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I. Introduction

Mobile manipulators (MMs), i.e. manipulator arms mounted on mobile platforms, have received
increasing attention over the last fifieen years, for both their challenging analytical problems and their
large repertory of applications [1-17]. Due 1o the platform mobility, the system manipulator’s workspace
is enlarged compared 1o the fixed manipulator arm, and the robot tasks can be performed in inaccessibie
or hostile environments for the human operator. However, the motion planning and control problems of &
mobile manipulator cannot be faced by traditional methods due to the nonholonomic nature of the system
which is imposed by the platform’s wheels. Actually, the nonholonomic (nonintegrable) constraints affect
the workspace and the trajectory planning of the MM and reduce the flexibility of the available degrees-
of- freedom. On the other hand, the MM possesses a complex and strongly coupled dynamic modei of the
nonholonomic dynamics of the mobile platform and the dynamics of the manipulator arm.

The problem of designing suitable wheel systems for mobile platforms has been considered in [1-7].
Mobile robots with a two-independent driving wheel mechanism or front-wheel or rear-wheel driving
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mechanism are now widely used in factory or hospitals but cannot realize a side motion due to the
nonholonomic constraint involved. To overcome this difficuity, several holonomic and omnidirectional
wheeled platforms have been proposed [3-7].

The multi-task planning problem of MMs has been considered in [8-11]. When an MM performs a
multiple fask (ie. a sequence of tasks) the final configuration of each task becomes the initial
configuration of the following task. This was named commutation configuration in {8, 9] where the
motion planning problem was divided into two subproblems, namely predicting the optimal commutation
configuration for each pair of adjacent tasks, and determining the motion trajectory associated with the
initial and final configurations for each task via the solution of the corresponding two-point boundary
value problem.

Regarding the control of MMs, in most previous studies the control problems were constrained only to
partial states of the MM system. But, in many practical situations the tracking control of the full state is a
prerequisite for successful operation of the MM. Some studies, where the dynamic interaction between
the mobile platform and the robotic manipulator is addressed, have been reported i [12-17}. In particular,
the controller derived in [14] was of the decentralized type treating the platform and the manipulator as
two separate systems and showing that the two subsystems are stable provided that the unknown
interconnections are bounded. In [15] the platform was assumed to have a soft suspension, and a
controller was derived which achieves good trajectory tracking despite the softly-suspended platform.

The purpose of this paper is to provide a unified study of MMs with reference to the dynamic interaction
of the platform and the manipulator arm. The full-state dynamic model is first provided for both
northolonomic and holonomic/omnidirectional platforms. Then the multiple task motion planning
problem is considered along the lines of {11] where there is no need to solve a two-point boundary-value
problem. Finally the full-state control problem is treated by three different methods, namely standard
computed torque control, feedback linearizing-decoupling control, and sliding-mode robust control {4-6,
16-20]. The paper includes a sufficient set of experimental results for both the motion planning problem
and the trajectory tracking control problem via the sliding-mode and the feedback linearizing-decoupling
techniques.

2. Full-state Dynamic Modeling of Mobile Manipulators

2.1 Kinematics

Before presenting the full-state dynamic model of MMs we briefly discuss their kinematic model.
Consider the MM of Figure 1a where the four principal coordinate frames are shown: world frame Q.

platform frame O P manipulator base frame Ob and end effector frame O, . Then, the manipulator’s

end effector position/orientation with respect to 0,, is givenby:

YT, T T M

where pr is determined by p =[x, ¥, (;)]T , P71}, is a fixed matrix, and bTe is determined by the

joint variables’ vector @ =[8,6,,....0, T where n,, denotes the DOF of the robotic manipulator.
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Figure 1. (a) Geometric Features of MM with Conventional Wheels,
(b) Geometric Features of Omnidirectional Platform (Three Orthogonal Lateral Wheels)

The end cffector’s position/orientation vector X, is a nonlinear function f(-) of the MM’s overall
configuration (posture) vector ¢ = [pT ,GT ]T eR” (n=3+ n, ), ie.
"x, =f(q) @
If xg is the end effector’s desired m2— [ task vector, then one must have
d
"xe =x, =f(Q) ©)
which upon differentiation gives
.d _ .
x4 = 3(a)q @

where J(q) is the mxn Jacobian matrix of the MM. If the platform is nonholonomic without wheel-floor
slipping, then the following constraint holds:

G(q)-§ =0, G(q) =[sin p,—cos¢,0,...,0] (5)

whete § cannot be eliminated by integration to give G'(q) = 0 . Thus, Eqs (4) and (5) can be combined
to give

d
x=J,(q)-q, x= {Zﬂ @)= Pﬁ‘}l} o

Clearly, the actual form of J,(q) depends on the particular type of the wheels, the platform and the

manipulator. For an omnidirectional MM with lateral/orthogonal wheels, the form of J,(q) is provided
in [4-6].

