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ABSTRACT

We investigate deep morphological neural networks (DMNNs). We demonstrate that despite their
inherent non-linearity, "linear" activations are essential for DMNNSs. To preserve their inherent
sparsity, we propose architectures that constraint the parameters of the "linear" activations: For the
first (resp. second) architecture, we work under the constraint that the majority of parameters (resp.
learnable parameters) should be part of morphological operations. We improve the generalization
ability of our networks via residual connections and weight dropout. Our proposed networks can be
successfully trained, and are more prunable than linear networks. To the best of our knowledge, we
are the first to successfully train DMNNs under such constraints. Finally, we propose a hybrid network
architecture combining linear and morphological layers, showing empirically that the inclusion of
morphological layers significantly accelerates the convergence of gradient descent with large batches.

1 Introduction

Before the rise of deep learning, mathematical morphology (Haralick et al., 1987; Heijmans, 1994; Maragos, 1999,
2005; Najman and Talbot, 2010; Serra, 1982, 1988; Soille, 2004) played a central role in image and signal processing.
Morphological operations — dilations and erosions — enabled effective, task-specific feature extraction using max-plus
and min-plus algebra. However, the shift to deep learning replaced manual feature design with data-driven representation
learning, largely built on linear operations and nonlinear activations (Goodfellow, 2016). The success of deep learning
with linear operations and the historical efficacy of morphological operations raise an intriguing question: Can the
principles of mathematical morphology, which excelled in traditional tasks, be integrated into modern deep learning
frameworks?

Motivated by this idea, researchers developed models based on morphological operations. One of the earliest was the
Morphological Perceptron (MP), which replaces addition and multiplication with max and plus, enabling nonlinear
decision boundaries and forming the basis of morphological neural networks (Davidson and Hummer, 1993; Pessoa and
Maragos, 2000; Ritter and Sussner, 1996; Ritter and Urcid, 2003; Sussner and Esmi, 2011; Yang and Maragos, 1995).
These models offer appealing properties, including compressibility (Dimitriadis and Maragos, 2021; Groenendijk et al.,
2023; Zhang et al., 2019) and fast training. The Dilation-Erosion Perceptron (DEP) (de A. Aratjo, 2011), trained using
CCP (Charisopoulos and Maragos, 2017), blends dilation and erosion via a convex combination.

Despite their advantages, both the MP and DEP have a limitation, which restricts their applicability: Their decision
boundaries are axis-aligned (Ritter and Sussner, 1996; Yang and Maragos, 1995). To address this, researchers have
proposed approaches to transform the input space into one that is MP-separable or DEP-separable using kernel
transformations. For example, Valle (2020) proposed a simple linear transformation as a kernel to map features into a
more favorable space.
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This idea of mapping inputs to a separable space is not new — it is the foundation of deep learning. This raises a natural
question: Can deep morphological networks (DMNNSs), built on the MP and its variants, similarly learn effective
representations using morphological operations?

Recent works have explored these ideas with varying levels of success (Hu et al., 2022; Groenendijk et al., 2023; Shen
et al., 2022). Notable recent efforts, related to this paper, include the works of Franchi et al. (2020), who demonstrated
the potential of deep hybrid morphological-linear networks, Dimitriadis and Maragos (2021), who demonstrated the
amenability to pruning of morphological networks, and Angulo-Lopez (2024); Velasco-Forero and Angulo (2022)
who proposed representing the combined convolutions, nonlinear activation and max-pooling in ConvNets as a max of
erosions or min of dilations by leveraging the morphological representation theory (Maragos, 1989).

However, despite these advancements, significant challenges remain. No prior work has successfully trained a "fully"
morphological deep neural network on complex tasks such as image classification; most existing works propose hybrid
linear/morphological architectures, treating morphology as a minor component (e.g., replacing pooling layers). By
having the morphological operations play a secondary role, their positive aspects — such as sparsity and compressibility
— get diminished. These limitations underscore the need for novel approaches to design and train "pure" DMNNs
effectively.

Contributions. In this paper, we address the challenges of training deep morphological networks by proposing novel
architectures. Our contributions are as follows:

* We prove that despite their inherent non-linearity, "pure” DMNNS, relying solely on morphological operations, fail to
be universal approximators (i.e. a dense subclass of the class of continuous functions under the sup-norm).

* To make DMNN:S trainable, we propose the use of "linear" activations between the morphological layers. With the
aim of preserving inherent sparsity, we propose several new architectures for DMNNSs, each incorporating different
parameter constraints:

— The first architecture ensures that the majority of parameters belong to morphological operations, and only a
small fraction to the "linear" activations. Specifically, for each layer of size n, only O(n) parameters belong to
activations and the rest to morphological operations.

— The second architecture focuses on limiting only the learnable parameters to O(n) per layer of size n.

— The third has no constraints on the parameters, and is a hybrid linear/morphological network.

* We show that DMNNSs under these constraints can be successfully trained and provide universal approximability
results. We also confirm that they are highly amenable to pruning.

 To improve the generalization ability of our networks, we propose the use of residual connections and weight dropout.

We empirically demonstrate that the third architecture (i.e. the addition of morphological layers to linear networks)

accelerates convergence of gradient descent with large batches, but also requires them to be trainable.

2 Prerequisites

Tropical Algebra. Tropical algebra is a branch of mathematics focused on the study of the tropical semiring, which
encompasses both the min-plus semiring and the max-plus semiring (Butkovi¢, 2010; Cuninghame-Green, 1979;
Maclagan and Sturmfels, 2021; Maragos et al., 2021). The max-plus semiring, denoted as (Ry,ax, V, +), consists of the
set Rpax = R U {—00}, equipped with two binary operations: V (the maximum operator) and + (ordinary addition).
Similarly, the min-plus semiring, denoted as (Ruin, A, +), is defined over the set Ry, = R U {400}, with A (the
minimum operator) and + as its binary operations. These semirings naturally extend to operations on vectors and
matrices. For instance, the max-plus matrix multiplication B and the min-plus matrix multiplication B’ for matrices
A = [a;;] and B = [b;;] is defined as:

(ABB)y = \/(am +br;), (A B)i; = \(aun + bry)-
k k

Mathematical morphology. Modern mathematical morphology (Heijmans, 1994; Serra, 1988) is defined on complete
lattices. A partially ordered set (I, <) is a complete lattice (Birkhoff, 1967) if and only if (iff) every subset X C IL
has a supremum and an infimum, denoted by \/ X and A\ X respectively. Consider two complete lattices IL and M.
A lattice operator ¢ : . — M is called a dilation iff it distributes over the supremum of any input (possibly infinite)
collection. Dually, an erosion is defined as any lattice operator ¢ : . — M that distributes over the infimum. Namely,
the following properties hold:

5 (\/X) =\/6(x), ¢ (/\X) = A\e(x), ¥X CL



Let R = R U {400, —cc} denote the extended set of real numbers, which is a complete lattice when equipped with its
ordinary order. The set R" of vectors equipped with the partial order x <y < x; < y;, Vi € [n] forms a complete

lattice. There exists a natural way to define a dilation and an erosion from R" to R: Given an input vector X € R" and
weights w, m € R"™, a vector dilation dy, and erosion &, are defined as follows:

Oow(x) = \/ (i +w) =w' Bx, em(x)= /\ (z; +m;) =m' B x.

i€[n] i€[n]

The Morphological Perceptron (MP) is simply a dilation (or erosion) as defined above, optionally biased with an
addition bias term (i.e. MP(x) = wy V dw(x) for a dilation-based MP). Note that if x < +o00, then w is allowed to
take the value —oo, and dually if x > —oo, then m can take the value +co. The DEP is a convex combination of a
dilation and an erosion (i.e. DEPy, m(x) = Adw (%) + (1 — X)em(x), for A € [0, 1]).

Mathematical morphology also employs dilations and erosions defined on sets of functions, which naturally model
images. The set F = {f : Z™ — R} of extended real-valued functions over the n-dimensional grid of integers,
equipped with the partial ordering f < g < f(x) < g(x) Vx, becomes a complete lattice. On this set, we can define
the max-plus convolution ® and min-plus convolution &' of a function f € F with a structuring element (function)
g :Z" — RU{—o0}, whose domain is dom(g) = {x : g(x) > —oo}, as follows:

(fegx) =\ [fx=-y)+9ly), F&9x)= N [flx—y)—gly).
y€dom(g) y€dom(g)

The max-plus convolution and d,4(f) = f @ ¢ and min-plus correlation £, (f)(x) = f(x) @' g(—x) are a dilation and

erosion on F. By combining these dual morphological operators, we can construct more complex operators such as
opening oy (f) = 04(g4(f)) and closing By (f) = €4(64(f)). The opening can smooth the input by removing small
bright structures, while the closing can fill gaps and remove small dark structures (Serra, 1982; Maragos, 2005).

The Representation Theorem of Maragos and Schafer (1987) takes this one step further: it proves that we can represent
any increasing, translation-invariant linear shift-invariant filter as a supremum of weighted erosions. A byproduct of this
is that we can write any linear perceptron with positive weights that sum up to 1 as a supremum of weighted erosions:
If a; > 0foralliand )", o; = 1, then the following identity holds:

n n—1
3 : 2oi=0 QT
o r; = sup min<g o — 79y yLp—-1—Tn-1, In+a7 .
1=0 n

70, Tn—1€ER

If we allow biased erosions we can relax the condition that the weights must sum up to 1, as long as they sum up to
less than 1. For example, we have § = sup,.cg min(z — r,r). For details regarding the Representation Theorem, see
Appendix E.

3 Deep morphological neural networks

Defining deep morphological neural networks (DMNNSs) involves combining the fundamental operations of mathemati-
cal morphology. In this section, we present the most common DMNNSs, and showcase their fundamental problems.
Then, we present our proposed architectures under differing set of constraints. Proofs of our theorems can be found in
Appendices A and B.

Max-plus MP-based DMNNs. The most obvious way to building a DMNN is by appending morphological layers
consisting of several MPs. Suppose we have L morphological layers, with the n-th layer having N (n) biased MPs. We
can then write the network in recursive form:

max (x(-nfl)

(n) _ (™)
JEN(n—1)]" 7

T~ = Wy +w§?))7

with x(9) being the input and x(*) the output.

A common belief is that such a network does not require activations between its layers due to the inherent non-linearity
of the max-plus MP operations (Franchi et al., 2020; Groenendijk et al., 2023). Howeyver, this assumption can be refuted
using basic principles of tropical algebra.

As mentioned, (Ryax, V, +) is a semiring. This means that we have distributivity of + over V, and associativity of +.
These properties are enough to prove the associativity of matrix multiplication, i.e. for every matrices A, B, C over
Riax, wehave AHB)EHC=AHBHEC)=AHBBHEC.



Let L > 2. The recursive form of the network can be expressed as:
x(M) = w(()n) vw® Bxth o e (L],
(n)

1j

(n) (n) (n)

where wy ' = [wyy/, .. ., wN(n)O}T is the bias vector, and W (™) = (w;"") is the weight matrix.

We can solve the recursive form for x(%) by unfolding the recursion, obtaining:

x(H) = Weq0 V W, H x(O)7
where

L—1

Weqo = wy v \/ (w(m WD @m... mwE-G-1)m W(()L—M)
k=1
W, =whawt-bg..gwh,

This expanded form shows that the network with L > 2 is equivalent to a network with a single morphological layer,
which is not a universal approximator. Hence, these types of networks require some sort of activation. For example in
(Dimitriadis and Maragos, 2021), their "d network" has two max-plus MP layers, which effectively reduce to one.

ASFs and layers combining max-plus and min-plus MPs. One way to add complexity to the network is by including
min-plus MP units. This can be done in two main ways: either by alternating between max-plus MP layers and min-plus
MP layers, resulting in what is known as an Alternating Sequential Filter (ASF) (Serra, 1988), or by incorporating both
max-plus and min-plus MPs within the same layer, as proposed by Mondal et al. (2019); Dimitriadis and Maragos
(2021). While these architectures appear more complex, they were not developed to address the fundamental limitations
of max-plus MP-based networks. In fact, we demonstrate that even with the inclusion of min-plus MPs, these networks
remain limited in their representational power without the use of activations. By tracing the results of the max and min
operations backwards, we can find a dependence of the output on the input and the parameters of the network. We prove
the following theorems.

Theorem 1. For any network that only uses max-plus and min-plus MPs with input x € R? and a single output
y(x), we have that y(x) is Lipschitz continuous on R? and a.e. it holds that either Vy(x) = 0 or Vy(x) = e; =
[0,...,1,...,0]T for some i = i(x).

This result implies that such networks cannot be universal approximators. Consider, for instance, the function
f(x) = 2x1, whose gradient is Vf = 2e; = [2,0,...,0] . Since the networks described above can only produce
gradients of the form e;, they are incapable of representing even this simple linear function. For details, refer to
Theorem A.5.

Theorem 1 does not contradict the Representation Theorem; rather, it complements it and is motivated by its hypotheses.
One of the byproducts of Theorem 1 is that we can represent a linear shift-invariant filter as a supremum of weighted
erosions exactly when the filter is increasing and translation-invariant. For details, refer to Appendix E.

Theorem 2. Consider a network that only uses max-plus and min-plus MPs with output'y € R™. For any given input
X, if y is differentiable with respect to the network parameters, then in each layer n, there exists at most m parameters

wl(jn) for which the derivative of y is nonzero.
This result highlights a fundamental limitation in training such networks: the sparsity of their gradient signals during

backpropagation. Consequently, gradient-based optimization methods become highly inefficient.

DEP-based DMNNs. Another way of building a DMNN is by using DEP units in each layer (de A. Aragjo et al.,
2017). For a network with L layers we can write it in recursive form as follows:

(n) — £(n)(\(m) (n=1) 4y g — A ' (n=1) 4 ()
mo =S je[%%i’im(% o) ’)jewrﬁlnnfln(% ),

(n)

where A"’ € [0,1],Vi € [N(n)],n € [L], and f(™) a common activation function or identity.

