
ther employed in the following for audio feature extraction. Postprocessing by
median filtering may be used to alleviate singularities in the resulting demod-
ulation measurements.

Audio Features

The AM-FM modulation superposition model for speech [22], motivated by
the presence of multi-scale modulations during speech production [34], is ap-
plied here to generic audio signals. Thus an audio signal is modeled by a
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Fig. 1.1. Short-time audio processing and dominant modulation extraction. (a) a
vowel frame (20ms) from a speech waveform is analyzed in multiple bands (bot-
tom) and (b) the dominant, w.r.t average source energy, band is demodulated in
instantaneous amplitude and frequency (smoothed by 13-pt median) signals.

sum of narrowband amplitude and frequency varying, non-stationary sinu-
soids s(t) =

∑K

k=1 ak(t) cos (φk(t)), whose demodulation in instantaneous am-
plitude ak(t) and frequency ωk(t) = dφk(t)/dt is obtained in the output of a
set of frequency-tuned Gabor filters hk(t) using the energy operator Ψ and the
ESA. The filters globally separate modulation components assuming a priori
a fixed component configuration.

To model a discrete-time audio signal s[n] = s(nT ), we use K discrete
AM-FM components whose instantaneous amplitude and frequency signals are
Ak[n] = ak(nT ) and Ωk[n] = Tωk(nT ), respectively. The model parameters
are estimated from the K filtered components using a discrete-time energy
operator Ψd(x[n]) ≡ (x[n])2 − x[n − 1]x[n + 1] and a related discrete ESA,
which is a computationally simple and efficient algorithm with an excellent,
almost instantaneous, time resolution [22]. Thus, at each sample instance n
the audio signal is represented by three parameters (energy, amplitude and
frequency) for each of the K components, leading to 3 × K feature vector.

A representation in terms of a single component per analysis frame emerges
by maximizing an energy criterion in the multi-dimensional filter response
space [3, 7]. For each frame m of N samples duration, the dominant modula-
tion component is the one with maximum average Teager energy (MTE):

MTE[m] = max
1≤k≤K

1

N

X

n

Ψd((s ∗ hk)[n]), (m − 1)N + 1 ≤ n ≤ mN (1.1)

where ∗ denotes convolution and hk the impulse response of the kth filter.
The filter j = arg maxk(MTE) is submitted to demodulation via ESA and
the instantaneous modulating signals are averaged over a frame duration to
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derive the mean instant amplitude (MIA) and mean instant frequency (MIF)
features:

j = arg max
1≤k≤K

(Ψd[(s ∗ hk)(n)]), MTE[m] = (Ψd[(s ∗ hj)(n)]) (1.2)

MIA[m] = (|Aj [n]|) , MIF[m] = (Ωj [n]). (1.3)

Thus, each frame yields average measurements for the source energy, instant
amplitude and frequency from the filter that captures the “strongest” mod-
ulation signal component. In this context strength refers to the amount of
energy required for producing component oscillations. The dominant compo-
nent is the most salient signal modulation structure and energy MTE may
be thought of as the salient modulation energy, jointly capturing essential
amplitude-frequency content information.

The resulting three-dimensional feature vector of the mean dominant mod-
ulation parameters

Fa[m] = [Fa1, Fa2, Fa3] [m] = [MTE,MIA,MIF] [m] (1.4)

is a low dimensional descriptor, compared to the potential 3×K vector from all
outputs, of the “average instantaneous” modulation structure of the audio sig-
nal involving properties such as level of excitation, rate-of-change, frequency
content and source energy.

In discrete implementation, audio analysis frames usually vary between
10-25 ms. For speech signals, such a choice of window length covers all pitch
duration diversities between different speakers. Sequentially, the discrete en-
ergy operator is applied to the set of filter outputs and an averaging operation
is performed. Central frequency steps of the filter design varying between 200-
400 Hz, yield filterbanks consisting of 20-40 filters.