2.2 Bynamics

The MMs dynamics is governed by the Euler-Lagrange equations subject to the constraint:
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where [ is the Lagrangian of the MM, and A the Lagrange multiplier vector. Intreducing in (7) the
expression for L = K — P (K =kinetic energy and P =potential energy) it is not difficult to derive the
following dynamic models (see e.g. {14, 16, 17}).

Platform Dynamics

M, (q,)4,+C,(q,.9,)+C,(q,,9.:9,-9,.) -
=E,7, -G (q,)h—M, (q,.9,)d, - D(q,.q9,)d,

Manipulator Dynamics

M, (q,)4, +C,,(4,.4,)+C,,(4,.9,:4,) )

=7, -D,{(q,.9,)d,

where K p is an 42 constant matrix, (,, is manipulator’s joint variables’ vector, and

q,=[x,.5, 6.,6,] (see Figure 1). Combining the inertia and velocity terms, Eqs (8a) and (8b) are

simplified as:

M, (q,.q,)d,+C,(q,.4,:9,.9,) ©2)
=E,7,~G'A-D,(q,,9,)4,

M, (q,)d,+C,4,.9,:4,) ob)

= TM mDm(Qp’qm)dp

To write the full-state dynamic model (9a,b) in state-space form we first write the platform velocity ¢§ »
as:

q, =F(q,)v(®) (10)
where V(f) is a suitable vector of generalized velocities and F(q ;) is a full rank 4x2 matrix whose

columns are in the null space of G(q,) (due to the constraint G{(q,,)-q, = 0).

Then we premultiply Eq (9a) by F and carry out the calculations taking into account Eq (10) and the
fact that F'G” =0 to obtain:

F (M, Fv+M ,iv+C,)=F Er,~-F'D i, (1)
Similarly, Eq (9b) gives:
M § +C, =r -D Fv-D_Fv (11b)

Finally, Eq (11a, b) can be written in the desired full state space form:

x=a(x)+B(x)r, r=[7,.7, 1 (12)
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X —-=- Fv 0
X=X, i= il ca(x)=| 4, |[,B()=| 0 (13a)
x| | K'c| = |Ks
L B
T T T wTar Bo 0wl
K = FMF FD, §= FE, 0 C= F M Fv F C, (136
b, F M, 0 I -C,, ~D, Fv
Here
—sin cos 0 0
Glq,)= poconp a4)
—cosp —sing r/2 r/2
and so a possible selection for F(q ,) is
Cos@ CcoSy
sing sing
F = 15
(a,) 2l O (15)
0 2/r

With ¥(q,) as in (15) one can have F'E p= %I in which case S is invertible. For the case of the

ommidirectional MM mentioned in Section 2.1 the above full statc model (12) was derived in [4-6]. The
model for an 1-DOF manipulator mounted on a mobile platform with a 2-DOF suspension system is
dexived in [21].

3. Full-state Motion Planning of Mobile Manipulators

A single task for the MM’s end effector is to follow a desired trajectory in the world coordinate frame.
The platform is assumed to have a nonholonomic constraint of the type (5). The MM must peifori: 2
multiple task consisting of N consecutive single tasks. In doing this a certain objective criterion shorld
be optimized, e.g obstacle avoidance, singular configuration avoidance, best utilization of actusior

torque, etc. If the criterion to be optimized for each task is V;(q,.4;). i=12,. N, where

q= [pT , o’ ]T , the multiple-task motion planning problem is formmulated as follows:

Find the motion trajectory {g; (¥),q2(£),....q,(¥)} . which minimizes the total cost function:

N
.. . o .
G TR T IV T R IO B W KA A CROR () 2 (16)
=1
subject 1o the equality lkanematic constraints:
x3; =f(q;) and G,(q,)-4;=0,7=12,.,N an

where I represents the i-th task, #, is a weighting constant associated with the i-th objective function,
and £;,, ty- are the initial and final times of the /-th task.

