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ABSTRACT

The introduction of biometric signal analysis in psychiatry could
potentially reshape the field by making it more accurate, proactive
and personalized. Such biosignals usually acquired from wear-
ables encompass the quantification of human behavior and traits.
In this study, we use long-term data acquired from commercial
smartwatches, including kinetic and physiological signals, to ex-
tract information-thick descriptors that are used for the predic-
tion of subsequent relapses in patients in the psychotic spectrum.
Specifically, we propose a novel combination of methods based
on Self-Supervised Learning and Survival Analysis that operates
on unlabeled and censored data. When combined with other static
features that describe the past course of the patient’s health, the
proposed methodology yields promising predictive results in terms
of two standard survival analysis metrics.

Index Terms— Self-Supervised Learning, Psychotic Disorders,
Smartwatch Wearables, Survival Analysis, Relapse Prediction

1. INTRODUCTION
The current state of psychiatric practice relies primarily on brief clin-
ical interactions focused on history taking, symptom rating and clin-
ical judgments, and less on measuring emotion, cognition, or behav-
ior with standard, validated tools [1]. As a result, therapists usually
struggle to detect patients’ relapses in time [2]. One way to improve
the precision of the diagnosis is the moment-by-moment quantifica-
tion of the individual’s behavioral and cognitive state using personal
digital devices. Wearable consumer products such as smartwatches
are the most promising sources for obtaining such information, as
they offer a reliable, unobtrusive, and remote personalized collec-
tion of numerous physiological data through their sensors. Using
such signals to develop a feedback system that alerts therapists when
the severity of symptoms has significantly worsened would be really
helpful, since patients often do not present themselves when symp-
toms recur [3]. Mostly, though, it could help reduce the severity of
relapses or even prevent them from occurring [4].

Modern approaches such as deep learning are difficult to em-
ploy when handling physiological signals, as they rely heavily on
vast amounts of carefully annotated data, which is uncommon and
impractical in such low-label data regimes. Indeed, although col-
lecting large amounts of unlabeled biosignals is easy as they are pas-
sively recorded, their labels are often difficult to obtain, requiring
expert knowledge and hours of manual annotation [5]. Thus, auto-
matically learning valuable representations could drastically reduce
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the cost and time required to process them, while leveraging the ex-
isting oversupply of unlabeled data.

The field trying to overcome this problem is Self-Supervised
Learning (SSL). The idea behind SSL is to utilize the structure of
unlabeled data to automatically generate labels from them. Together
with the original unlabeled signal, these labels form a supervised
problem called pretext task. Early examples of pretext tasks were:
solving jigsaw puzzles [6] and predicting image rotations [7]. How-
ever, their representations could not generalize well because their re-
spective encoders were overfitting the task’s transformations [8]. An
alternative to this is contrastive learning [9, 10, 11], which instead
of trying to predict a task’s transformations, learns representations
that are invariant to them. Contrastive methods are based on creat-
ing positive and negative samples, forcing the former closer in the
embedding space, and pushing the latter away. The representations
learned from the pretext task can then be reused in a downstream
task, potentially reducing the required number of labels.

An interesting family of downstream tasks is Time-to-Event Pre-
diction, which is adequately handled by Survival Analysis, a collec-
tion of statistical procedures with applications in medicine [12], en-
gineering [13], and economics [14]. The main difference between
survival analysis and regression methods is that the former can op-
erate on partially observed (censored) data. One such case is right
censoring, where all that is known about a subset of the data is that
no event has occurred for at least some known time.

In our work, we propose a novel way to predict subsequent re-
lapses in patients with psychotic disorders, based on SSL and Sur-
vival Analysis. To this end, we use long-term data acquired within
the e-Prevention project (http://eprevention.gr), which aims to pro-
vide innovative e-health services and effective monitoring for pa-
tients with mental disorders [15]. To the best of our knowledge, the
combination of these methods has never been used before for such
a relapse prediction task. Specifically, we perform Self-Supervised
pretraining to learn representations from fully unlabeled, long-term,
continuous recordings of biometric signals collected through com-
mercial smartwatches. We then provide these representations as in-
puts to survival analysis models to predict subsequent relapses on the
data subset containing relapse labels. When combined with hand-
crafted features, this method yields promising results.