On first sight, this network, a generalization of the previous networks, looks like it solves both problems. By taking
the sum, working backwards the gradient disperses in two paths and we have diffusion of the gradient across more

parameters and more inputs. In addition, by multiplying the two terms by )\En) and 1 — )\En) we have more diversity in
the values of the gradient. However, while it indeed solves the problem of sparse gradients, this network is too not a
universal approximator, and in fact very limited in the range of functions it can represent, as the following theorem
suggests.



Theorem 3. For existing DEP-based networks with input x € R? and a single output y(x), we have that y(x) is
Lipschitz continuous on R? and a.e. it holds that Vy(x) = 0, |[Vy(x)|: < L

This result implies that existing DEP-based networks cannot be universal approximators. To see this, we can consider
again the example of the function f(z) = 2x;. For details, refer to Theorem A.7.

In addition to the above problem, DEP-based networks also showcase another problem. The existence of )\gn) terms
makes training slow. To understand why, suppose that at some point, either after initialization or during training, we

have )\E") # 1/2. Then, the weights WE"), mz(»") will have to follow distributions with different means in order for the

output to be zero-mean. In addition, every time )\E") changes, in order for the output to remain zero-mean, the mean of
the distributions of WE"), mgn) has to change, which is very slow in morphological networks due to sparse gradients. In

general, having A\ # 1/2, fixed or not, hinders trainability. For a detailed discussion we refer the reader to Appendix C.

Our proposal. We propose solutions to the above problems that can be summarized as follows:

1. We introduce learnable "linear" activations between the morphological layers of the network. Depending on our
constraints, the complexity of the "linear" activations varies.
2. We change the DEP-based architecture in the following ways:
(a) We use the same weights for the maximum and the minimum.
(b) We introduce biases.

(c) We remove the learnable parameters /\E”) and simply take the sum of the maximum and the minimum.
We develop networks under three different constraint settings based on the allocation of parameters:

1. Each layer n of size N (n) has at most O(N (n)) parameters allocated for activations, with the remainder constrained
to morphological operations.

2. Each layer n of size N (n) has at most O(N (n)) learnable parameters allocated for activations, with the remainder
constrained to morphological operations.

3. No constraints are imposed on the number of parameters used in the "linear" activations.

Setting 1. In the most restrictive setting, we define a fully connected network, which we refer to as the Max-Plus-Min
(MPM) network. The network is recursively defined as follows:

(n) (n) (n) (n—1) (n) (n) : (n—1) (n)
(n) _ o0 ")\ m . (r () A m . (r .
x,; o; ((wlo je[N(an}il)](xj + w;; )) + <m20 ]'G[N(lnnil)](ycj + w;; )))

Or, equivalently, as follows:

x( = diag(al™) ((wi"” v W BxD) + (m A W B xD)).

Here, our proposed morphological layer is the addition of a max-plus MP layer and a min-plus MP layer sharing the
same weights but with different biases. The activation function is a simple scaling operation: after computing the sum

of the maximum and minimum, each output 335”) is multiplied by a learnable parameter a§"> € R. The final layer is not

activated, i.e. aEL) is fixed to 1.

For a layer n of size N(n), the activation function introduces only N(n) € O(N(n)) additional parameters, with

all remaining parameters dedicated to morphological operations. The presence of learnable parameters agn) and the
inclusion of bias terms allow us to establish the following result:

Theorem 4. [f the domain of the input is compact, the Max-Plus-Min (MPM) network is a universal approximator.

If we had no biases and the max-plus and min-plus weights were different, then this formulation would be equivalent to
a DEP architecture with fixed parameters A™ = 0.5 for all n, t, followed by a learnable scaling for each output. In

the Experiments, we show that: i) by introdlzlcing biases and sharing the same weights we get slightly better training
accuracy and generalization, and ii) both introducing the learnable scaling and taking )\l(-”) = 0.5 are essential for the
network to be trainable.

Improving generalization. The Max-Plus-Min (MPM) network struggles with generalization. To mitigate this, we
introduce the Residual-Max-Plus-Min (RMPM) network, which incorporates residual connections for layers where
input and output dimensions match. Specifically, we add the input to the activated output before propagating it to the
next layer. This residual mechanism accelerates training and slightly improves generalization.



To further improve generalization, we encourage the RMPM to learn robust representations by introducing weight
dropout during training — randomly dropping a percentage of weights during training forward passes.

Setting 2. In Setting 1, the activation function is effectively a linear transformation with a learnable diagonal matrix.
However, a richer class of linear transformations is desirable to enhance gradient diffusion. In Setting 2, our goal is to
achieve this expressivity while maintaining a count of learnable activation parameters of at most O(N (n)) per layer.
Additionally, we prefer that the transformation be full-rank to maximize information propagation.

This motivates our second architecture, the Max-Plus-Min-SVD (MPM-SVD) network, defined as follows:

y(n) _ (an) vW® @ X(n—l)) + (mgn) AW g X(n_1)> ’

<(n) — U(")dlag( (n)7. 01(\7() )(V(n))‘ry(n)_

Here, Ul(n) are learnable parameters, while U (”), V() e RN(W*N() gre fixed, random orthonormal matrices. These
matrices are initialized as follows: we sample a matrix using Glorot initialization (Glorot and Bengio, 2010) and compute
its singular value decomposition (SVD) to obtain U, V, ensuring a well-conditioned transformation. While the number
of learnable parameters per layer remains N (n) € O(N(n)), the total parameter count, including the fixed matrices U

and V, scales as ©(N (n)?). The final layer is not activated, i.e. (TZ(L) are fixed to 1 and UH) = V() = Inp)-

At this point we should emphasize that networks such as those of Mondal et al. (2019); Dimitriadis and Maragos (2021);
Valle (2020) incorporate fully connected linear layers and do not fall in Settings 1 or 2, but in Setting 3. To the best of
our knowledge, we are the first to provide trainable networks in settings as restrictive as 1 and 2.

Setting 3. In this setting, we impose no constraints on the number of parameters in the linear transformations. The
proposed network follows a hybrid architecture, alternating between linear and our proposed morphological layers. We
refer to this model as the Hybrid-MLP, defined as follows:

y(n) _ A(n)x(n—l) +b(n),
X(n) _ (Wl(n) V. W(n) 2] y(n)) + (mgn) A W(n) EE,/ y(n)) ,

The Hybrid-MLP is effectively an MLP whose ReLU activations have been replaced with our proposed morphological
layers. We should note that the biases b(") are theoretically not necessary.

Theorem 5. If the domain of the input is compact, the Hybrid-MLP is a universal approximator. In fact, any fully
connected ReLU or maxout network is a special case of the Hybrid-MLP.

Convolutional networks. So far we have focused on building fully connected DMNNs. We can extend our insights
from these networks and build convolutional networks. Convolutional networks will be based on the morphological
convolution. The morphological layer we propose takes the sum of a dilation and an erosion with shared weights and
different biases. For Setting 1, for a layer with N (n) output channels, we activate the layer by linearly convoluting each
channel with a learnable 3 x 3 matrix, obtaining 9N (n) € O(N(n)) parameters in total. For Setting 2, we activate the
layer by a linear convolutional layer, which has weight matrix A(™ € RN(*xN(n)x3x3 ‘initialized according to Glorot.

For each i,j € [3] we write A(") = U(")E(")(an)) fix UZ(?), Vl(?), and take 2(") to be a learnable diagonal
matrix, obtaining 9N (n) € O(N ( )) learnable parameters. For Setting 3, we alternate between linear convolutional

layers and our proposed morphological convolutional layers.

4 Experiments

To test the efficacy of our networks, we conduct experiments on the MNIST, Fashion-MNIST, (Deng, 2012; Xiao et al.,
2017), and CIFAR-10 (Krizhevsky and Hinton, 2009) datasets. Unless otherwise stated, we use a batch size of 64,
a random 80/20 train-validation split, and the Adam optimizer (Kingma and Lei Ba, 2015) with a learning rate of
0.001 for 50 epochs. Our loss function is the Cross Entropy Loss. Throughout, we report mean and std of accuracy
for different runs. The networks were initialized according to the remarks of Appendix C. For experiments on the
Hybrid-MLP, additional experimental details, additional experiments, and number of parameters of each model, refer to
Appendix D.



Table 1: Train (peak) and test accuracy of fully connected networks on MNIST.

Network Train (%) Test (%)

MLP 99.88 + 0.04 98.01 £ 0.08
MP 31.24 £ 1.51 31.59 £+ 1.28
DEP 76.63 £+ 3.46 76.51 & 3.36
DEP (A = 1/2) 76.96 + 1.13 77.64 £ 1.03
Act-MP 66.17 £ 14.17 65.27 +£13.97
Act-DEP 84.51 = 1.16 84.15 +1.03
Act-DEP (A = 3/4)  94.04 £+ 0.37 92.29 4 0.64
Act-DEP (A =1/2) 99.15£0.23 94.43 £+ 0.26
MPM 99.82 £+ 0.04 94.66 £ 0.13
RMPM 99.99 + 0.00 95.52 +£0.22
RMPM-Drop 99.85 £+ 0.03 97.49 £+ 0.12
MPM-SVD 99.99 + 0.00 96.14 £ 0.04

4.1 Fully Connected Networks

In this section, we evaluate various fully connected networks on the MNIST and Fashion-MNIST datasets. Our primary
objectives are: i) to demonstrate that our proposed networks are trainable, and ii) to highlight the necessity of our
proposed modifications through systematic ablation. We train the following networks:

* MLP: A standard ReL.U-activated multilayer perceptron.

* MP: A max-plus MP-based DMNN.

* DEP: A non-activated DEP-based DMNN.

* DEP (A = 1/2): A non-activated DEP-based DMNN with fixed A = 1/2.

* Act-MP: A max-plus MP-based DMNN with activation applied according to our proposed method in Setting 1.

* Act-DEP: A DEP-based DMNN with learnable )\,E"), activated according to our proposed method in Setting 1.

* Act-DEP (\ = 3/4): A DEP-based DMNN with fixed )\En) = 3/4, activated according to our proposed method in
Setting 1.

* Act-DEP (\ = 1/2): A DEP-based DMNN with fixed )\En) = 1/2, activated according to our proposed method in
Setting 1.

* MPM: Our proposed Max-Plus-Min network for Setting 1.

* RMPM: Our proposed Residual-Max-Plus-Min network for Setting 1.

* RMPM-Drop: An RMPM with 0.3 weight dropout, trained for 200 epochs.

* MPM-SVD: Our proposed Max-Plus-Min-SVD network for Setting 2.

All networks consist of 5 hidden layers of size 256. Dropout makes convergence slower, hence RMPM-Drop was

trained for 200 epochs. The results are reported in Tables 1, 2. As expected, learnable "linear" activation is crucial for

training these networks, with activated networks consistently outperforming their non-activated counterparts. Moreover,

both MPM and Act-DEP (A = 1/2) outperform the models with learnable A\ and fixed A = 3/4, highlighting the

importance of summing the maximum and the minimum for trainability.

MPM further benefits from biases and using the same weights for both the dilation and the erosion, resulting in a slight
edge in training accuracy and generalization. The networks Act-DEP (A = 1/2), MPM, RMPM, RMPM-Drop, and
MPM-SVD successfully train (i.e. reach satisfactory train accuracy peaks and convergence; for convergence results
refer to Appendix D) and achieve training accuracy comparable to that of a standard MLP. Among morphological
networks without dropout, RMPM demonstrates slightly better generalization than MPM, while MPM-SVD — operating
under a different setting — achieves the best generalization. With weight dropout, RMPM-Drop improves generalization
significantly, achieving on MNIST/Fashion-MNIST test accuracies 97.49%/86.88%, 0.52%/1.94% lower compared to
the linear MLP.

4.2 Pruning

Next, we present experiments regarding the prunability of our networks. We confirm that the results of Dimitriadis
and Maragos (2021) hold for our networks also; they are more prunable than linear networks. For pruning we used
two methods: i) the simple ¢; unstructured weight pruning, and ii) the SOTA method SNIP (Lee et al., 2019). For ¢;



Table 2: Train (peak) and test accuracy of fully connected networks on Fashion-MNIST.

Network Train (%) Test (%)

MLP 98.17 £0.12 88.82 +£0.23
MP 22.34 £3.04 22.05+293
DEP 66.41 +=2.08 65.30 +2.38
DEP (\ =1/2) 70.99 £2.12 70.30 £ 2.29
Act-MP 4937 +9.84 48.50 +9.54
Act-DEP 68.52 £2.26 66.79 £2.25
Act-DEP (A = 3/4) 82.82+0.89 79.26+ 0.64
Act-DEP (A =1/2) 95.134+0.59 82.58 +0.39
MPM 98.42 +£0.01 82.864+0.17
RMPM 99.66 + 0.03 84.24 +0.26
RMPM-Drop 96.07 =0.19 86.88 & 0.19
MPM-SVD 99.63 £ 0.02 84.72 4+ 0.12

Table 3: Performance of ¢; pruned MLP and MPM for various pruning ratios on MNIST and Fashion-MNIST.