The constrained optimization problem {(16),(17)} can be converted to an unconstrained optimization
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problem if V; in (16) is replaced by the Lagrangian function:

Li(q;, 453 heir i) = V(q,,q;)ﬂez[e,, f; (q,)jﬂg,G(ql) g, (18)

The necessary conditions for optimality are found to be:

oL, dfa ~0 (192)

aq, Cdt 6q,

oL =0,ie xe, ~f;(g;)=0 (19b)
el

L _0,ie G;(4;)-q,=0 (190)
g4

Introducing L; from (18) in (19) and carrying out the required algebraic manipulation yields [11}:

r
Wy ALV oy ey 4l 2B 2Bil |4, 67 =0 20;
5q; dilaq; ’ "1 dq; \ 0y; ’

which can be written in the form

h? (Cii»fli,“iz‘}?hg,f,ig,i) = ;“g,iJi (21a)

with

n! = oV _d (o, +hg Al B Dy G (21b)
Maqi dt aq: i
_ -

H; = aG,.{g&J e305)
aq; 0q;

Writing the Jacobian matrix J  as J*—“I_Jﬁ, ;JT__m where 3, =IJ1J2~-Jm],

= [J g ":I and J* is the i-th column of J, we define the matrix Q € gpron—m) .

ﬂ‘“’*ﬂl

- -1

Q - l’lnwm Jm : ~“In—ml

where ¥ is the (n-m} dimensional vnit matrix, which consists of the null space basis vector of J. One
can easily verify that JO! =0 and J QT =0 where J* = JT(JJT )—1 is the pseudoinverse of J.
This means that the cotumn vectors of J* together with column vectors of QT constitute the basis

vectors of the #n-D vector space. Thus any arbiteary r-D vector @ can be expressed as & = b+ QTc
where b and ¢ are arbitrary m-D and (n-m)-D vectors, respectively. The vector §; is an n-D vector and
s0 ong has the expression:

q; =3b, +Ql¢; Q2
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Introducing (22) into (4) yvields the general solution of Eq (4) as:

. +.d T

q; =3 %; +Q;¢; (23)
where Q?cf represents the homogeneous solution and Jf"xi,- a particular solution. The vector ¢; is

called the self-motion vector (SMV). Now, transposing both sides of (21a) and premuitiplying by
Q;(q,) yields:

Qi(qi)hi(qi:-(b:éiiai'giaigi):0 (24)

A good selection for the objective function V; is:

. T

Vi(9:,9:) = +& Z:4; + B (@) @5)
where I, is a suitable diagonal matrix and B;(q;) stands for the MM function used, e.g. the
manipulability measure or the distance from an obstacle. Introducing (25) into (2 1) vields:

hi(q;,9:, 4,4 ig,f) =(VB;)-Zg; + kgng‘('If - j\'giGi (26)

Thus replacing the h; from (26) in (24), where §; is computed by differentiating (23), here results:
+ .d wud T T . T. 1
Q l(Vﬁi)— EE(J eqiXei T eogiXei + Qug i€ + Qg iCi )+ AH; G — A6 }Z Y
which can be written as:
, -1 s+ .d wd AT T.
e =C; Q{(Vﬁi) - X (J eqi¥ei T degiXe it Qeq,ici)+ A H; ‘h] @7
here €l =[] | h;] and C; =[Q;E,Q%,; | Q,G
where €,; =[¢; | hg}and C; = [Q:%Qey, | Qi il

Equations (23) and (27) form a set of (2n —m) 1st-order nonlinear differential kinematic equations with
# unknowns for g; and (#—m) unknowns for ¢, ; which is an equivalent self-motion vector (ESMV).