The rest of this paper is organized as follows: In Sec. 2, we
present data collection, preprocessing, and the final datasets used for
learning and evaluating the task of relapse prediction. In Sec. 3, our
proposed methodology is described; while Sec. 4 presents a thor-
ough analysis of our method’s performance. Finally, Sec. 5 con-
cludes our work and gives future directions.

2. DATA PREPROCESSING AND DATASET CREATION
The raw e-Prevention dataset, used in this work, consists of data ac-
quired from a Samsung Gear S3 Frontier smartwatch, recorded con-
tinuously (24/7 - except from ca. 2 hours/day when the smartwatch
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Fig. 1. We mark each sample with a dot, so each dot represents 4, 8, or 12 hours of consecutive readings, depending on the dataset. We mark
in black the days with an episode to their right (Censored = false), while in gray (Censored = true), otherwise. We also color the severity
level of each episode differently, as shown in the legend.

was charging; during charging all data were uploaded to a cloud-
based platform [16]). Data collection began in 11/2019 and contin-
ues to this date. Sixty-four (64) people participated in the project (26
controls and 38 patients); the detailed recruitment protocol is pre-
sented in [15]. Briefly, all patients undergo monthly assessments by
the project’s clinicians, who label the patient’s condition as healthy
or relapsing. Twenty (20) out of 38 patients had actually experienced
one or more relapses, resulting in a total of 37 relapsing incidents of
varying duration and severity, as shown in Fig. 1. The measurements
that we use in this work are: 3-axis linear acceleration and angular
velocity (accelerometer and gyroscope sensors, respectively; both
sampled at 20Hz), heart beats per minute, and RR-intervals (ob-
tained via Photoplethysmography; sampled at 5Hz).

Data Preprocessing: In order to disregard outliers, we ex-
cluded data points exceeding the kinetic sensors’ limit values, iden-
tical consecutive RR intervals, and intervals longer than 2000ms or
shorter than 300ms. We then imputed the excluded values with lin-
ear interpolation while keeping only 1-hour recordings, where the
heart rate sequence summed up to at least 54 minutes (an empiri-
cal threshold corresponding to 90% of valid data [17]). Finally, we
applied an 1-minute moving average filter. This way, we can have
samples covering more extensive time windows while maintaining
a relatively small sample size. This operation corresponds to low-
pass filtering, in other words noise reduction, since the smartwatch’s
noise mainly lies in high frequencies as found in [18].

Dataset Creation: Intuitively, the interval used to assess
whether the user is close to a relapse should be long enough so that
the model can detect unusual behaviors compared to normal ones.
On the other hand, the longer the interval, the more likely we are
to have gaps, either due to smartwatch charging or errors during
data collection. Concatenation or interpolation of such gaps would
introduce noise. Since the models we use exploit time series dynam-
ics, they may classify such noise as an anomaly. Given the above
constraints, we experimented with three datasets consisting of con-
secutive measurements of 4, 8, and 12- hours. In addition, to match
patients’ daily activities with the time of day they occurred, we used
two additional variables derived from the smartwatch timestamp:
xsin = sin

(
2·π·hour

24

)
and xcos = cos

(
2·π·hour

24

)
.

Finally, we end up with six datasets, whose number of samples
(S), number of variables/channels (C), and sample lengths (L) (ex-
pressed in number of timesteps) are shown in Table 1. We denote
the first three as Pretext Datasets, consisting of unlabeled record-
ings from all 38 patients with sample durations of 4, 8, and 12 non-
overlapping hours. Likewise, we have three Downstream Datasets,
derived as the subsets of the Pretext datasets which include only

Sample size Pretext Dataset Downstream Dataset
(S,C, L) (S,C, L)

4 hours (19126, 10, 240) (7593, 10, 240)
8 hours (13909, 10, 480) (5925, 10, 480)

12 hours (10576, 10, 720) (4584, 10, 720)

Table 1. Datasets’ # samples (S), # variables (C), and sample
lengths (L). C consists of 3 channels for the accelerometer, 3 for
the gyroscope, 2 for heart rate, and 2 for the sine/cosine variables.

users with known relapse periods. For the latter, we have time-to-
relapse labels (in days) from 20 patients and sample durations of 4,
8, and 12 non-overlapping hours.