Pruning MNIST Fashion-MNIST

ratio MLP MPM MLP MPM
085 7193 £548 9359 +0.65 54.12+438 80.83 + 1.09
0875  5852+4.63 93024073 3446-+550 79.92+1.17
0.9 3820+ 8.89 9221+ 1.01 17.17+223 79.19 + 0.99
0.925 1719 £353 9088+ 1.01 1329+202 7753+ 1.74
0.95 1151 £1.80 78.65+13.99 1070+ 1.19 74.94+0.16
0.975 988+ 025 6437+1075 1027 +0.19 57.11 +4.62

pruning, in each layer a given fraction r of unimportant weights are turned to zero, with importance being measured
according to the absolute value of the weight. In practice, this means that we obtain sparse matrices and the storage
of the network can be optimized. The results for different pruning ratios are presented in Table 3. SNIP is applied
as standard: redundant weights are identified before training and completely removed from the network, leading to
smaller networks and faster inference. The results for different pruning ratios are presented in Table 4. We can see that
our networks are indeed more prunable than their linear counterparts, potentially making them more suitable for edge
devices. Remarkably, retaining just 1173 parameters we were able to obtain test accuracies 94.66%/82.73% (i.e. zero
accuracy drop). For the same pruning ratios, the linear networks suffer catastrophic degradation in performance. For
reference, a network with a single linear layer on MNIST requires over 7000 parameters.

4.3 Convolutional networks
In this section, we evaluate various convolutional networks on the MNIST, Fashion-MNIST, and CIFAR-10 datasets.
We train the following networks:

¢ LeNet-5: A variant of the standard, linear LeNet-5.
* MPM-LeNet-5: A morphological LeNet-5 according to Setting 1. Both convolutional and fully connected layers are
morphological.

Table 4: Performance of SNIP pruned MLP and MPM for various pruning ratios on MNIST and Fashion-MNIST.

MLP MPM
Params MNIST F-MNIST Params MNIST F-MNIST
3500 6942 +£3.27 20.26+7.77 3519 9456 £0.13 83.05 +0.06
2333 16.44 £7.20 10.00 & 0.00 2346 9444 £0.13 82.524+0.18
1166 9.80 &+ 0.00 10.00 4 0.00 1173 94.66 +0.25 82.73 +0.33




Table 5: Train (peak) and test accuracy of convolutional networks on MNIST.

Network Train (%) Test (%)
LeNet-5 99.99 +0.01 99.03 £+ 0.07
MPM-LeNet-5 98.46 +0.76  97.08 £ 0.30

MPM-SVD-LeNet-5 9921 £0.19 97.25 £0.28

Table 6: Train (peak) and test accuracy of convolutional networks on Fashion-MNIST.

Network Train (%) Test (%)

LeNet-5 99.20 £ 0.07 90.14 £ 0.10
MPM-LeNet-5 8522 £1.56 82.12+ 147
MPM-SVD-LeNet-5 88.57 £0.72 84.52 + 0.28
ResNet-20 99.69 +0.05 92.42 +0.04

MPM-ResNet-20 96.30 £0.22 89.38 +0.26

« MPM-SVD-LeNet-5: A morphological LeNet-5 according to Setting 2. Both convolutional and fully connected
layers are morphological.

* ResNet-20: A variant of the standard, linear ResNet-20.

* MPM-ResNet-20: A morphological ResNet-20 according to Setting 1, trained for 100 epochs. All convolutional
layers are morphological.

For MPM-LeNet-5 and MPM-SVD-LeNet-5, morphological convolutions were implemented with a LogSumExp scheme
for compatibility with PyTorch. For MPM-ResNet-20, we developed a CUDA module for PyTorch implementing
max-plus convolution under its strict definition. For all LeNet-5 networks, a slight variation was adopted: incorporating
max-pooling instead of average pooling and using 5 x 5 kernels with a padding of 1 for all convolutional layers. For
ResNet-20 networks, we used max-pooling instead of stride for down-sampling. Although the validation accuracy
converged within 50 epochs, for MPM-ResNet-20 the training accuracy took longer to converge, and thus we trained it
for 100 epochs. We did not use any form of dropout. The results are reported in Tables 5, 6, 7. On MNIST, it is clear
that the networks we propose are trainable. It is also clear that they benefit from incorporating convolutions, showcasing
a clear jump in generalization compared to fully connected networks. However, they lag behind the linear LeNet-5. On
Fashion-MNIST, the MPM-LeNet-5 and MPM-SVD-LeNet-5 networks struggled to train as effectively as their fully
connected counterparts. The deeper MPM-ResNet-20 network, on the other hand, trained successfully and reached
89.38% test accuracy, comparable to the linear LetNet-5 but slightly lower than the linear ResNet-20. On CIFAR-10,
MPM-ResNet-20 reached satisfactory training accuracy, and 62.14% test accuracy. Although the accuracy is lower
than that of a linear ResNet-20, the results show that our proposed morphological networks are capable of learning
meaningful representations. To the best of our knowledge, this is the first demonstration of training such networks on
CIFAR-10. For comparison, a linear LeNet-5 typically achieves around 60-65% test accuracy on this dataset.

5 Conclusion

We theoretically analyzed the algebraic and analytic obstructions of current morphological neural network architectures,
leading to the proposal of "linear" activations to achieve universal approximability. With the aim of preserving inherent
sparsity, we designed networks under three constraint settings, accompanied by universal approximability results.
Experiments demonstrated that our modifications are essential for trainability. Including residual connections and
weight dropout further improved generalization. We observed that the effectiveness of convolutions varies by model
depth, with morphological networks benefiting from them on deeper models. We confirmed that our models are highly
prunable both under ¢; and under SNIP pruning. Future research could explore alternative activation parameterizations,

Table 7: Train (peak) and test accuracy of convolutional networks on CIFAR-10.
Network Train (%) Test (%)

ResNet-20 99.10£0.11 81.74 £0.27
MPM-ResNet-20 9534 £0.80 62.14 £ 0.22




improved gradient estimation techniques, and hybrid architectures to enhance the expressiveness, trainability, and
generalization of morphological neural networks.
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Organization of the appendix

The Appendix is organized as follows:

Appendix A establishes that previous architectures are not universal approximators. Specifically, we prove Theorems 1
and 3 and show that these results are sufficient to conclude non-universality with Theorems A.5 and A.7. Additionally,
we prove Theorem 2, which highlights the sparse gradient signal in MP-based networks.

Appendix B proves Theorems 4 and 5, demonstrating that our proposed networks are universal approximators.

Appendix C investigates the initialization of morphological neural networks. In particular, apart from the activation of
their layers, we showcase the main problem that makes training and initializing morphological networks difficult. We
show how initializing our proposed networks is easier than initializing MP-based networks or DEP-based networks
with A # 1/2. Finally, we explain how the networks in our experiments were initialized, and the reasoning behind it.

Appendix D presents our experimental setup details, compute resources required, and our declaration of LLM usage.
In addition, it includes additional experimental results, including experiments on simple regression tasks, and the full
training history of networks that we claimed were trainable but for which only peak training accuracy was reported in
the main body.

Appendix E presents the relationship between our results and the Representation Theorem (Maragos and Schafer,
1987). Specifically, it showcases the differences in assumptions made, where these matter in the proof of our theorems,
and shows also that our theoretical results are actually complementary to the Representation Theorem.

A Results on previous work

In this appendix we establish our results regarding previous architectures. Before we proceed with our proofs, we give
the definition of a universal approximator.

Definition A.0 (Universal approximator). We say that a class of functions F is a universal approximator on a set
D C R™ if and only if it is a dense subclass of the class of continuous functions on D under the || - ||oo function norm.
Equivalently, for any continuous g defined on D, there exists a sequence { f; }ien C F such that f; — g uniformly.

We say that a network architecture is a universal approximator on D if the class of functions it defines is a universal
approximator on D. Whenever we do not define the set D it is either R™ or can be inferred from the context. With a
slight abuse of terminology, whenever we say that a network is (or is not) a universal approximator, we mean that the
defined architecture is (or is not) a universal approximator.

For our proofs, we are going to need the following lemmas.

Lemma A.1. Let B C R be a non-trivial compact interval, and let F be the class of Lipschitz continuous, single-variate
Sunctions f : B — Rwith |f'(z)| < 1 a.e.. The class F is not a universal approximator on B (i.e. it is not a dense
subclass of the class of continuous functions on B).

Proof. Since B has non-empty interior, there exists 2o and 0 < r < 1 such that [zg — r,zo + 7] C B. Let g(z) = z/r,
a continuous function on B. For the shake of contradiction, suppose that F is a universal approximator. Then, for every
€ > 0 wecan find f € F such that |f(z) — g(z)| < &,Va € B. In particular, f(z¢) < g(zo) +¢ = zo/r + € and
f(zo+7) > g(xo+r)—e = 20/r+1—c. It follows that f(zo+7)— f(zo) > 1—2¢. However, f is Lipschitz continuous,
and hence also absolutely continuous. Thus, it is differentiable a.e., and it holds that f(xo+7)— f(z¢) = f;oo () d.

But, due to the bound on the derivates of f, we have that f;ﬁr f(x)dx < f;OOJrT lde=r=r>1-2,Ve>0=
r > 1, a contradiction. O

The previous lemma can be generalized to functions of multiple variables.

Lemma A.2. Let B C RY be a compact, convex domain with non-empty interior, and let F be the class of Lipschitz
continuous functions f : B — R with ||V f(x)||1 < 1 a.e.. The class F is not a universal approximator on B.

Proof. First, we prove that if  is a universal approximator on B, xo € int(53), v is a directional vector, and
B={teR:xq+tv € B}, then H = {f(x¢ + tV)|f € H} is a universal approximator on 5. Let § : B — R be

a continuous function. Since B is a compact interval, we extend the function continuously on R. For every x € B
if xo + tv is its projection on the line, we define g(x) = §(¢). In the end, we obtain a continuous g on B for which
g(t) = g(xo + t¥). Since H is a universal approximator of B, we can find a sequence f1, f2, ... of functions in H
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such that f,, — g uniformly on B, i.e. supyep(fu(x) — g(x)) = 0 = sup, z(fu(x0 +t¥) — §(t)) — 0. Thus,
fi1(xo + tX), fa(xo + tX), .. . approximates the continuous function g, and H is a universal approximator on B.

Next, we take some xg € int(B) and v = (1,0,...,0). To prove that F is not a universal approximator on B, it
suffices to prove that F = {f(x0 + tX)|f € F} is not a universal approximator on B. Notice that F and B satisfy
all requirements of Lemma A.1. Indeed, B is compact, convex, with non-empty interior, and thus B is a non-trivial
compact interval. In addition, let f € F. Then, we have that

1. f‘is Lipsc|hitz: |f(t2) = F(t1)] = | f(xo+t2¥) — f(x0+11V)| < L||xo 4tV —xo+t1V|| = Lty —t1|||¥] =
Lty — t4

2. |f'(t)| < 1ae.: Since f is Lipschitz, by Rademacher’s theorem, it is differentiable a.e. on int(8). Since B is
convex, its boundary has zero measure, and hence its interior int() has same measure as 3. This means that
f is differentiable a.e. on . This in turn means that the directional derivative of f in the direction v (i.e. the

derivative of f) equals (V f,v) = (V) a.e.. It also holds that |(Vf),| < ||V f]|; < 1ae..
Hence, by Lemma A.1, F is not a universal approximator on B, and F is not a universal approximator on B. O

Before we proceed with the proof of Theorem 1, we will need the following two auxiliary lemmas.

Lemma A.3. Let B C R% and fi, fa,..., fn : B — R be Lipschitz continuous functions with Lipschitz constants
L1, .... Then, their pointwise maximum and point-wise minimum are Lipschitz continuous functions.

Proof. We can prove the statement for two functions f; and f5, and for multiple functions it will follow from induction
on n.

Notice that max(f1, f2) = fl+f2+|flf2‘ and min(fy, fo) = M. Since the addition and scaling of
Lipschitz functions is Lipschitz, it suffices to show that |f; — fa] is L1psch1tz By triangle inequality, we have that

[1f1(x1) = fo(x1)| = [ fr(x2) = fa(x2)|] < [fi(x1) = fa(x1) = fr(x2) + fa(x2)]

< [fi(x1) = fi(x2)| + | fa(x1) — fa(x2)[ < (L1 + La)|[x1 — xaf|, Vx1, %2
Thus, max(f1, f2), min(f1, fo) are Lipschitz. By induction, max;¢(y,) fi, min;ep, f; are Lipschitz. O

Lemma A4. Let open BC RY, f1, fo,..., fn: B =R and g = max;ein)(fi), h = min;ep, (fi). Let xo € B and
I={ien]: filxo) =g(x0)},J = {i € [n] : fi(x0) = h(x0)}. Suppose that f;:differentiable on xo,Vi € [n].
Then, we have that

g diff onxo = Vg(xo) = Vfi(xo),Vi € I.

b diff. on xg = Vh(xo) = V fj(x0),Vj € J.

Proof. We will prove only the part of the statement involving the maximum, with the proof of the statement for the
minimum being similar. Suppose that g is differentiable on x( and that there exists ¢ € I such that Vg(xg) # V f;(x0).
Then, we have that

ov
But it also holds that (f; — ¢g)(xo) = 0. Hence, for small enough ¢ > 0, we have that
(fz — g)(XO + t\A/) >0

= fi(xo +tV) > g(xo +t¥) = Jrréz[ﬁ(fj (x0 +tV)),

V(fi—9)(x0) #0 =3IV :V(f; —g)(x0) - v>0=3V: xo) >0

which is a contradiction. ]

Remark. In Lemma A.4 it is implicitly proven that if g is differentiable at x, then the gradients of f; at xq fori € I
will be equal.

Next, we restate and prove Theorem 1.

Theorem 1. For any network that only uses max-plus and min-plus MPs with input x € R¢ and a single output
y(x), we have that y(x) is Lipschitz continuous on R and a.e. it holds that either Vy(x) = 0 or Vy(x) = e; =
[0,...,1,...,0]T for some i = i(x).
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Proof. First, we prove that y is Lipschitz continuous. We use induction on the layers of the network to prove that
the output of each unit is Lipschitz continuous. For the base case n = 0, notice that each input ¢ can be thought

of as a projection x — x;, which is Lipschitz continuous. Suppose that the outputs xg-n) of all units of the n-th
layer are Lipschitz continuous. Without loss of generality, suppose the ¢-th unit of the (n + 1)-th layer is a max-plus

MP. We have that x;n) +w"™Y is Lipschitz for all j € [N(n)], w( ™" is Lipschitz, and hence by Lemma A.3

ij
xz(”*l) — wt (n) 5}”1)) is Lipschitz continuous. Thus, by induction, the outputs of all units of

1
wig.+ )y maX;e ) (z; " 4w ~ chitz ¢ _
the networks, including output y of the last unit, are Lipschitz continuous.