An example of the short-time features extracted from a movie audio stream
(1024 frames from “300”) can be seen in Fig. 1.2. The chosen segment was
manually annotated by a human observer, with respect to the various sources
present and their boundaries. These are indicated by the vertical lines in the
signal waveform. The different sources include speech (2 different speakers),
music, noise, sound effects and a general “mix-sound” category. The wide-
band spectrum is decomposed using 25 filters, of 400 Hz bandwidth, and the
dominant modulation features are shown in (b), after median (7-point) and
Hanning (5-point) post-smoothing. Features are mapped from audio-to-video
temporal index by keeping maximum intraframe values. Note how a) the en-
velope features complement the frequency measure (i.e high-frequency sounds
of low energy and the opposite), b) manual labeling matches sharp transitions
to one or more features and c) frequency is characterized by longer, piece-wise
constant “sustain periods.”

This representation in terms of the salient modulation properties of sounds,
is additionally supported by cognitive theories of event perception [23]. For
example, rapid amplitude and frequency modulations are related to temporal
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Fig. 1.2. Feature extraction from multi-source audio stream. (a) Waveform with
manual labeling of the various sources/events (vertical lines) and wideband spec-
trum with filterbank, (b) top: MTE (solid) and MIA (dashed), bottom: MIF with
dominant carrier frequencies superimposed (1024 frames from “300” video).

acoustic micro-properties of sounds that appear to be useful for recognition
of sources and events. A simplistic approach for the structure of audio events
involves three parts: an onset, a relatively constant duration and an offset
portion. Event onset and decay are captured by the envelope variations of the
amplitude and energy measurements. On the other hand, spectral variations,
retrieved perceptually from the sustain period, and variations in the main
signal component are captured by the dominant frequency feature.

1.2.2 Audio Attention Curve

The attention curve for the audio signal is constructed by the saliency values,
provided by the set of audio features (1.4). Conceptually, salient information is
modeled through source excitation and average rate of spectral and temporal
change.

The simplest scenario of an audio saliency curve is a weighted linear com-
bination of the normalized audio features

Sa[m] = w1Fa1[m] + w2Fa2[m] + w3Fa3[m], (1.5)

where [w1, w2, w3] is a weighting vector. Normalization is performed by least
squares fit of their individual value ranges to [0, 1]. For this chapter we use
equal weights w1 = w2 = w3 = 1/3, which amounts to uniform linear averag-
ing and viewing the normalized features Fai as equally important for the level
of saliency and the attention provoked by the audio signal.

A different, perceptually motivated approach is a non-linear feature fusion,
based on time-varying “energy weights.” According to the structure and rep-
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the “Lord of the Rings I” stream).

resentation by the auditory system of audio events [23], temporal variation in-
formation is extracted by the onset and offset portions, while spectral change,
from the intermediate sustain periods. As the energy measurement has been
previously used for detecting speech event boundaries [7], we incorporate it
as an index of event transitional points. Using the average source energy gra-
dient as a weighting factor, we acquire the following nonlinear audio-to-audio

integration scheme

Sa[m] = we[m]Fa2[m] + (1 − we[m])Fa3[m], we =

∣

∣

∣

∣

dFa1

dm

∣

∣

∣

∣

(1.6)

The effect of this gradient energy weighting process is that, in sharp event
transitions (modeling beginning, ending or change of activity) the amplitude
feature is employed more (hence, the temporal variation is more salient). The
frequency is weighted more at relatively constant activity periods where the
spectral variation is perceptually more important.

An example of the feature integration for saliency curve construction is
presented in Fig. 1.3. Audio features, normalized and mapped to the video
frame index, are combined linearly by (1.5) or nonlinearly by (1.6) to yield the
corresponding saliency curves. A saliency indicator function is then obtained
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by applying on the resulting curves an adaptive threshold-based detection
scheme.