3. METHODOLOGY

In order to accurately predict the time until a subsequent relapse,
we propose a methodology based on SSL and survival analysis. The
benefits of combining these two approaches are twofold: 1) By using
SSL, we exploit our entire unlabeled dataset during representation
learning, in contrast to a supervised method that would only use the
labeled subset. 2) With survival analysis, we use samples with no
relapses in their future, which contains valuable information that the
user is free of relapses for at least t time.

Self Supervised Learning: As a first step, we pretrain three
state-of-the-art contrastive SSL methods for time series on our Pre-
text Dataset. The first method is Mixing-Up [19], which proposes an
augmentation scheme, where new samples are generated by mixing
two data samples with a mixing component. The pretext task is cor-
rectly predicting the mixing proportion of two time-series samples
and a fully convolutional network (FCN) with three convolutional
layers is used as a backbone.

The second method is ‘Time-Series representation learning
framework via Temporal and Contextual Contrasting’ (TS-TCC) [20],
where two separate data views are created, using weak and strong
augmentations, encoded by a three-layer convolutional network and
summarized into a context vector using a transformer model. The
pretext task uses the context vector of the strong augmentations to
predict future timesteps of the weak ones and vice versa. In or-
der to learn discriminative representations, a contextual contrasting
module is also built upon the context vectors.

Lastly, we used a method, which proposes Time-Frequency
Consistency (TFC) [21], according to which for every time series
sample, there exists a latent time-frequency space, where time-
and frequency-based representations (both encoded via 3-layer 1-D
ResNets [22]) of the same sample together with their local augmen-
tations, are close to each other.



In order to apply the above methods to a new dataset like e-
Prevention, we must first perform hyperparameter tuning. In our
case, we optimized the hyperparameters on a proxy downstream
task: person identification i.e., predicting the unique identifier of
the smartwatch user. This task can provide valuable insights into
patients with psychiatric disorders by identifying the characteristic
behavior of these individuals [23]; as such, representations succeed-
ing in the person identification task could prove useful in analyzing
their condition. Since the downstream dataset’s user-ID distribution
is severely imbalanced (some users contain more than 700 record-
ings, while others contain less than 40) we filter the dataset for this
proxy task, using only 14 of 20 users with more than 100 instances.

Survival Analysis: After pretraining we use the learned rep-
resentations on the downstream dataset to predict the time until the
subsequent relapse. Figure 1 shows the time intervals of relapses and
their severity, for each user. The first relapsing episode’s first date
is 2019-11-20 for User 3, while the ending date of the last episode
is 2021-12-26 for User 18. We mark every sample with a dot, i.e.,
days with a preceding relapse event are denoted in black, otherwise
they are marked in grey. To predict the time before the appearance
of relapses, one could pick the black dots and regress the time in-
terval from a specific black dot to the beginning of the next event.
This results to loss of the information that the gray dots provide for
at least t event-free periods, where t is the interval from the dot to
the user’s last sample. These samples are called ‘right censored’ and
are handled properly with survival analysis methods.

In survival analysis [24, 25], instead of predicting a single num-
ber as the time until an event, we are predicting a function: either the
survival or hazard function. Let T denote a continuous non-negative
random variable representing the time until an event occurs. The
survival function S(t) is the probability that the event of interest
has not occurred by some time t: S(t) = Pr [T ≥ t] . Similarly, the
hazard function h(t) denotes an approximate conditional probabil-
ity, that the event will occur within [t, t + dt), given that it has not
occurred before: h(t) = − d

dt
logS(t), and the cumulative hazard

function is the integral over the interval [0, t] of the hazard function:
H(t) =

∫ t

0
h(u) du. Finally, by subdividing the time axis of the

predicted cumulative hazard function in J parts, we can calculate
the risk score of each sample x, such that: r(x) =

∑J
j=1 Ĥ(tj , x).

We employed four survival-regression models that can handle
non-linearities in their input covariates (the pretrained embeddings
in our case). The first two are extensions of Random Forests to
right-censored data: Conditional Survival Forest [26] and Extremely
Randomized Survival Trees [27]. The latter two are based on Deep
Neural Networks: Neural MTLR [28] and DeepSurv [29].