Next, we prove the remaining part of the theorem. To simplify notation, we denote g = 0 = [0, ...,0] .

To prove our theorem, we use induction on the number of layers. For the base case, i.e. the input, we have that Vz,; = e;
everywhere. Suppose that the claim holds true for the n-th layer. Take any MP unit of the (n + 1)-th layer, say the i-th
unit, and suppose without loss of generality that it is a max-plus unit. We have that

(n)

x§n+1)(x) = w%lﬂ) V max(z;" (x) + w(nﬂ)).
j

ij

0 2 Jij

We set f0) = (D) plntl) — CEE-R) + wg‘ﬂ)

is differentiable a.e. on R%. In addition, by the inductive hypothesis, we have that x

. Notice that by Rademacher’s theorem, we have that xEnH) (x)
(n)
J

(Vz§") (x) = ey, (x) for some k;(x)) a.e., and hence fi(f“) is differentiable a.e. with (Vfg“rl) = V:c;") = €, (x)
for some k;(x)) a.e.. Moreover, wz%l 1) is differentiable everywhere with V fi((;"ﬂ) = Vw%l D ep. This means

that Lemma A.4 holds a.e., and we have that a.e. VxE”J”l)(x) = sz.(;l*l)(x),Vj € J, where J = {j : x§"+1)(x) =
fi(;LH)(x)}. This means that a.e.: 1) k;(x) = k(x),Vj € J, and 2) V:CZ(»H—H)(X) = ej(x)- This concludes the
induction. O

(x) is differentiable a.e. with

Notice that the above proof also gives as a way to find the derivative (i.e. the i = i(x) of the statement): It suffices to
work backwards, following the paths where the maximum or the minimun is attained. If we end up with two or more
"leafs" as inputs/biases, then the function is not differentiable. Otherwise, if we end up at a unique leaf, which can
either be an input or a bias, then the index of the input (0 for the bias) is the i = i(x) we are looking for. Refer to Figure
1a for a differentiable example, and Figure 1b for a non-differentiable example.

Combining Theorem 1 and Lemma A.2, we obtain the following result.

Theorem A.5. Networks that only use max-plus and min-plus MPs are not universal approximators.

Proof. We prove that they are not universal approximators on any compact, convex domain B C R? with non-empty
interior, which is stronger that not being universal approximators on R%. Notice that by Theorem 1 we have that a.e.
either Vy(x) = 0 or Vy(x) = e;x) = [[Vy(x)|[1 < 1. Hence, ||[Vy(x)||1 < 1 a.e. on R™. If we restrict y on B,
we have a compact, convex, domain B with non-empty interior and a Lipschitz continuous y(x) with ||[Vy(x)|j1 <1
a.e. on B. From Lemma A.2 it follows that networks that only use max-plus and min-plus MPs are not universal
approximators on B. O

Before we proceed with the proof of Theorem 2, we prove the following lemma.

Lemma A.6. Let open B C RY, continuous fi,...,f, : B = R, and g = max;en] (fi), h = minep,)(fi). If for
some Xy € B we have that the maximum is attained only at some j € [n] (i.e. f;(x0) > fi(x0),Vi # j) and f; :
differentiable on x, then g : differentinable on xo with Vg(xo) = V f;(x¢). Similarly for minimum.

Proof. We only prove the statement for the maximum, with the minimum being similar. Since f;: continuous on x, and
fi(x0) > fi(x0),Vi # j, we have that in a small enough neighborhood N (xo, €) it holds that f;(x) > fi(x),Vi #
J,x € N(x0,¢). Then g(x) = f;(x),Vx € N(xq,e) = ¢ : differentiable on xq with Vg(x¢) = V f;(x0). O

In a similar fashion to Theorem 1, we can prove Theorem 2.

Theorem 2. Consider a network that only uses max-plus and min-plus MPs with output’y € R™. For any given input

x, if y is differentiable with respect to the network parameters, then in each layer n, there exists at most m parameters
wz(jn) for which the derivative of y is nonzero.
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Proof. We work backwards, following the paths where the maximum and the minimum is attained. If the maximum or
the minimum is attained only for one argument, we keep track of the argument’s "slack" and continue the path from this
argument. We continue this process until either 1) we reach a "leaf" (i.e. an input or a bias), or 2) we find a maximum
or minimum that is attained for multiple arguments and we get a "split".

In the second case, we have that the output is not differentiable with respect to the weights: If the split happens for the
path of the k-th output, WLOG at a max-plus MP, and w(m is a weight such that the maximum is attained at j, then by

letting a small dw > 0, smaller than the minimum of the recorded slacks, and (w (]")) = wl(]n) + dw, we have that all
the units along the path are incremented by dw, and y;, = yi + dw = dyi = dw. If, on the other hand, we let dw < 0,
then the MP unit where the split happened remains unchanged and y}, = y, = dyi, = 0. Hence, y is not differentiable
with respect to w( ),

In the first case, each output y; has a path from y;, to a "leaf". We have that the output is differentiable with respect to
the weights, and the statement holds. We will prove this using induction on the nodes of the path. We will prove the
following stronger statement: If 4 (n) > 0 is the unique node of layer n that belongs to the path of yy, and path, (n)

is the set of weights that belong to the path of y;, and are before the n-th layer, then for every n it holds that x(n()n)

is differentiable with respect to the weights and wal ()n) Zwepathk(n) e,, (here we denote xé = 0). Notice that

since we have no "splits", paths can only merge, and hence the statement is indeed stronger.

Take the path of y;. The statement obviously holds true for the first node of the path, i.e. the leaf. Suppose it holds
true for the n-th node. Then, we have that f;, (n41),i,(n) = Ek ()n) + wl(:(tl 21) in(n) is differentiable in terms of the
weights with V, fi, (n41),i,.(n) = Zprdlhk(n) ey t+e W o Zwepdthk(nﬂ) €. Also since the maximum or

minimum is attained only for ix(n), by Lemma A.6 we have that :17( L (n 421

and szgf(';lﬁl = Vw fir(nt1)in(n) = Zpralhk(n+1) e,,, which concludes the induction. O

) is differentiable with respect to the weights,

The above proof also gives us a way to calculate the derivative with respect to any weight. Refer to Figure 1c for a
differentiable example, and to Figure 1d for a non-differentiable example.

Continuing, we restate and prove Theorem 3. We consider two cases: the non-activated DEP-based network (i.e.
(™ = 1,¥n), and the activated DEP-based network with a common activation function (i.e. sigmoid as in (de A. Aratijo
et al., 2017), tanh, ReLU, ELU, or Leaky ReLU). For both cases, we prove a stronger variant of Theorem 3.
Theorem 3 (non-activated). For any non-activated DEP-based network with input x € R? and a single output y(x),
we have that y(x) is Lipschitz continuous on R? and a.e. it holds that Vy(x) = 0, ||Vy(x)|1 = 1.

Proof. First, we prove that y is Lipschitz continuous. We again use induction on the layers of the network to prove

that the output of each unit is Lipschitz continuous. For the base case n = 0, notice that each input ¢ can be

(n)

thought of as a projection x — x;, which is Lipschitz continuous. Suppose that the outputs x;"" of all units of

() 4 D ;

is Lipschitz continuous for all ¢ € [N(n + 1)]. Similarly,

the n-th layer are Lipschitz continuous. We have that z}
PRGOS §}+1))
Wi

is Lipschitz for all j € [N (n)], and hence

by Lemma A.3 f»(n+ ) = IHane[n](

gi(n+ ) = mlnje[n]( 2™ + m("ﬂ)) is L1psch1tz continuous. Since scaling and addtion preserve Lipschitz continuity,

we conclude that x(”H) /\(”Jrl)f("+1 + (1 = A" g also Lipschitz continuous. Thus, by induction, the

outputs of all units ‘of the networks, including output y of the last unit, are Lipschitz continuous.

Next, we prove the remaining part of the theorem. To prove our theorem, we use induction on the number of layer. For
the base case, i.e. the input, we have that Va; = e; = Vz; = 0, ||Vz;|; = 1 everywhere. Take any DEP unit of the
(n + 1)-th layer, say the i-th unit. We have that

£ (%) = max(a§ (x) + w ),

z j J ¥

n+1 n+1
0" () = min(af" (x) + myf ),

2" () = A () 4 (1= AT )" ().

Notice that by Rademacher’s theorem, we have that f; (1) and g(”'H)

are Lipschitz, see previous paragraph). In addition, by the inductive hypothesis, we have that x;

are differentiable a.e. on R (since they

(") s differentiable
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@ []

(a) Differentiable with respect to input. (b) Non-differentiable with respect to input.

<] L] ]

(c) Differentiable with respect to weights. (d) Non-differentiable with respect to weights.

Figure 1: Cases of differentiable and non-differentiable networks with respect to input and weights.

a.e., and hence 2™ + w (n)

; and 2, +m
and we have that a.e. V"™ (x) = V(:L’g»n) (x) + wl(‘;ﬁl)) = Va:lg-n)(x),Vj € Jy, V"M (x) = V(zgn) (x) +
w ™) = Vo (), € Jo, where Sy = (i £ () = 2l ) +wiT) D = {5 o () =
x§-”) (x)+ wgfﬂ)}. This means that a.e. mgnﬂ) is differentiable, with Vacl(-n“) = )\En+1)V$;?) +(1— AE”H))Vx;Z),
for some j; € Ji, jo € Jo. Since Aﬁ"“) €[0,1] and a.e. ng»?) =0, Va:;z) > 0, we have also that a.e. Va:l(»nﬂ) = 0.
Therefore, we also have a.e. that HV:EZ(»"H)Hl = Zk(VIE”H))k = Zk()\z(-"H)V:cg?) +(1- AE”H))V:CEZ));C =

AT S (V) 4+ (1= A S (V) = AP 41— AT = 1. This concludes the induction. O

J2

(n+1)

ij

(n+1)

1j

are differentiable a.e.. This means that Lemma A.4 holds a.e.,

At this point, we should note that, although a lot of existing works do not use activations based on the false belief that
the non-linear morphological networks do not need them, some works do in fact incorporate them. In (de A. Aratijo
et al., 2017), for example, the authors use a sigmoid function. However, this, too, does not solve the problem (and if
anything, it makes it worse).

Theorem 3 (activated). For activated DEP-based networks with L layers in total, of which L are activated by a common
activation function f with 0 < f' < s < 1 a.e., input x € R% and a single output y(x), we have that y(x) is Lipschitz
continuous on R% and a.e. it holds that Vy(x) = 0, ||Vy(x)|: < s* < 1.

Proof. We denote with y; ™) the non-activated outputs, and xE") the outputs after activation (where as activation we
can either have a common activation function or an identity). Again, we denote with fi(") the output of the maximum

operations, and by ggn) the output of the minimum operation.

Because the composition of Lipschitz continuous functions is Lipschitz continuous, and the common activation functions
are Lipschitz, with a proof similar to that of the previous theorem it follows immediately that both yl(") and m§”> are

Lipschitz continuous for all n, 4.
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We will prove that after [ < L activated layers, we have that a.e. it holds that Vajgn) =0, ||Vm§n) 1 < st We will
prove this with induction. The base case is similar to that of the previous theorem. Suppose that the statement holds

for the n-th layer, i.e. if [ activated layers precede the n-th output, then a.e. it holds that Vxl(-”) =0, ||Vm§”) 1 < s
With an argument similar to that of the previous theorem, we have that a.e. Vyi(nﬂ) = )\l(-"H)nyf) + (1 -
)\Z(»"H))Vargz), for some j; € Ji,j2 € Jo, where Jy, J are defined as in the above proof. Since AE"“) € 10,1] and
a.e. Vxﬁo = O,ng-g) > 0, we also have that a.e. Vyz("H) = 0. Also, a.e. ||Vy§"+1)||1 < )\§”+1)HV$§T)||1 +

(1- )\En+1))HV;v§Z)||1 < Al (1= AT el = sUIf the (n + 1)-th layer is not activated, then we have

that $Z(-n+1) = yinﬂ), and then, [ activated layers precede the (n + 1)-th output, and we have that a.e. Vmﬁ"ﬂ) =

vy = 0, V2"V, = [vy" V|1 < s If the (n + 1)-th layer is activated, then by the chain rule, because
the derivative of all common activation functions exists a.e. and is bounded by 0 and s, and because Vyl(") > 0, we
have that a.e. Vz{" ™ = 0, |[Va{" V||, < 5|V ||; < si*1. This concludes the induction.

K2

O

Combining Theorem 3 and Lemma A.2, we obtain the following result.

Theorem A.7. Existing DEP-based networks are not universal approximators.

Proof. We prove that they are not universal approximators on any compact, convex domain B C R? with non-empty
interior, which is stronger that not being universal approximators on R%. Notice that by Theorem 3 we have that a.e.
Vy(x) = 0,||Vy(x)|l1 < 1. Hence, |[Vy(x)|s < 1a.e. on R™. If we restrict y on B, we have a compact, convex,
domain B with non-empty interior and a Lipschitz continuous y(x) with ||[Vy(x)||s < 1 a.e. on B. From Lemma A.2 it
follows that DEP-based networks are not universal approximators on 5. O

At this point, it is important to note that Theorem A.7 can be easily generalized to hold for any activation function with
a bounded derivative, which also includes more exotic activation functions.

B Proposed networks are universal approximators

In this appendix we provide the proofs of Theorems 4 and 5 regarding the universality of our proposed networks.

Theorem 4. If the domain of the input is compact, the Max-Plus-Min (MPM) network is a universal approximator.