1.3 Visual Saliency

The visual saliency computation module is based on the notion of a cen-
tralized saliency map [18] computed through a feature competition scheme.
The motivation behind this scheme is the experimental evidence of a bio-
logical counterpart in the Human Visual System (interaction/competition
among the different visual pathways related to motion/depth (M pathway)
and gestalt/depth/color (P pathway) respectively) [16]. An overview of the
visual saliency detection architecture is given in Fig. 1.4. In this framework, a
video sequence is represented as a solid in the 3D Euclidean space, with time
being the third dimension. Hence, the equivalent of a spatial saliency map is a
spatiotemporal volume where each voxel has a certain value of saliency. This
saliency volume is computed with the incorporation of feature competition
by defining cliques at the voxel level and use an optimization procedure with
both inter- and intra- feature constraints.

1.3.1 Visual Features

The video volume is initially decomposed into a set of feature volumes, namely
intensity, color and spatiotemporal orientations. For the intensity and color
features, we adopt the opponent process color theory that suggests the control
of color perception by two opponent systems: a blue-yellow and a red-green
mechanism. The extent to which these opponent channels attract attention
of humans has been previously investigated in detail, both for biological [35]
and computational models of attention [20]. According to the opponent color

scheme, if r, g, b are the red, green and blue volumes respectively, the lumi-
nance and color volumes are obtained by

I = (r + g + b)/3, RG = R − G, BY = B − Y, (1.7)

where R = r − (g + b)/2, G = g − (r + b)/2, B = b − (r + g)/2, Y =
(r + g)/2 − |r − g|/2 − b.

Spatiotemporal orientations are computed using steerable filters [8]. A
steerable filter may be of arbitrary orientation and is synthesized as a linear
combination of rotated versions of itself. Orientations are obtained by mea-
suring the filter strength along particular directions θ (the angle formed by
the plane passing through the t axis and the x − t plane) and φ (defined on
the x − y plane). The desired filtering can be implemented using the three

dimensional filters Gθ,φ
2 (e.g. second derivative of a 3D Gaussian) and their

Hilbert transforms Hθ,φ
2 , by taking the filters in quadrature to eliminate the
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Fig. 1.4. Visual saliency module

phase sensitivity present in the output of each filter. This is called the oriented
energy:

E(θ, φ) = [Gθ,φ
2 ∗ I]2 + [Hθ,φ

2 ∗ I]2, (1.8)

where

θ ∈ {0,
π

4
,
π

2
,
3π

4
}, φ ∈ {−

π

2
,−

π

4
, 0,

π

4
,
π

2
}. (1.9)

By selecting θ and φ as in (1.9), 20 volumes of different spatiotemporal ori-
entations are produced, which must be fused together to produce a single
orientation volume that will be further enhanced and compete with the rest
of the feature volumes. We use an operator based on Principal Component
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Analysis (PCA) and generate a single spatiotemporal orientation conspicuity
volume V . More details can be found in [28].

1.3.2 Visual Attention Curve

We perform decomposition of the video at a number of different scales. The
final result is a hierarchy of video volumes that represent the input sequence
in decreasing spatiotemporal scales. Volumes for each feature of interest, in-
cluding intensity, color and 3D orientation (motion) are then formed and
decomposed into multiple scales. Every volume simultaneously represents the
spatial distribution and temporal evolution of the encoded feature. The pyra-
midal decomposition allows the model to represent smaller and larger “events”
in separate subdivisions of the channels.

Feature competition is implemented in the model using an energy-based
measure. In a regularization framework the first term of this energy measure
may be regarded as the data term E1 and the second as the smoothness one E2,
since it regularizes the current estimate by restricting the class of admissible
solutions [29]. The energy involves voxel operations between coarse and finer
scales of the volume pyramid, which means that if the center is a voxel at level
c ∈ {2, ..., p − d}, where p is the maximum pyramid level and d is the desired
depth of the center-surround scheme, then the surround is the corresponding
voxel at level h = c+δ with δ ∈ {1, 2, ..., d}. Hence, if we consider the intensity
and two opponent color features as elements of the vector Fv = Fv1