Finally, we evaluated their performance using two standard
survival analysis metrics: C-index [30] and Brier-Score (BS) [31].
The first is a discrimination metric, which measures the model’s
ability to correctly provide an accurate ranking of survival times:

C-index =

∑
i,j 1Tj<Ti

·1rj>ri
·δj∑

i,j 1Tj<Ti
·δj

, where i, j iterate over the whole

dataset and δk ∈ {0, 1}, indicates whether sample k is right cen-
sored or not. The BS, unlike the C-index, is both a discrimi-
nation and a calibration metric and is calculated as: BS(t) =

1
N

∑N
i=1

(
(0−Ŝ(t,x⃗i))

2·1Ti≤t,δi=1

Ĝ(T−
i )

+
(1−Ŝ(t,x⃗i))

2·1Ti>t

Ĝ(t)

)
, where

Ĝ(t) = Pr [C > t] is the estimator of the conditional survival func-
tion of the censoring times, and C is the censoring time. In a well-
calibrated model the predicted event risk, for each time t, should
match the actual frequency of occurred events in the data. A non-
random predictor should have C-index > 0.5 and BS(t) < 0.25, for
the given times t that we are interested. To summarize the model

Metric AUPRC macro-F1
model mean (±std.) mean (±std.)
MiniRocket 0.7091 (±0.0296) 0.6737 (±0.0307)
Mixing-up 0.7451 (±0.0086) 0.7694 (±0.0160)
TF-C 0.6078 (±0.0066) 0.5855 (±0.0040)
TS-TCC 0.5144 (±0.0216) 0.4999 (±0.0234)

Table 2. Aggregated results for macro-F1 and AUPRC scores for
the person identification task, after 5-fold cross-validation.

performance with a single metric over the whole analysis period,
the Integrated Brier Score is used: IBS(tmax) =

1
tmax

∫ tmax
0

BS(t)dt.
However, in this work, we use − log (IBS) instead of IBS to convert
IBS into a ‘higher is better’ metric.

4. EXPERIMENTAL EXPLORATION

Hyperparameter tuning in Person Identification Task: During
hyperparameter-tuning, we pretrained the three SSL models men-
tioned in Sec. 3 on the entire 4-hour pretext dataset. We then trained
a 14-class linear classifier, on top of the pretrained embeddings,
predicting the user’s-ID of each recording. After maximizing the
macro-F1 score in the above task, the embeddings’ dimensions are
128, 256, and 1408 for Mixing-Up, TFC, and TS-TCC, respectively.

Although we do not expect a linear classifier to solve such a
challenging 14-class problem completely, comparing the relative
performance of the embeddings on the person identification task is
reasonable. Indeed, if users are linearly separable in the learned em-
beddings space, then the embeddings contain information about the
user’s ‘normal’ behavior [23], which is a good starting point for the
upcoming time-to-relapse problem. We assessed the embeddings’
performance through a two-step, 5-fold cross-validation: First, we
pretrained the SSL models with five different initializations on the
whole pretext dataset using the tuned hyperparameters described
above. We also fitted MiniRocket [32], a state-of-the-art feature
extractor, with five different seeds, as a baseline. Thus, we got five
embeddings for each model (one for each fold), which were used in
the second step as input to a 14-class classifier predicting the down-
stream dataset’s user IDs. A different 75/15/10% train/val/test
split was used in the downstream dataset in each of the five itera-
tions. Since the label distribution is highly imbalanced, we focus
on macro-averaged F1 and Average Precision (AUPRC) scores. The
final aggregated results, are shown in Table 2; Mixing-Up achieves
the best results with mean-F1 = 0.77, while TS-TCC the worst.

Survival analysis: After tuning, we proceed to our main task,
predicting the time until the subsequent relapse. We utilized the em-
beddings that achieved the highest F1-score in the ID task for every
model out of the five iterations. If we think of each embedding as the
‘summary’ of its respective interval for each user, we aim to predict
if this user is approaching a relapse. Intuitively, each user exhibits
different variations from their stable behavior, so we concatenated
the one-hot-encoded user-ID to the pretrained embeddings. We saw
that this additional feature boosted the performance, so we are only
considering the concatenated embeddings for the rest of this section.
Afterward, we split the downstream datasets at a 60/40% train/test
ratio and trained four survival models on top of these embeddings.