First, we give an overview of the ideas of the proof. The main idea is that, if C is a large enough constant, then for
some max-plus-min unit, by letting some input weights hover around +C, some other input weights hover around
—C and the rest to hover around 0, we effectively untangle the max-plus-min unit: The third type of weights are
rendered idle, the first type of weights contribute only to the maximum, the second type of weights contribute only
to the minimum, and after summing the result the +C' and —C cancel out. This way, we can control which inputs
contribute to the maximum, which to the nimimum, and which to neither. This way, we can do the following: 1) We can
build functions of the form a’x + b, 2) We can split the network into parallel networks each of which build their own
function, 3) we can feed some of them into a maximum, and the rest into a minimum, to build a function of the form
max;e(pn (aiT x+b;)+ MiNe [p4m]—[n] (a;rx + b;), which can be shown to be a universal approximator based on the
proof of universality of the Maxout networks (Goodfellow et al., 2013).

Proof. A byproduct of the proof of universality of Maxout networks, is that the class of functions of the form
maxye (k) (a, x + bp) — max,e(c),x + dm) = maxpek)(alx + bp) + mingepg((—c)hx — dm) =
maxpye[k] (a,Ix +bg) + min,, e[ (é;x + d,,) is a universal approximator on R4, Thus, it suffices to prove that over
any compact domain, we can build any function of the above form using an MPM. We restrict ourselves further by
assuming that w\" = m{", for all layers n.

First, we show how we can build linear functions of the form a’ x + b. Let a bounded domain B and let some R > 0
such that B C B;(0, R), where B; (0, R) denotes the ¢; ball centered at the origin with ¢; radius R. Let C > O be a
large constant to be determined. Write a'x+b=ayx1 + ...+ agzrqg + b. First, we build each a,;z; term. Take the
first max-plus-min layer to have d outputs and d inputs, with weights

wz(il) =+C,
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wi) =0, i#,j#0,
wl%) =—-C.
Then, for the i-th output we have that

$Z+’U}()—Ii+c>f1}j+02$j+w£;)y Jj#i,

xi—l—wg»l) =z, +C > —C’:wl(é),

zj +w(1) =1x; > fC:w%L)

(1) (1)

= W,y V i ) =x; + C,
Wio' V max(x; +w;;’) = 7+
wd €]
wy A rreu[(ril](:rJ +w;;’)=-C
= yl( ) = (w l%) V max(z; + wl(j))) + (w 1(0) A min(z; + w(l))) =z2,+C—-C=u
Jjeld] jeld]

For the inequalities to hold, it suffices that C' > ||x||1. Take the activation of the first layer to be

Otl(»l) = a;

Then, for the i-th activated output we have that

CEEl) = aiyfl) = QT4

Next, we will start summing up the terms. First, we sum up a4_12x4—1 and agx4. Take a max-plus-min layer with d — 1
outputs and d inputs. The weights of the second layer are as follows:

(2) _ 2  _ w® )
Wiy = TC  wy_y,=-C, wyly,;, =0,Vj<d-1,

w? =40, i<d-1,
<”_o i£ji<d—1,740

wd =-C, i<d-1.
Similarly with before, for i < d — 1 we have that

()+wz(2)—x()+C>x(1)+0—x()+w() J# 1

%
(1)+U}(2) 1)+C>—C:w )7
x(l) —|—w( ) = (1) >—C = w(g)

= wfo) V max(z ;1) + w(Q)) 7» )+ C,
j€[n] ’
wig A min(a” + ) = —C
JEN :

= y2(2) (w Z(g) V max(z; ) 4 w(z))) + (w (0) A min(z ; )+ w(z))) 51) +C—-C= xz(.l) = a;z;
jE[d] J€ld]

For i = d — 1 we get the sum of the terms aq_12x4—1, agxq. We have that

x((i)l—l—wé?_l)(d_l) x((i 1+C’>x —l—O—x()—l—wEd) 1) Li<d-—1,

1 2 1) 1 1
J:El)l—kwgd)_l)(d 1 :x&71+0>x()—0—xg)—|—wgd) 1)

W @) (1) 2)
%1+ww1w1y—%1+0>0—wu1w

(2) (1) (2) _
= Wig_1)o v ﬁ?ﬁ(%q T Wilyy;) = 2 +C,

oD 4@ a0 <o

1 2 1
o} )‘i'wéd) d = 3751 -C0< m  TC0= )1 +w§d) 1)(d—1)’

(2)

+0:ﬂ”+wwle<d—1
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1 2 1 2
2+ “’Ed)—md =2 -Cc<o0= wgd)—nov
(1)

(2) ; (2) _ 1)
= Wig_qyo N ]1.161%51](3:(171 Twg ) =2 —C,

2 2 1 2 2 e 2 1 1
= y5131 = (wéd)—l)o v %?ﬁ(xfizl + wgd)—l)j)) + (wéd)_no A ]Helhril](%‘g,)l + wgd)—l)j)) = 375121 +O+ xfi '-c

= x&ﬂ)l + x((;) = Qd—1Td—1 + AdTd

For the inequalities to hold, it suffices that C' > ||x(M||; = |a1z1| + ... + |agzq4|. Take the activation of the second
layer to be
) _ 1

@

Then, for the i-th activated output we have that

xl(g) = Z/z@) =a;x;, 1<d-—1, 'r51221 = 91(1231 = ad—1Td—1 + @dTd

We repeat this process for a total of d layers (1°¢ layer for multiplication with a;, the rest for adding the terms) until all
the terms a;z; have been summed up and we end up with a single output. To add the bias term b, we add one final layer
with 1 output and 1 input, with weights defined as follows:

G = i =0

Then, we have that
d+1 d+1 d+1 d d+1 d+1 d d+1
2T =y = @iV @ i) + @i A @+ i)

= w%+1) + (Igd) + wi(f-i_l)) =0+ Jigd) +b=aix1+...+aqry+5b

For all the inequalities to hold, it suffices that the following hold:
C > [1x||1,
C > ||xWV|; = |arzr| + ... + |agzdl,

C> x|y = larz1| + ... + |ag—2ma—2| + |ag_124—1 + agzal,

C > x4 Y|y = |arzy + ... + agzq]
For the above to hold, it suffices that the following holds

C > (14 max|ag|)[x]lx
i€[d]

We simply choose C' = (1 + max;¢q) |a;|) R and we are done.

So far we have shown how to built the single output function a x 4 b. We can also build networks with multiple
outputs each of which is an affine function of the input.

Say we want to build a network which outputs the functions alTx +b1,..., a;(x + bx. We can use the exact same
method as the one used for the single function a " x + b. Specifically, we build "parallel" networks, each calculating a
single function independent of each other.

Again, let a bounded domain B and let some R > 0 such that B C B;(0, R), where B;(0, R) denotes the ¢; ball
centered at the origin with ¢; radius R. Let C' > 0 be a large constant to be determined. Write a,;'—x + b, =
ag1%1 + - .. + G qTq + by. First, we build each ay, ;x; term for all k € [K],i € [d]. Take the first max-plus-min layer
to have K d outputs and d inputs, with weights

(1)
Wik (k—-1)a)i = TC;
wtM =0, i#4,j#0
(i+(k—1)d),j ) J5J )

(1) _
Wit (k—1)d),0 — -G,
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where k € [K]. Then, similarly to before, if C' > ||x||; we have that

1
y§+)(k—1)d =i+ 0 - C=u,

where k € [K]. For the activations, take
1 .
az(Jr)(k—l)d =ay,i, k€ [K]ié€ld].
Then, for the (i + (k — 1)d)-th activated output we have that

1 1 .
xgﬁ(k_l)d = akiy§+)(k_1)d =agvi, k€ [K]ie€][d

Next, we start summing up the terms. First, we take the sums ay (q—1)Ta—1 + @1,4%d> - - -» OK,(d—1)Td—1 + QK ,dTd-
We use the same method as the one used previously. Take a max-plus-min layer with K (d — 1) outputs and K d inputs.
The weights of the second layer are as follows:
(2) _ (2) _ (2) _ ;
Wia—1)kd—1) = 7O Wig_yea = =0 Wiy ; =0, Vk € [K],j # kd, k(d — 1),
(2 _ .
Wi k- 1)(d=1)it(h—1)(d—1) = TC, k€ [K]i <d—1,
W e, =0 kEKLi<d=1,j#i+(k—1)(d—1),j#0,

()

Wit (k—1)(d—1),0 —

—C, kelKli<d-1,

Similarly to before, if C' > Hx(l) i = |la11z1] + ... + |argza] + - .. + |axqzq|, then we have

2 .
yi(-i-)(k—l)(d—l) =apizi, ke[Kli<d-1

y,(f(zl,l) = Gk (4—1)Td—1 + akqTa, k € [K]

Take the activation of the second layer to be aﬁ)( r—1)a-1) = L 1€ [d — 1], k € [K]. Then, for the i-th activated
output we have that

(2) _ .2 . .
T k1) (d-1) = Yir(h-1)(a—1) = ki @ <d—1 k€ [K],
T = gy = Ok @nTas + akara, b E K]

We repeat this process for a total of d layers until all the terms have been summed up and we end up with K outputs. To
add the bias terms by, we add one final layer with K outputs and K inputs, with weights defined as follows:

wg =+ 0 wig = =0 wif =05 £k

Notice the slight deviation from the previous method. If C' > [|x(?||; + maxje (k] |bx|. then we have that
l‘;(cdﬂ) = y;(cdﬂ) = a1 + ...+ aparq + by
For the inequalities to hold, it suffices that the following hold:
C > ||x]J1,
C > ||X(1)H1 = |a11x1| + ...+ |a1dxd| + ...+ |G,Kdl‘d|,

C > x|y = laniz1] + ... + |ayg_1)Ta—1 + argzal + ... + |ax@_12a—1 + axazal,

C > ||x(d)H1 + max |bg| = |a11x1 + ... + a1q24]| + ..+ lag121 + - ..+ agaxa] + max |by]
kE[K] ke[K]
For the above to hold, it suffices that the following holds
C>(1+K ma ari|)||x|l1 + max |b
(1K max o)l + ma [
We simply take C' > (1 4+ K max;c(q) ke[k] |aki|) R + maxye(x) |bx| and we are done.
To finish the proof, we will prove that we can build functions of the form maxyex1(a) x+bi) +min,, e (c,, X+ dy,).

First, using the previous method, build a network with K 4+ M outputs, of which the first K outputs are the functions
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a] x + by, k € [K], and the last M outputs are the functions c¢,,,x + d,,,m € [M]. Activate the final layer with an
identity activation. Let C’ > 0 be a large constant to be determined. Place another final layer with 1 output and K + M
inputs. The weights of the new final layer are as follows

Wi — 0, W™ = 400 e [K], U’Y(IIJZ)Z) = —C',ie[M]

Then, we have that
apx+by+C >0>cpx+dy,—C ke [K|,me[M],
and hence, the output will be given by

(d+2) (d+2)
= +b,+C)+ +d,—-C) = +bx) + d
z; Yy gn?x](akx k ) mbr\l/[](c x + dg, )= ;nfxx](akx k) mm%n}(c X+ dg).

For the above inequalities to hold, it suffices that

C'>1+(K+M ils mil)) R b d,
> (U (K o Mmoo fal, | max - [el) R+ mo(ma [og], mase [d)

This finishes the proof. ]
We should point out that for the purpose of simplifying the proof, we summed up the terms one-by-one, resulting on
©(d) layers. However, one can easily sum up the terms in a hierchical fashion, resulting in ©(log(d)) layers.

Before we proceed with our final theorem on the universality of Hybrid-MLP, we are going to need the following two
lemmas regarding ReLU and Maxout networks.

Lemma B.1. Suppose we are given a ReLU activated fully connected linear network with L linear layers
(A™) b)) n € [L), which can be recursively defined as follows

y(n) — A(n)x(n—l) + b(n), ne [L],

x™ = max(0,y™), nelL-1, x©)=yb
where max is taken element-wise. Then, for every n € [L] it holds that

ly ™ < (H At )||1> [1[[1 +Z IT A9 | 6@
i=1 \j=i+1
Proof. We will prove that for every n € {0, ..., L — 1} it holds that

n

™l < (H A ”I1> 1%l +Z IT 1A ) 1@

i=1 \j=i+1
For n = 0 the inequality obviously holds. For n € [L — 1] we have that
[ = [ max(0,y™) [y = 3 fmax(0, 55" < D™ = [y ™l = A" BV,
J J
By the sub-additivity of vector norm || - ||; and sub-multiplicativity of matrix operator norm || - ||; we have that
™l < A [T+ (b
By expanding the recurrence, we have that
™ < A "D+ B
< LA AT <72+ b+ A"V

(HIIA ||1> ||X||1+Z ﬁ AP 1 | @1

i=1 \j=i+1

Then, for every n € [L] we have that
Iy < AT ™D+ b,

and the result follows immediately. O
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Lemma B.2. Suppose we are given a Maxout fully connected linear network with L layers and pooling of P which can
be recursively defined as follows

y](3n) Az()n)x(”*l) + bi()"), n€[L—1],pe[P],

< — m?;(](y;m), nell—1), x® =y® — AWxE-D L D)
pe

where max is taken element-wise. Then, for every n € [L — 1] it holds that

P n n
Sy < [ TTSS 1890 | i+ S T S 1890 ) {5 mwe,
p=1

=1 pe[P] =1 \j=i+1pe[P] pE[P]

Proof. First, we will prove that for every n € {0,..., L — 1} it holds that

I < {TT D2 IAP 1 ) Il + ) H Yo IAP | D 1Y

i=1peP] i=1 \j=i+1pelP] pelP]

For n = 0 the inequality obviously holds. For n € [L — 1] we have that

s = il = s 01 < 32 32 1= 3 1l

J pe[P pe(P]
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By the sub-additivity of vector norm || - ||; and sub-multiplicativity of matrix operator norm || - ||; we have that
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By expanding the recurrence, we have that
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Then, for every n € [L — 1] we have that

STy < |2 1A ) XDl + [ > IS |
pE[P]

pE(P] pE(P]
and the result follows immediately. O
Theorem 5. If the domain of the input is compact, the Hybrid-MLP is a universal approximator. In fact, any fully
connected ReLU or maxout network is a special case of the Hybrid-MLP.