, Fv2
, Fv3

and if F 0
vk

corresponds to the original volume of each of the features, each level
ℓ of the pyramid is obtained by convolution with an isotropic 3D Gaussian G
and dyadic down-sampling:

F ℓ
vk

=
(

G ∗ F ℓ−1
vk

)

↓2, ℓ = 1, 2, ..., p. (1.10)

where ↓2 denotes decimation by 2 in each dimension. For each voxel q of a
feature volume F the energy is defined as

Ev(F c
vk

(q)) = λ1 · E1(F
c
vk

(q)) + λ2 · E2(F
c
vk

(q)), (1.11)

where λ1, λ2 are the importance weighting factors for each of the involved
terms. The first term of (1.11) is defined as

E1(F
c
vk

(q)) = F c
vk

(q) · |F c
vk

(q) − Fh
vk

(q)| (1.12)

and acts as the center-surround operator. The difference at each voxel is ob-
tained after interpolating Fh

vk
to the size of the coarser level. This term pro-

motes areas that differ from their spatiotemporal surroundings and therefore
attract attention. The second term is defined as

E2(F
c
vk

(q)) = F c
vk

(q) ·
1

|N(q)|
·

∑

r∈N(q)

(

F c
vk

(r) + V (r)
)

, (1.13)



1 Audiovisual Saliency 13

where V is the spatiotemporal orientation volume that may be regarded as an
indication of motion activity in the scene and N(q) is the 26- neighborhood of
voxel q. The second energy term involves competition among voxel neighbor-
hoods of the same volume and allows a voxel to increase its saliency value only
if the activity of its surroundings is low enough. The energy is then minimized
using an iterative steepest descent scheme and a saliency volume S is created
by averaging the conspicuity feature volumes F 1

vk
at the first pyramid level:

S(q) =
1

3
·

3
∑

k=1

F 1
vk

(q). (1.14)

Overall, the core of the visual saliency detection module is an iterative mini-
mization scheme that acts on 3D local regions and is based on center-surround
inhibition regularized by inter- and intra- local feature constraints. A detailed
description of the method can be found in [28]. Figure 1.5 depicts the com-
puted saliency for three frames of “Lord of the Rings I” and “300” sequences.
High values correspond to high salient areas (notice the shining ring and the
falling elephant).

In order to create a single saliency value per frame, we use the same fea-
tures involved in the saliency volume computation, namely intensity, color and
motion. Each of the feature volumes is first normalized to lie in the range [0, 1]
and then point-to-point multiplied by the saliency one in order to suppress
low saliency voxels. The weighted average is taken to produce a single visual

saliency value for each frame:

Sv =

3
∑

k=1

∑

q

S(q) · F 1
vk

(q), (1.15)

where the second sum is taken over all the voxels of a volume at the first
pyramid level.

1.4 Audiovisual Saliency

Integrating the information extracted from audio and video channels is not a
trivial task, as they correspond to different sensor modalities (aural and vi-
sual). Audiovisual fusion for modeling multimodal attention can be performed
at three levels: i) low-level fusion (at the extracted saliency curves), ii) middle-

level fusion (at the corresponding feature vectors), iii) high-level fusion (at the
detected salient segments and features of the curves).

In a video stream with both aural and visual information present, au-
diovisual attention is modeled by constructing a temporal sequence of au-
diovisual saliency values. In this saliency curve, each value corresponds to a
measure of importance of the multi-sensory stream at each time instance. In
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Fig. 1.5. Original frames from the movies “Lord of the Rings I” (top) and “300”
(bottom) and the corresponding saliency maps (better viewed in color).

both modalities, features are mapped to saliency (aural and visual) curve val-
ues (Sa[m], Sv[m]), and the two curves are integrated to yield an audiovisual
saliency curve