In Fig. 2, the x-axis shows the input pretrained embeddings,
and the y-axis the score distribution over the evaluated survival
models. The three colors represent the duration of the three datasets.
We observe that TFC embeddings obtain the best results, with
C-index = 0.754 and − log (IBS) = 2.012 when coupled with
DeepSurv model on the 12-hour dataset. We also notice that the
8 and 12-hour datasets offer better discrimination (higher C-index)
while the 4-hour offers calibration (higher − log (IBS)).
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Fig. 2. The x-axis shows the input pretrained embeddings, and the y-
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Fig. 3. Results for the eight-hour dataset, where the x-axis describes
the different Survival Models trained on top of the pretrained em-
beddings (shown with different colors).

Next, we compare the different survival models. We chose the
8-hour dataset (highest C-index, thus discrimination, which also
applies to the 12-hour dataset), as we are interested in correctly dis-
tinguishing users with high risk of relapse from those with low risk.
Using the 12-hour dataset is also impractical due to watch charging
or system errors. In Fig. 3, we see the results for the 8-hour dataset
for different combinations of pretrained embeddings and survival-
models. The two deep-learning based methods: Neural MTLR
and DeepSurv have more capacity and thus obtain better results in
our context (where we have enough labeled samples). In terms of
the pretrained embeddings and for the DeepSurv survival model
that yields the best results, TS-TCC gives the worst results with
C-index = 0.708, while Mixing-up the best with C-index = 0.753.

Feature importance and static features: So far, we have used
only ‘dynamic’ features, i.e., features that describe one user’s sam-
ple/day, which also change from sample to sample. However, it
would be helpful to add static features (st) so that the survival-model
could associate similar users, i.e., users with the same age, treatment
compliance, or the same diagnosis. Similarly, we can add features
that change only after an event occurs, such as the number of pre-
vious episodes (p ep), the severity level of the last episode (ll), and

(+): included C-index − log (IBS)
(−): excluded rel. change (%) rel. change (%)

− user’s-ID -23.74 -19.24
− heart rate -1.66 -1.30
− hour-of-day -1.15 -0.01
− accelerometer -0.03 +0.22
− gyroscope +1.94 +0.14
+ st -1.39 -2.67
+ ps, p ep, ll +9.56 +14.17
+ st, ps, p ep, ll +11.60 +15.90

Table 3. Relative change (%) of scores, when we remove one fea-
ture at a time, compared to when all features are active.
whether the last relapse was psychotic or depressive (ps).

In order to evaluate the importance of both static and dynamic
features, we employ a feature importance framework, where we pre-
train the models from scratch while dropping one feature at a time.
We interpret a decrease in the model’s score as indicative of how
much the model depends on that feature. In Table 3, we see that the
models focus mainly on the combination of user-ID, heart-rate mea-
surements, and hour-of-day alignment of the recordings and less on
kinetic sensors. In fact, we see a slight performance improvement
when we completely remove the gyroscope data. Similarly, we no-
tice a performance drop when we solely add the static features, but
when combined with information on past events, we obtain the best
results, with C-index = 0.841, and − log (IBS) = 2.329.

In order to visualize the results, we threshold the predicted risk
scores into three categories: low, medium, and high. Figure 4 shows
such a classification for three diverse cases: User 1 has only a few
pre-relapse samples and only one relapse, Users 9 and 12 have many
relapses, and Users 6 and 14 have one relapse and stay event-free for
much time. We observe low risk for patients who indeed stay risk
free for longer times and high or medium risks (denoted with orange
or red dots) before the actual events, so we could claim that our
method manages to accurately predict the relapses of these patients.

2020 July 2021 July 2022 July

User 1

User 6

User 9

User 12

User 14

low
medium
high

Risk

Fig. 4. The final risk classification for five patients as obtained by
dividing the risk distribution into three parts (low, medium, high).

5. CONCLUSIONS
In this paper, we used large amounts of unlabeled kinetic and
physiological data acquired from wearable devices, during the e-
Prevention project, to learn valuable representations for the task of
relapse prediction. To this end, we used a novel combination of
Self-Supervised Learning and Survival Analysis. We utilized the
smartwatch’s unique identifiers to solve the person identification
problem in order to monitor the self-supervised training procedure.
Our proposed methodology achieves promising results, especially
when combined with additional static attributes that describe the
past course of the patient’s condition, especially concerning past
relapse episodes. In the future, we would like to explore how this
methodology would perform when we fuse wearable’s data with
other modalities, such as vision and/or audio.
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