22



Proof. We will show that for any ReLLU and Maxout networks, if the domain B is bounded (i.e. there exists R such
that B C B1(0, R)), then there exists a Hybrid-MLP network that gives the same output. By our construction it will
immediately follow that for bounded domains, ReLU and Maxout networks are special cases of the Hybrid-MLP.

First, we focus on ReL U activated networks. Take a network as defined in Lemma B.1. Layer-by-layer, we will replace
its ReLU activations with our proposed morphological layer. Pick an activated layer n € [L — 1] and some large
constant C' > 0 to be determined. Remove the ReL U activations and replace them by our morphological layer:

y(™ = A x(=1) 4 K1)
x(" = (Wgn) v W B y(”)) + (mgn) AW 5 y(n)> )
The weights of the morphological layer are defined as follows:
wi) =+C, my = -c,
w = +C,
wi) =0, #i.
Then, for the i-th output, we have that

" = OV (" +C) v max(yy")) + (=C) A (5" +C) Amin(y™)) = (CV (5" +C)) + (=)

= (C 4 max(0, y(n))) + (=C) = max(0, y(n))7

K2 K2

and the output is the same as the ReLU network. For the above to hold, it suffices that C' > ||y™||;. According to
Lemma B.1, it suffices to pick

¢> (H IIA(")I1>R+Z IT 1A® ) | s

i=1 \ j=i+1

We continue with Maxout networks. Take a network as defined in Lemma B.2. If we concatenate the vectors y,(,n), then
maxout networks are effectively a maxpooling layer. We will replace this maxpooling layer with our morphological
layer.

Pick a maxout-activated layer n € [L — 1] and some large constant C' > 0 to be determined. Concatenate the vectors

y,(,n) to form the vector g("). Suppose that the n-th layer has output size N. Then, the vector g(") has dimension N P.

(n)

The ¢-th output ;  will be given by

xgn) = max ( (,"))
J=4i+N, .. i+ (P-1)N

Remove the maxpooling layer, and replace it by our morphological layer of output size N and input size N P:

yz()n) = Afg”)x(”_l) +b™),

g™ = concat,¢(p) (yz()”)),

x(™ = (wgn) VAL ARE:: g(")) + (mgn) AWM & g(")) .
The weights of the morphological layer are defined as follows:
wi = +C,mly = —C, i€ [N,
le(k yy =+C, i €[N]kel[P],
wz(? =0, j#i+ (k—1)N,forsomek € [P]

Then, for the i-th output, we have that

(m) _ () () )
z, =|-CV max 4+ C)V max
( J=tye it (P— l)N(g ) jgé{i,...,i-i—(P—l)N}(g )
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and the output is the same as the Maxout network. For the above to hold, it suffices that C' > ||g(™)||; = > pelP] ||y,(,") II1-
According to Lemma B.2 it suffices to pick
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So far we have proven that for bounded domains, we can build any ReLU or Maxout network with a Hyrbid-MLP. And
in fact by our construction, ReLU and Maxout networks are special cases of the Hybrid-MLP. Since these networks are
universal approximators, it follows that Hybrid-MLP will be a universal approximator on compact domains. O

C On the initialization of morphological neural networks

In this appendix, we study what makes training morphological networks difficult, apart from the lack of activations.
We showcase that a good initialization is crucial, and that this is easier to achieve with our networks as opposed with
previous architectures. Finally, we explain how we initialized the networks in our experiments. Most of the claims in
this appendix are qualitative and lack formal proofs. However, we still believe that they serve an important purpose in
the understanding of morphological networks.

Optimization landscape. First, we start with some examples that will allow us to gain an idea of the optimization
landscapes we are faced against.

1. Consider an unbiased max-plus MP with 2 inputs and a single output, and an unbiased linear perceptron with
2 inputs and a single output. Consider 3 samples (—1.7,1;2.3), (5, —2.2;3.7), (1, 1;4.7). The loss functions
of the two percetrons are illustrated in Figure 2a. As we can see, for this particular dataset, the loss function of
the MP (blue) has a smaller global minimum than the loss function of the linear perceptron (green). However,
the loss function of the linear perceptron is a simple paraboloid, which is easy to optimize using gradient
methods. On the other hand, the loss function of the MP is more complicated, comprised of pieces with their
own local minima. For most initializations, solving with a gradient method would result in reaching these
local minima, which are worse than the global minimum of the paraboloid loss of the linear perceptron.

2. Now consider a hybrid network, with a first layer of 2 unbiased max-plus MPs of 2 inputs, and a single
output unbiased linear perceptron. We fix the weights of the output perceptron to 1, and the weights
wip = wyy = 0, study the loss function for variable weights wy;, wse. Consider again 3 samples
(1.2,-2.4;1.4),(—3.36,2.34;2.16), (—2.1, —1.5;2.4). The loss function of the network is illustrated in
Figure 2b. As we can see, for this dataset, the loss function has 9 local minima. Depending on the initialization,
all local minima are likely to be reached, with most of them being a lot worse than the global minimum.

From the above, we understand that a good initialization is crucial for training morphological networks.

Shift of the mean. Let us now study the optimization of morphological networks from a different viewpoint.
Let d = 10. Suppose we want to approximate the function f(x) = 10"x = 10z; + ... + 10z, using a linear
perceptron y; (x; w) = w ' x. Also, suppose we want to approximate the function g(x) = max;(z; + 10) using a

max-plus MP y,(x; m) = max;(z; + m;). Obviously, both approximations are possible with zero error by letting
w=m=10= (10,...,10).

For both problems, a good initialization of the weights w, m would be with a mean of 10. However, such initializations
are not common, because we can not know a-priori the distribution of the weights of the function we want to approximate.
As such, let us initialize the weights to 0, and let us test how efficient both networks are at changing the mean of the
distribution of their weights.

First, we use Adam with a batch size of 1 for 1000 epochs. In each epoch, we generate a training sample at random
according to a standard distribution and our target functions and introduce no noise. Ideally, the networks should learn
the weights w = m = 10, i.e. they should be able to shift the mean of the distribution of their weights, maintaining a
standard deviation close to 0. The results are reported in Tables 8 and 9. We used a learning rate of 0.1 as this optimized
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(a) Landscape 1. (b) Landscape 2.

Figure 2: Different landscapes of morphological networks.

Table 8: Linear perceptron trained on shifting its mean with batch size of 1.

Epoch w1 wWa ws Wy ws We wry ws Wg w19 ~Mmean std
1 -0.1 0.1 -0.1 -0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.04 0.10
2 -0.04 0.17 -0.16 -0.08 0.18 0.12 0.16 0.12 0.14 0.17 0.08 0.12

3 0 023 -021 -005 025 0.12 021 0.14 017 023 0.11 0.15

998 998 999 999 998 997 997 10 995 997 997 998 001
999 998 999 999 999 997 997 10 995 997 997 998 00l
1000 998 999 999 999 997 997 10 995 998 997 998 00l

the results of the MP. As we can see, the linear perceptron worked efficiently, meaning that it eventually managed to
shift the mean to 10. The MP, on the other hand, did not manage to change the mean of the distribution of its weights to
10, and it also introduced a lot of variance in the values of the weights.

We repeat the experiment with a batch size of 100. The results are reported in Tables 10 and 11. Again, the linear
perceptron excelled, learning the new mean successfully. The MP, while it performed better than the previous experiment,
still failed to shift the mean of its weights to 10.

From the above, we understand that MPs have trouble at changing the mean of the distribution of their weights,
especially when using smaller batch sizes. This is due to the sparse gradient signals that they produce. As such, we are
in a unprecedented situation. Standard linear networks struggle with the initialization of the standard deviation of their
weights, with a wrong initialization causing exploding and vanishing gradients (Glorot and Bengio, 2010; He et al.,
2015). In contrast, morphological networks struggle with the wrong initialization of the mean of their weights.

Based on the above, we conclude that attention has to be paid when initializing morphological networks. We have
to ensure that the weights of each MP of the network are initialized so that their mean will not have to change much
throughout training. This remark is not limited only to initialization, but also throughout training: During training we
should not make changes that require an MP to drastically change the mean of its weights.

Table 9: MP trained on shifting its mean with batch size of 1.

Epoch  w; Wo w3 Wy ws Weg wy  wg w9  wyg Mmean  std

1 0. 0.1 0. -0. -0. 0. -0. -0. -0 0. 0.01 0.03

2 0.07 0.17 0. -0. -0. 0 -0. -0. -0 0. 0.02 0.06
0 0.

3 0.13 022 0. -0. 006 -0. -0. -0 0.04 008
998 267 086 051 11.67 052 427 182 17 196 106 270 335
999 267 086 051 11.67 052 427 182 17 196 106 270 335
1000 267 086 051 1166 052 427 182 17 196 106 270 334

25



Table 10: Linear perceptron trained on shifting its mean with batch size of 100.

Epoch w; we ws wy ws wg wy wg wyg wig mean  std

1 01 01 01 01 01 01 01 01 01 0.1 010 0.00
2 02 02 02 019 02 02 018 02 02 02 020 0.01

3 03 029 03 029 03 03 026 03 03 029 029 0.01

998  10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.00 0.00
999 10, 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.00 0.00
1000 10. 10, 10, 10. 10. 10. 10. 10. 10. 10. 10.00 0.00

Table 11: MP trained on shifting its mean with batch size of 100.

Epoch  w; W w3 Wy wWs We Wy wg wg  wio mean  std
1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.10 0.00
2 02 02 0.2 02 02 02 02 02 02 02 020 0.00

3 029 03 0.3 03 03 03 03 03 029 03 030 0.00

998 603 503 1075 652 728 1067 67 1061 667 659 7.69 2.14
999 603 503 1075 652 728 1066 67 1062 667 659 769 2.14
1000 603 503 1076 652 728 1065 67 1063 667 659 769 214

Why A = 1/2? In the main body, we argued that choosing A # 1/2 (or allowing ) to be learnable) hinders trainability,
leading us to propose the sum of the maximum and minimum as a stable alternative. Here, we analyze this issue in
detail.

Consider the extreme case where A = 1, reducing the DEP operation to an unbiased max-plus MP layer. Suppose
we have an MP-based morphological layer with n = 256 inputs, where the weights w;; follow a normal distribution,
either at initialization or during training. As assumed in prior works (Glorot and Bengio, 2010; He et al., 2015), let
the input x also follow a normal distribution, independent of the weights. The output of the layer is then given by
y; = max;(x; + wy;). Since x; and w;; are independent zero-mean Gaussian variables with variance 1, their sum
follows a Gaussian distribution with zero mean and variance 2. Consequently, the output distribution follows the
"maximum of Gaussians" distribution. This results in a shift towards positive values (nonzero mean) and a reduction in
variance for large n. Specifically, a bound on the mean of the output is given by /4 log(n) (Sivaraman, 2011). The
variance can be estimated using the Fisher—Tippett—-Gnedenko theorem (Fisher and Tippett, 1928), though we omit the
detailed derivation.

For proper initialization, following the principles of Glorot and Kaiming initialization (Glorot and Bengio, 2010;
He et al., 2015), the output should ideally follow a zero-mean normal distribution. However, correcting the output
distribution by adjusting the weights is a highly nontrivial inverse problem. At best, one can attempt to correct the mean
and variance heuristically. For instance, in our case with n = 256, setting the weights to have a mean of —7.5 and
variance 2.56 approximates a normal distribution, as shown in Figure 3a. However, this process is cumbersome, fragile,
and highly sensitive to small deviations of n, making it impractical for initializing morphological networks. As a result,
the max-plus MP-based layer is effectively unusable in practice, even if activated.

A similar issue arises with DEP-based layers when ) is either learnable or fixed at A # 1/2. When A is fixed but
not 1/2, the weight distributions for the maximum and minimum terms must be initialized differently to ensure a
zero-mean output. When X is learnable, even if initialized near 1/2, any deviation during training forces the layer to
adjust the mean of its weights dynamically. Morphological networks, however, are not well suited for such adaptive
mean corrections, further compromising their trainability.

On the other hand, setting fixed A = 1/2 ensures that the output has zero mean and maintains a relatively stable variance,
even for small variations in n. In Figure 3b, we illustrate the distribution of the sum of the maximum and minimum,
assuming that for sufficiently large n, the two terms are approximately uncorrelated. Additionally, the variance can be
further adjusted to 1 by appropriately scaling the activations. This makes networks with fixed A = 1/2 trainable.
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(a) Distribution of max of shifted Gaussians. (b) Distribution of sum of max and min of Gaussians.

Figure 3: Distributions of MP and MPM networks.
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Figure 4: Distribution of MNIST values.

Initialization in experiments. In our experiments, we did not ablate the effect of initialization. Rather, we tried
to initialize each network properly according to the above remarks and give it as much of an advantage as possible.
Specifically:

1. Max-Plus MP-based Networks: As discussed earlier, properly initializing this network required setting the
weight variance to a value greater than 1 and the mean to a negative value. After extensive trial and error, we
found that initializing the weights with a mean of —5/3 and a standard deviation of 3 yielded the best results.
Therefore, this initialization was used for all MP-based networks in our experiments.

2. DEP (\ = 3/4): Properly initializing this network proved to be impractical. As a result, we used the same
initialization as for DEP networks with A = 1/2.

3. DEP (learnable )\): The parameter A was initialized from a uniform distribution U ([0, 1]), which has a mean
of 1/2. Given this, the ideal weight initialization follows the same approach as DEP networks with A = 1/2.