Sav[m] = fusion(Sa, Sv,m), (1.16)

where m the frame index and fusion(·) is the process of combining or fusing
the two modalities. This is a low-level fusion scheme. In general, this pro-
cess of combining the outputs of the two saliency detection modules may be
nonlinear, have memory or vary with time. For the purposes of this chapter,
however, we use the following straightforward linear memoryless scheme

Sav[m] = wa · Sa[m] + wv · Sv[m]. (1.17)

Assuming that the individual audio and visual saliency curves are normalized
in the range [0, 1] and the weights form a convex combination, this coupled
audiovisual curve serves as a continuous-valued indicator function of salient
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events, in the audio, the video or a common audiovisual domain. The weights
can be equal, constant or adaptive depending for example on the uncertainty
of the audio or video features. Actually, the above weighted linear scheme cor-
responds to what is called in [4] “weak fusion” of modalities and is optimum
under the maximum a posteriori criterion, if the individual distributions are
Gaussian and the weights are inversely proportional to the individual vari-
ances, as explained in Section ?? of Chapter ??.

The coupled audiovisual saliency curve provides the basis for subsequent
detection of salient events. Audiovisual events are defined as bounded time-
regions of aural and visual activity. In the proposed method, events correspond
to attention-triggering signal portions or points of interest extracted from the
saliency curves. The boundaries of events and the activity locus points, corre-
spond to a maximum change in the audio and video saliency curves and the
underlying features. Thus, transition and reference points in the audiovisual
event stream can be tracked by analyzing the geometric features of the curve.
Such geometric characteristics include:

• Extrema points: these are the local maxima or minima of the curve and
can be detected by a ‘peak-peaking’ method.

• Peaks & Valleys: the region of support around maxima and minima,
respectively. These can be extracted automatically (e.g., by a percentage
to maximum) or via a user-defined scenario depending on the application
(e.g., a skimming index).

• Edges: One-dimensional edges correspond to sharp transition points in the
curve. A common approach is to detect the zero-crossings of a Derivative-
of-Gaussian operator applied to the signal.

• Level Sets: points where the values of the curve exceed a learned or
heuristic level-threshold. These sets can define indicator functions of salient
activity.

Saliency-based events can be tracked at the individual saliency curves or at
the integrated one. In the former case, the resulting geometric feature-events
can be subjected to higher-level fusion (e.g., by logical OR, AND operators).
As a result, events in one of the modalities may suppress or enhance the events
present in the other. A set of audio, visual and audiovisual events can be seen
in the example-application of Figs. 1.6 and 1.7. The associated movie-trailer
clip contained a variety of events in both streams (soundtracks, dialogues,
effects, shot-changes, motion), aimed to attract the viewer’s attention. Peaks
detected in the audiovisual curve revealed in many cases an agreement between
peaks (events) tracked in the individual saliency curves.

1.5 Applications and Experiments

The developed audiovisual saliency curve has been applied to saliency-based
video summarization and annotation. Summarization is performed in two di-
rections: key-frame selection for static video storyboards via local maxima
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Fig. 1.6. Saliency curves and detected features (maxima, minima, lobes and levels)
for audio (top), video (middle) and audiovisual streams (bottom) of the movie trailer
“First Descend”.

Fig. 1.7. Key-frames selection using local maxima (peaks) of corresponding audio-
visual saliency curve. Selected frames correspond to the peaks in the bottom curve
of Fig. 1.6 (12 out of 13 frames, peak 4 is not shown).
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detection and dynamic video skimming based on a user-defined skimming
percentage. Annotation refers to labeling various video parts with respect to
their attentional strength, based on sensory information solely. In order to
provide statistically robust and as far as possible objective results, the results
are compared to human annotation.

1.5.1 Experimental setup

The proposed method has been applied both to videos of arbitrary content and
to a human annotated movie database, that consists of 42 scenes extracted
from 6 movies of different genres. For demonstration purposes we selected
two clips (≃10 min each) from the movies “Lord of the Rings I” and “300”
and present a series of applications and experiments that highlight different
aspects of the proposed method.