4. DEP (A = 1/2) and MPM: The initialization of networks with our proposed fixed A = 1/2 and MPM
networks is significantly simpler than that of MP-based networks. All morphological layers are initialized to
follow a standard distribution.
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Table 12: Parameter count of all models.

Network MLP MP DEP DEP (A = 1/2) Act-MP Act-DEP
Params. 466698 466698 932106 930816 467978 933386
Network Act-DEP (A = 3/4) Act-DEP (A =1/2) MPM RMPM RMPM-Drop MPM-SVD
Params. 932096 932096 469268 469268 469268 469268
Network LeNet-5 MPM-LeNet-5 MPM-SVD-LeNet-5 ResNet-20 MPM-ResNet-20

Params. 61696 63304 63304 271994/272282  278378/278666

We also optimized the initialization of the linear activations (which correct the variance of the output). For fully
connected networks of Setting 1, we found that initializing according to a zero-mean Gaussian distribution with standard
deviation 1/3.46 yielded the best results (in general, initialization of activations for Setting 1 does not make significant
differences. One could choose to initialize the activations to 1/2 and obtain good results). For convolutional networks
of Setting 1, each convolution kernel was simply initialized according to a standard distribution. For Settings 2 and 3,
the linear layers were initialized according to Glorot.

Some exceptions: i) For MNIST, the input images do not follow a zero-mean distribution (see Figure 4). For this reason,
and to keep the output zero-mean, the first morphological layer of the networks was initialized to zero. ii) For the
morphological ResNet-20 networks, all morphological layers were initialized following the standard distribution for all
datasets, and the linear activations were initialized to give the average of the max and the min (making the initialization
of the morphological ResNet-20 models extremely simple).

D Additional experiments

Before we continue with the additional experiments, we provide the details of our experimental setup and compute
resources required: All experiments can be reproduced from the provided python notebooks by sequentially running all
of their cells. Notebooks "finalMNNs*.ipynb" include the majority of experiments. Notebook "regressionMNNs.ipynb"
includes additional experiments (and experiments on regression tasks presented in Appendix C and this Appendix). Note-
books "snip_experiments*.ipynb" include the SNIP pruning experiments. Notebooks "resnet_20_experiments*.ipynb"
include the experiments on ResNet-20 models. The GPUs we used were the NVIDIA GeForce RTX 2080 Ti and
the RTX 3060, both of which have 12GB of memory. One GPU is sufficient to run each notebook (i.e. 12GB of
GPU memory suffice to run each notebook). For notebooks "finaIMNNs*.ipynb" and "snip_experiments*.ipynb",
each epoch of training took less that 30 seconds, and a whole cell of training took less than 30 minutes (with the
exception of RMPM-Drop, which was trained for 200 epochs). The other cells took negligible time to complete.
Each "finalMNNs*.ipynb" notebook required about a day to run from start to finish. Each "snip_experiments*.ipynb"
notebook took about 6 hours to run. For notebooks "resnet_20_experiments*.ipynb", each epoch of MPM-ResNet-20
training took about 1.5 minutes, longer than the 30 seconds required by the linear ResNet-20. We believe this is due to
the inefficiency of our CUDA implementation of max-plus convolution. Each "resnet_20_experiments*.ipynb" took
about 6 hours to run.

Declaration of LLLM Usage: We made use of LLMs, and specifically ChatGPT, as a programming assistant for tasks
like writing boilerplate code, code auto-completion, fixing errors and debugging. Any code generated by ChatGPT was
rigorously checked for correctness.

Parameter count of models: Table 12 presents the parameter counts of all models used in our experiments. For the
ResNet-20 models, two numbers appear: one for gray-scale datasets such as F-MNIST, and one for RGB datasets such
as CIFAR-10.

Next, we present our additional experimental results. Specifically, we first provide experiments on Hybrid-MLP, which
was not studied in the main text. Then, we provide experiments on simple regression tasks, and the full training history
of networks that we claimed were trainable but for which only peak training accuracy was reported in the main body.

Hybrid-MLP: Gradient descent with large batches. In this section, we train the proposed Hybrid-MLP with 5
linear and 5 morphological hidden layers of size 256 each, using different batch sizes and report the results in Table
13. Our findings indicate that the network requires a large batch size to be trainable, suggesting that the inclusion of
morphological layers introduces significant noise in the gradient estimation of stochastic optimization methods like
Adam. However, for sufficiently large batch sizes, Adam exhibits rapid convergence. This is evident in Figures 5a, 5b,
5c, and 5d, which compare the training and validation accuracy of a standard MLP, a Maxout network (Goodfellow et al.,
2013), and a Hybrid-MLP, each with five layers of size 256, trained with Adam using a batch size of 6400. Notably, the
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Table 13: Performance of Hybrid-MLP on MNIST and Fashion-MNIST for different batch sizes

MNIST Fashion-MNIST
64 640 6400 64 640 6400
Train Acc. (peak) (%) 33.54+2.89 98.52+0.18 99.96+0.06 3513+279 92.68+£040 98.90+0.19
Train Acc. (lastepoch) (%) 18.66 £5.28 16.76 £1.31 99.81 £0.27 19.76 £6.20 32.324+1592 98.36 +0.27
Validation Acc. (%) 3337£2.60 96.76 £021 97.63 +0.15 34.61+2.69 88.62+0.02 88.96£0.19
Test Acc. (%) 33.59+320 96.74+£023 9742+£0.15 34.64+240 87.890+024 88.15+0.24

Hybrid-MLP achieves the fastest convergence, highlighting the potential benefits of integrating morphological layers
when training conditions are appropriate.

Training converge with large batches - MNIST Validation converge with large batches - MNIST
100 4
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> 80 [9)
< ]
o 707 s 70
£ ®
£ g
T 60 2 60
—— MLP —— MLP
50 —— Maxout 50 4 —}— Maxout
—— HybridMLP —— HybridMLP
25 5.0 75 100 125 150 175 200 25 5.0 75 100 125 150 175 200
Epoch Epoch
(a) MNIST, Train acc. (b) MNIST, Val. acc.
Training converge with large batches - F-MNIST Validation converge with large batches - F-MNIST
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Figure 5: Convergence rate of different models on MNIST and Fashion-MNIST for 6400 batch size

Regression experiments. Continuing, we present experiments on simple regression tasks. Notice that on classification
tasks (like the ones presented in the main body), it is not necessary for the network to be a universal approximator, since
we work with logits. This makes regression a more ideal task for showcasing the need for our "linear" activations. We
perform regression of simple single-variate single-output functions sampled with zero-mean i.i.d. gaussian noise. To
ablate the effect of our "linear" activations, we use 3 fully connected networks, each with two hidden layers of size
100: 1) a simple ReLU-activated MLP, 2) the MPM network, and 3) a non-activated MPM network. The functions
which we sample are the following: 1) 6sin(x), 2) 22, and 3) 20x. The results are presented in Figures 6a, 6b, 6¢. As
expected, the non-activated MPM fails to approximate the underlying functions. The MLP and MPM however, achieve
a successful regression of the samples.
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Figure 6: Regression using MLP, MPM, and non-activated MPM on noisy samples for different underlying functions.

Full training history. Finally, we present the full training history of our trainable networks. These results serve as
proof that the networks not only achieve satisfactory peak training accuracy, but also manage to converge. In Table 14
we provide the full training history of the networks Act-DEP(A = 1/2), MPM, RMPM, and MPM-SVD on MNIST,
including training accuracy and validation accuracy. In Table 15 we provide the full training history of the networks
Act-DEP(\ = 1/2), MPM, RMPM, and MPM-SVD on Fashion-MNIST, including training accuracy and validation
accuracy.
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Table 14: Full training history, MNIST.

Epoch Train Validation
ActDEP(A=1/2) MPM RMPM MPM-SVD ActDEP(A=1/2) MPM RMPM MPM-SVD

1 56.03 85.83 88.57 90.04 56.33 85.85 87.81 89.68
2 84.13 91.19 92.71 94.06 84.05 90.55 91.75 92.99
3 88.25 93.21 94.47 95.95 87.88 92.35 93.27 94.38
4 90.18 94.34  95.60 97.03 89.85 93.22  94.08 94.90
5 91.72 95.01 96.40 97.73 91.18 93.62 94.62 95.16
6 92.69 95.65 96.93 98.25 91.71 94.01 94.87 95.38
7 93.53 96.11 97.33 98.61 92.30 94.12  94.89 95.43
8 94.18 96.58 97.83 98.98 92.73 9436  95.15 95.71
9 94.58 96.88 98.16 98.87 93.01 94.61 95.32 95.43
10 95.01 97.16  98.42 99.42 93.38 94.78  95.40 95.92
11 95.38 97.44  98.74 99.47 93.50 94.84 9541 95.78
12 95.72 97.76  98.82 99.55 93.67 94.80 95.33 95.83
13 96.00 97.81 99.15 99.67 93.72 94.93 95.42 95.80
14 96.26 98.10  99.25 99.67 93.97 95.09 95.48 95.77
15 96.45 98.21 99.41 99.66 94.04 94.81 95.64 95.83
16 96.72 98.36  99.50 99.71 94.19 94.72 9547 95.74
17 96.78 98.44  99.55 99.84 94.27 94.99  95.55 95.83
18 97.02 98.65 99.62 99.79 94.42 94.89 9542 95.72
19 97.16 98.67 99.67 99.79 94.47 9497  95.33 95.72
20 97.33 98.83  99.73 99.84 94.52 95.03 95.38 95.78
21 97.46 9890 99.77 99.85 94.48 95.00 95.30 95.72
22 97.61 99.01 99.82 99.94 94.59 95.04 9542 95.99
23 97.73 99.02  99.85 99.74 94.56 95.09 95.37 95.92
24 97.88 99.13  99.84 99.65 94.59 95.08 95.45 95.52
25 98.00 99.18  99.83 99.90 94.69 95.10 95.18 95.87
26 98.08 99.14  99.90 99.86 94.67 94.93 95.40 95.74
27 98.21 99.32  99.92 99.94 94.58 95.04 95.49 96.00
28 98.28 99.39  99.92 99.95 94.74 9492  95.33 96.15
29 98.34 99.36 99.92 99.74 94.72 94.94  95.38 95.86
30 98.45 99.45 99.89 99.56 94.71 94.84  95.33 95.62
31 98.52 99.54  99.93 99.72 94.82 9491 95.38 95.77
32 98.64 99.50  99.96 99.96 94.78 94.69 95.59 96.04
33 98.72 99.54  99.93 99.82 94.76 94.89 95.34 95.81
34 98.73 99.62  99.95 99.95 94.67 94.88 95.34 96.08
35 98.86 99.60 9991 99.94 94.75 94.69 9541 96.12
36 98.90 99.67 99.94 99.99 94.78 94.72 9544 96.06
37 98.99 99.66  99.96 99.99 94.73 94.80 95.40 96.20
38 99.04 99.73  99.98 99.67 94.70 9472  95.52 95.64
39 99.06 99.74  99.98 99.97 94.73 94.73 95.51 96.05
40 99.06 99.74  99.97 99.99 94.68 9459  95.39 96.15
41 99.13 99.78  99.85 99.99 94.67 94.61 95.35 96.17
42 99.19 99.73  99.92 99.99 94.77 94.58  95.35 96.22
43 99.25 99.79  99.97 99.99 94.75 94.44  95.53 96.16
44 99.26 99.76  99.98 99.12 94.81 94.81 95.76 95.34
45 99.30 99.78  99.98 99.83 94.72 94.62 95.64 96.05
46 99.35 99.77  99.98 99.88 94.83 94.63 95.52 96.01
47 99.33 99.81 99.98 99.99 94.68 9458 95.52 96.33
48 99.35 99.80  99.75 99.99 94.72 94.77  95.24 96.41
49 99.47 99.86  99.96 99.99 94.75 94.67  95.38 96.37
50 99.47 99.81 99.99 99.99 94.68 94.75 95.51 96.38

31



Table 15: Full training history, Fashion-MNIST.

Epoch Train Validation
ActDEP(A=1/2) MPM RMPM MPM-SVD ActDEP(A=1/2) MPM RMPM MPM-SVD

1 27.90 75.07 80.46 83.01 27.97 74.61 79.55 81.33
2 71.51 82.53 85.12 87.56 70.70 80.81 82.62 84.49
3 78.22 84.83 87.20 89.27 77.37 82.25 83.78 84.58
4 81.36 86.30 89.29 91.91 79.85 82.89  84.55 85.55
5 82.71 87.35 90.57 93.06 81.01 83.12  84.53 85.76
6 83.59 88.46  91.88 93.62 81.38 83.43 84.97 85.18
7 84.54 89.22  92.74 95.35 82.20 83.11 84.72 85.66
8 85.31 90.11 93.60 95.86 82.45 83.53 84.56 85.82
9 85.99 90.73 94.42 96.66 82.72 83.58 84.72 85.73
10 86.43 91.53 9492 96.89 82.98 83.50 84.61 85.16
11 86.89 91.93  95.59 97.56 82.97 83.65 84.71 85.51
12 87.49 92.54  95.72 97.80 83.17 83.39  84.28 85.17
13 87.88 92.63  96.39 97.66 83.32 83.27 84.24 85.32
14 88.37 93.21 96.79 97.19 83.51 83.40 84.27 84.70
15 88.62 93.79  97.06 98.55 83.61 83.40 84.32 85.28
16 89.09 9375 97.34 98.24 83.42 83.41 84.29 84.88
17 89.40 94.40 9741 98.99 83.46 83.43 83.91 85.22
18 89.64 94.64  97.68 98.60 83.51 83.19  83.97 85.30
19 90.02 94.88  98.09 98.77 83.74 83.20 83.95 84.52
20 90.12 9498  98.03 98.79 83.52 83.58 83.92 85.06
21 90.50 95.31 98.43 99.16 83.66 83.33 83.86 84.70
22 90.75 95.71 98.45 98.66 83.74 83.42  83.51 84.69
23 90.95 95.77  98.68 99.13 83.53 83.28 83.69 84.78
24 91.31 9590 98.80 99.31 83.42 83.28 83.47 84.81
25 91.49 96.13  98.67 99.40 83.57 83.11 83.49 85.22
26 91.76 96.21 98.60 98.97 83.33 82.83 83.06 84.95
27 92.01 96.62 98.94 98.75 83.38 83.12  83.38 84.36
28 92.26 96.75  98.69 98.89 83.40 82.92  83.07 84.53
29 92.41 96.68 98.93 99.42 83.44 82.66 83.38 84.89
30 92.61 96.69  99.12 98.96 83.06 82.53 83.08 84.41
31 92.81 97.06  99.15 99.43 83.08 82.49  83.03 84.97
32 93.06 97.07  99.25 99.18 83.40 8242  82.99 84.27
33 92.97 97.29  99.24 99.45 83.12 82.64 83.14 85.03
34 93.25 9743  99.36 99.59 83.25 82.59 83.21 84.64
35 93.43 97.25  99.20 99.16 83.02 82.34  82.80 84.66
36 93.47 97.44  99.38 99.00 83.03 82.11 82.63 84.30
37 93.65 97.65 99.29 99.64 83.22 82.35 82.99 84.74
38 93.97 97.80  99.51 99.56 83.21 82.12  82.64 84.86
39 93.78 97.67 99.41 98.62 83.15 8242  83.03 84.89
40 94.23 97.78  99.24 98.30 83.22 82.21 82.59 83.72
41 94.25 97.89  99.26 99.40 83.12 82.08 82.55 84.83
42 94.39 97.98  99.50 99.03 83.10 82.29  82.85 85.25
43 94.55 98.08 99.56 99.42 82.93 82.50 82.63 84.66
44 94.65 98.13  99.56 99.59 83.20 82.17 82.50 85.00
45 94.77 97.97  99.49 99.62 83.12 81.87 82.90 84.89
46 94.86 98.29  99.51 99.51 83.11 82.17 82.88 84.63
47 94.88 98.31 99.46 99.45 82.96 81.89  82.47 84.60
48 94.98 98.36  99.51 99.47 82.86 8220 82.70 84.95
49 95.08 98.41 99.53 99.65 82.92 81.99  82.85 85.00
50 95.06 98.30  99.62 99.37 82.74 81.92  82.83 84.86
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E Connection to the Representation Theorem

In this appendix, we highlight the connection between our theoretical results and the Representation Theorem of
Maragos and Schafer (1987). For completeness, we restate the theorem below.

Theorem E.1 (Representation Theorem). Let h(x),x € Z< be the finite-extent impulse response of an m-dimensional
linear shift-invariant filter T'(f) = f * h, which is defined on a class S of real-valued discrete-domain signals
f : Z% — R closed under translation. If h satisfies the following conditions:

1. Increasing: h(x) > 0,Vx,
2. Translation-invariant: ), h(x) = 1,

then we can represent the linear operator as a supremum of weighted erosions:
r(fx) == NHx)= \/ N\ f»)-9ly—x),
g€Bas(T") yezd
where the basis Bas(T") is given by
Bas(T) = {geS: 3. h(y)g(—y) =0 A g(—x) = —oc & h(x) = 0}
y€Espt(h)

Example 1. If we take h(n) = ad(n) + (1 — a)d(n — 1) with 0 < « < 1, then a corresponding basis function
g € Bas(T") rakes the form:

T, n =0,
g(n) =9 1%, n=-1, forr € R.
—00, otherwise,

Substituting into the Representation Theorem, we obtain:

[ ar
ary + (1 — a)xp_1 =sup |min{ &, — 7, Tn_1 + )
reR | 1—«

For example, setting n = 1 yields the following identity:

[ . ar

ary + (1 — a)zp = sup |min {xl -7, 2o+ H . e
reR | 1-a

The LHS of this identity is a linear perceptron with weights a; = o, a9 = 1 —a witha > 0, i.e. a linear perceptron with

positive weights that sum up to 1. Notice that this condition follows from the "Increasing" and "Translation-invariant"

hypotheses of the Representation Theorem.

More generally, consider a linear perceptron with inputs xo, x1, . . ., T, and weights oy, . . ., n, where a; > 0 for all
iand, o; = 1. Then, the following identity holds:

n n_lOé"I"‘

\ : E:':o AN
E QT = sup ming ro — 70, .+, Tn-1 — n_1, Tn + =——— > | . (2
1=0

70, Tn—1ER Qn

Furthermore, if we relax the normalization constraint and only require the weights to be positive and sum to less than 1,
the result still holds if we allow biased erosions. For instance, taking o = 1/2 and evaluating equation (1) with xy = 0

and x1 = x, we find:
x .
— =sup [min{z —r, r}].
2 reR

Similarly, setting x,, = 0 in (2) yields the identity:

n—1 n—1_
2 = i _ _ iz T 3
a;T; = sup min < g —rg,---,Lp—1 — Tn—1, — . 3)
i=0

70,--sTn—1€R 1-— Zi:() (073

In the above identities we can even allow the weights to be non-negative and they will still hold true: if a weight oa; = 0,
then we can always take r; — —oo and the i-th term of the erosion vanishes.
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Conclusion: Based on the above example, we conclude that the Representation Theorem allows us to build any
linear perceptron with weights greater than or equal to 0 whose sum is less than or equal to 1, provided we are
allowed to take suprema over infinite domains and biased erosions. If the weights sum up to 1, then we use (2);
if they sum up to less than 1 then we use (3). We can combine the two forms by writing the generalized operator
y(x) = sup,.cgn Minjepmjugoy (2 +w(j,r)), where w(j,r) is continuous in terms of 7, o = 0 is fixed, and depending
on the case we can either take w(j,r) = +oo, in which case the bias vanishes, or w(j,r) < 400, in which case we
have biased erosions.

It is trivial to see that the inverse of the above also holds true: If we can build any linear perceptron with non-negative
weights that sum up to less than or equal to 1, then we can build an increasing, translation-invariant LSI filter.

Notice that the Representation Theorem states nothing about linear perceptrons with weights that are less than 0
or that sum up to more than 1.

This is where Theorem 1 comes in. There are three main differences between Theorem 1 and the Representation
Thoerem:

1. In Theorem 1 suprema and infima are only over finite domains, exactly how they are taken in neural networks. This
is a condition for the proof to work.

2. In Theorem 1 we assume the use of max-plus and min-plus MPs, i.e. the weights of the supremum is not inside the
previous infimum like they are in the idenities obtained from the Representation Theorem.

3. If we take the limit as the domain tends to be infinite, then Theorem 1 proves the impossibility of representing linear
perceptrons with negative weights, or weights that sum up to more that 1.

First, we see how having suprema and infima over finite domains is implicitly used in the proof. This is done in the
following two ways:

1. When we have a finite family of functions, with each being differentiable a.e., then they are simultaneously
differentiable a.e. (i.e. the Lebesgue-measure of the set of points for which at least one of the functions is
non-differentiable is zero).

2. When we have a supremum or infimum over a finite domain, then it is definitely attained.

(n+1)

Let us see the above in more detail. In the proof of Theorem 1, we write x; = max; fi(;LH). We note that each

(n+1)
ij
$§n+1)

is differentiable a.e.. Then, because j runs over a finite (and hence countable) set, fi(jnﬂ) for the different 5, and
are simultaneously differentiable a.e.. This allows us to apply Lemma A.4 a.e., etc.

Notice that the same argument can not be used when dealing with suprema and infima over uncountably infinite domains.
For example, itis § = sup,.cg mi.n(:z: -, T) = SUpP,cp fr(as). For every r the function f,. (z) is non-differentiable only
for z = 2r, and hence it is a.e. differentiable. However, it does not hold that f,.(x) are simultaneously differentiable
a.e., because for every z, there is the function f, /2 which is not differentiable on z. In fact, for no x are the functions
fr(x) simultaneously differentiable. Hence, Lemma A.4 can never be applied.

The problem with the above is that R has non-zero measure. The next logical question would be, what if we allow
the suprema and infima to be taken over a infinite but countable domain. In fact, due to continuity, we can write
5 = SUp,cq Min(r—q,q) = sup,cq fq(). Then, forevery x ¢ Q itholds that f, () are simultaneously differentiable,
i.e. they are simultaneously differentiable a.e., and Lemma A.4 can be applied a.e.. However, now the proof stops
working for a different reason. Since we are taking a supremum over Q, it is not necessarily attained. In the proof, for
the induction to work we implicitly make use of the fact that, because the domain of the suprema and infima is finite,

they are attained, and hence the set .J is non-empty. This allows the induction to work properly.

Next, we note that despite proving the theorem only in the case of using max-plus and min-plus MPs, it can readily be
generalized to also include the case of the weights of the supremum being inside the previous infumum, and vice versa. In

other words, if we are given a network defined recursively as x

and xé”) = 0 fixed, then using the same Lemmas and an induction argument, it can be shown that Theorem 1 holds also

for this new type of network.

Finally, the two theorems seem contradicting. However, they are actually (almost) complementary to each other. In
order to see why, we have to go from the finite domains that Theorem 1 works with, to the infinite domains that the
Representation Theorem works with. To do so, we need the following lemma.
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Lemma E.2. Ler (f,,) be a sequence of Lipschitz functions defined on an interval I, and suppose that f, — f pointwise
on I. Assume that there exist constants m, M € R U {—o0, 400} such that for all n € N, it holds a.e. on I that

m < fl(x) < M.
Then, wherever the derivative f'(x) exists on I, it satisfies

m < f'(z) < M.

Proof. Since each f, is Lipschitz on I, it is absolutely continuous on any compact subinterval [a, b] C I. Furthermore,
since f;,(x) exists almost everywhere and is bounded as m < f (z) < M, we have for any @ < bin I:

b
mib-a) < [ file)do = ) - fula) < M(b - a)

Taking the limit as n — oo and using the pointwise convergence f,, — f, we obtain:
m(b—a) < f(b) - f(a) < M(b—a),

which implies:

m < M <M foralla<binl.
—a
Thus, whenever f’(x) exists, it must lie in the interval [m, M]. O

Example 2. Consider the sequence f,(x) = % sin(nz), defined on an interval I containing 0. Each f,, is Lipschitz on
I and converges pointwise to f(x) = 0 for all x € R. The derivatives are given by f/ (x) = cos(nz), which do not

converge uniformly.

In particular, f](0) = 1 for all n, while f'(0) = 0. Thus, the derivative and limit cannot be interchanged. However,
since —1 < f! (x) < 1forall x € I, Lemma E.2 applies, and we conclude that:

—1 < f'(x) <1 wherever f'(x) exists.

Indeed, since f(x) =0, we have f'(x) = 0 everywhere it exists, and the bound is satisfied. Moreover, the bound [—1, 1]
is tight no matter how small an interval I we choose around 0. Hence, Lemma E.2 cannot give us a better estimate on

f'(0).

Take a function of the form y(x) = sup,.cg« min;cpyjugoy (z; + w(j, 7)), like in the identities (2), (3) obtained
from the Representation theorem, where w(j, ) is continuous in terms of . Due to continuity, we have that y(x) =
Sup,eqn min (z;+w(j, ¢)), and it also holds that y(x) = sup;cy min; (x;+w(j, ¢;)) = lim, 0o Max;ep,) ming (z;+
w(j,¢;)) = limy,— 00 Yn(X), where g; is a counting of the countable Q". Indeed, the above holds because y,, is an
increasing sequence:

Yn = maxmin(z; + w(j,¢;)) < max min(z; + w(j, ¢i)) = Ynt1 =
i€n] J i€n+1] J

lim y,(x) = sup y,(x) = sup max min(x; + w(j, ¢;)) = supmin(z; + w(j, ¢)) = y(x).
n—00 neN neNi€[n] J ieN 7

For every y,, Theorem 1 holds. Hence for every n, y, is Lipschitz, and a.e. Vy,,(x) = 0 or Vy,,(x) = e;,, for some
in = in(x). Hence, a.e. it holds that 9, y,(x) > 0 and 3, (Vyn(x)); equals either 0 or 1. Now we have the following
arguments:
1. Define g,,(t) = yn(z; = t,x_;). Since y,, is Lipschitz, so is g,. Moreover, we are given that 9, ,y,(x) > 0
a.e., which implies that %(t) > 0 a.e.. Now define ¢(t) = y(z; = t,x_;). We have that g,, — g pointwise,
since y,, — y pointwise. Therefore, we can apply Lemma E.2 to obtain %(t) > 0 wherever the derivative
exists. Therefore,
8mj y(x) >0,

if the derivative exists.

2. We are given that

Z(Vyn(x))j ={1,Vy,(x)) €{0,1} = (1,Vy,(x)) <1, ae.
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Define gy, (t) = yn(x + 1) and ¢g(¢t) = y(x + ¢t1). Then
dgn
dt

Since y,, is Lipschitz, so is g,. Since y,, — y pointwise, it also holds that g,, — ¢ pointwise. Hence, Lemma
E.2 applies, and we have that

(t) = <lvvyn(x+ t1)> S 1, a.c.

dg
W 0) = (1, V() < 1,
if the derivative exists.

Based on the above arguments, we see that Vy(x) > 0 and (1, Vy(x)) < 1, wherever the derivative exists. If we
suppose that y can represent a linear perceptron with weights as, ..., oy, then it must hold that a;; = 0,,y(x) > 0
and a1 + ... + a,, = (1, Vy(x)) < 1. In other words, a byproduct of (the slight variation of) Theorem 1 is that
functions of the form of the Representation Theorem can represent linear perceptrons only if the weights of the
perceptrons are non-negative, and their sum is less than or equal to 1.
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