The clips were viewed and annotated according to the audio, visual and
audiovisual saliency of their content. This means that parts of the clip were
labeled as salient or non-salient, depending on the importance and the atten-
tion attracted by their content. The viewers were asked to assign a saliency
factor to any part according to loose guidelines, since strict rules cannot be
applied due to the high subjectivity of the procedure. The guidelines were
related to the audio-only, visual-only and audiovisual changes and events, but
not to semantic interpretation of the content. The output of this procedure is
a saliency indicator function, corresponding to the video segments that were
assigned a non-zero saliency factor. For example, Fig. 1.8 depicts the saliency
curves and detected geometric features, while Fig. 1.9 the indicator functions
obtained manually and automatically on a frame sequence from one movie
clip.

1.5.2 Key-frame Detection

Key-frame selection to construct a static abstract of a video, was based on
the local maxima, through peak detection on the proposed saliency curves.
The process and the resulting key-frames are presented in Figs. 1.6 and 1.7
respectively for a film trailer (“First Descend”)4 rich in audio (music, narra-
tion, sound effects, machine sounds) and visual (objects, color, natural scenes,
faces, action) events. The extracted 13 key-frames out of 512 of the original se-
quence (i.e., summarization percentage 2.5%) based on audiovisual saliency
information, summarize the important visual scenes, some of which were se-
lected based on the presence of important, aural attention-triggering audio
events.

4 http://www.firstdescentmovie.com
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Fig. 1.8. Curves and detected features for audio saliency (top), video saliency
(middle) and audiovisual saliency (bottom). The frame sequence was from the movie
“Lord of the Rings I”.

1.5.3 Automated Saliency-based Annotation

A method to derive automatic saliency-based annotation of audiovisual streams
is by applying appropriate heuristically defined or learned thresholds on the
audiovisual attention curves. The level sets of the curves thus define indicator
functions of salient activity; see Fig. 1.9. A comparison against the available
ground-truth is not a straight-forward task. On performing annotation, the
human sensory system is able to almost automatically integrate and detect
salient audiovisual information across many frames. Thus, such results are
not directly comparable to the automatic annotation, since the audio part de-
pends on the processing frame length and shift and the spatiotemporal nature
of the visual part depends highly on the chosen frame neighborhood rather
than on biological evidence.

Comparison against the ground-truth turns into a problem of tuning two
different parameters, namely the extent (filter length) w of a smoothing oper-
ation and the threshold T that decides the salient versus the non-salient curve
parts, and detecting the optimal point of operation. Perceptually, these two
parameters are related, since a mildly smoothed curve (high peaks) should
be accompanied by a high threshold, while a strongly smoothed curve (lower
peaks) by a lower threshold. We relate these parameters using an exponential
function
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Fig. 1.9. Human and automated saliency-based annotations. Top row: Audiovisual
saliency curve and manual annotation by inspection superimposed. Saliency indica-
tor functions obtained with a median filter of variable size (7, 19, 39) in all other
plots. The frame sequence was the same as in Fig. 1.8.

T (w) = exp(−w/b), (1.18)

where b is a scale factor, set to b = 0.5 in our experiments. Thus, a variable
sized median filter is used for smoothing the audiovisual curve.

Fig. 1.9 shows a snapshot of the audiovisual curve for a sequence of
600 frames, the ground-truth, and the corresponding indicator functions and
threshold levels computed by (1.18) for three different median filter lengths.
We derive a precision/recall value for each filter length as shown in Fig. 1.10 for
the whole duration of the two reference movie clips. Values on the horizontal
x- axis relate to the size of the filter. As expected, the recall value is continu-
ously increasing, since the thresholded, smoothed audiovisual curve tends to
include an ever bigger part of the ground-truth. As already mentioned, the
ability of the human eye to integrate information across time makes direct
comparisons difficult. The varying smoothness imposed by the median filter
simulates this integration ability in order to provide a more fair comparison.
Note that although all presented experiments with the audiovisual saliency
curve used the linear scheme for combining the audio features, prior to audio-
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Fig. 1.10. Precision/Recall plots using human ground truth labeling on two film
video segments. Left: “300”, right: “Lord of the Rings I”

visual integration, preliminary experiments with the non-linear fusion scheme
(1.6) for the audio saliency yielded similar performance in the precision/recall
framework.

1.5.4 Video Summarization

The dynamic summarization of video sequences involves reducing the content
of the initial video using a seamless selection of audio and video subclips. The
selection here is based on the attentional importance given by the associated
audiovisual saliency curve. In order for the resulting summary to be percep-
tible, informative and enjoyable by the user, the video subsegments should
follow a smooth transition, the associated audio clips should not be truncated
and important audiovisual events should be included. One approach to creat-
ing summaries is to select, based on a user- or application- defined skimming
index, portions of video around the previously detected key frames and align
the corresponding “audio sentences” [21].

Here, summaries were created using a predefined skimming percentage c.
In effect, a smoother attention curve is created using median filtering from
the initial audiovisual saliency curve, since information from key-frames or
saliency boundaries is not necessary. A saliency threshold Tc is selected so
that the required percent of summarization c is achieved. Frames m with
audiovisual saliency value Sav[m] > Tc are selected to be included in the
summary. For example, for 20% summarization, c = 0.2, the threshold Tc is
selected so that the cardinality of the set of selected frames D = {m : Sav[m] >
Tc} is 20% of the total number of frames. The result from this leveling step
is a video frame indicator function Ic for the desired level of summarization
c. The indicator function equals 1, Ic[m] = 1, if frame m is selected for the
summary and 0 otherwise.
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The resulting indicator function Ic is further processed to form contigu-
ous blocks of video segments. This processing involves eliminating isolated
segments of small duration and merging neighboring blocks in one segment.
The total effect is equivalent to 1D morphological filtering operations on the
binary indicator function, where the filter’s length is related to the minimum
number of allowed frames in a skim and the distance between skims that are
to be merged.

The movie summaries, obtained by skimming 2, 3 and 5 times faster than
real time, were subjectively evaluated in terms of informativeness and enjoya-
bility by 10 naive subjects. Preliminary average results indicate that the sum-
maries obtained by the above procedure are well informative and enjoyable.
However, more work is needed to improve the “smoothness” of the summary
to improve the quality and enjoyability of the created skims.

1.6 Conclusions

In this chapter we have presented efficient audio and image processing algo-
rithms to compute audio and visual saliency curves, respectively, from the
aural and visual streams of videos and explored the potential of their inte-
gration for summarization and saliency-based annotation. The involved audio
and image saliency detection modules attempt to capture the perceptual hu-
man ability to automatically focus on salient events. A simple fusion scheme
was employed to create audiovisual saliency curves that were applied to movie
summarization (detecting static key-frames and create video skims). This re-
vealed that successful video summaries can be formed using saliency-based
models of perceptual attention. The selected key-frames described the shots
or different scenes in a movie, while the formed skims were intelligible and
enjoyable, when viewed by different users. In a task of saliency-based video
annotation, the audiovisual saliency curve correlated adequately well with the
decisions of human observers.

Future work involves mainly three directions: more sophisticated fusion
methods, improved techniques to create video summarization, and incorpora-
tion of ideas from cognitive research. Fusion schemes should be explored both
for intra-modality integration (audio to audio, video to video) to create the
individual saliency curves and inter-modality integration for the audiovisual
curve. Different techniques may proven to be appropriate for the audio and
visual parts, like the non-linear audio saliency scheme described herein. To de-
velop more efficient summarization schemes, attention should be paid to the
effective segmentation and selection of the video frames, aligned with the flow
of audio sentences like dialogues or music parts. Here, temporal segmenta-
tion into perceptual events is important, as there is evidence from research in
cognitive neuroscience [40]. Finally, summaries can be enhanced by including
other cues besides saliency, related to semantic video content.
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