For the first task, q o (the initial configuration) is known but the initial value of the ESMV ¢, ¢ I8
unknown. Thus by setting €4 o Wwe get ¢, (#) and the final configuration g; . For the second task
g0 = s and by setting €,p¢ We get § (#) and qp ;. Proceeding this way we get the overall
motion tmajectory  {G;(1),9,(),....4x(f)} and all the commutation configurations
{91,7-92,7> 4w, s} - Since the SMV has not any influence on the end effector motion, one has to try

to determine an optimal value of the SMV such that V', in (16) is minimized. To this end one can use any
numerical optimization technique (e.g. Powell’s algorithm or tunelling algorithm)

4. Full-state Control of Mobile Manipulators

Several control laws and strategies have been proposed for mobile manipulators under different
conditions and with various platform types. Since the MM’s equations (9 a,b) or (12) are nonlinear, the
feedback linearization is first applied to Hnearize the system equations. In robotics this method is known
as the computed-torque control technique. Once the system is-brought into linear form, any available
linear control law can be applied with various levels of success.
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The task of the end effector (end-point) of the MM is to track a desired trajectory z(7) in the world

coordinate frame. Clearly, this cannot any time be achieved by the manipulator alone, without the help of the
platform. In many cases the manipulaior has 10 overstretch and almost reach the boundary of its workspace.
Therefore what is usually done is to first conirol the mobile platform so as to bring the mamipulator into a
preferred configuration, e.g. the one with the maximum manipulability, The end effector position at/orientation

. to at the preferred configuration is then used as the reference point (set point) ¢ ; .

4.1 Feedback Linearizing Control

This technique has been applied by the authors to the full-state 2nd-order model of an omnidirectional
MM:

A(Q)q +B(a)qq +C()q”" +Fq+Gla) = 28)
and to the state-gpace MM model (12).

The feedback linearizing control law for (28) is:

7 = A(q)u +B(q)qq + C(q)¢* +Fq +G(q) (29
and leads to:
q=u (30)

where U is the “equivalent input” for the resulting system. The control law for u is then selected as:
u=§,-244- 4% 31)

where q 4 is the vector of the joint variable set points, A is a strictly positive constant, and ¢ = ¢ —q 4
is the position error.

Introducing (31) into (30) yields the emror dynamic equation:
q+24q+ g =0 (2)

which (since A > () converges exponentially to zero. The choice of the gain A also ensures the
exponential stability of the entire system.

4.2 Feedback Linearizing-Decoupling Control
Now, let us work with the state-space model (12). Let
y(®) = e(x, )+ M(x, )7 (33)

be the output equation, where ¥ is the m-D MM’s vector under control. The problem is to select v(X,7)
and F(x,7) in the nonlinear feedback control law:

(t) = v(x, ) + F(x, ) w(#} (34)

where W(Z) is the new control vector of dimension #, such that the transfer function from Ww(¥) to
y{¢) is linear and diagonal, i.e. each element w;(f) of W(#) controls only the corresponding slement
y:(£) of y(f). This is known as “linearizing-decoupling control”.
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To this end, we differentiate each element y; as many times V; as required until the coefficient of 7 is
nonzero. Namely: :

¥ = ix.0)

i=01,..,v,—1 " : (35)
Y = cP(x, 1) + U (x, 1) o B |

where ¢; , #; denote the i-th row of ¢(x,7) and M(X,?) respectively, and y,Ej 1 and c,[j ] dgenote the j-
th time derivative of ¥; and ¢; , respectively. The integer v, is equal to:

V; = min {] X ,u,m(x, N=0, j= 0,1',2,...}

and is considered to be constant for all (x,) of interest.

Now, defining ¢ (%,£), M (x,7), A and 2 (x,7)

| ] c{v;}(x’ t) y%vt](x, t) | /11 | 0
¢ (x0)= : , M (x,1) = : LA= 36)
cbml(x,1) ol 1) 0 4

. v, =] Vi’_]
a (x,f)= col[i%c%"](x,t)] = col[ZaikyE"]}
o k=0 k=0

where ¢y and Ay, i =1,2,...,m are arbitrary constanté, we find that the desired matrices of the coutrol
law (34) are given by:

vx,f)=-M &0 (5, 0)+2"(x,0)] | | 372)

Fx,H=M T (x,HA | . (375
Indeed, introducing in (12) and (33) the control law (34) with v and F given by (37a,b) yields:

1] [vi-1]

Vi, Yt e o) = Aw =12, m (38}

Now choosing suitable coefficients &; and gains A,- we can make each SISO system (38} possess "
desired poles (eigenvalues) or equivalently desired transient features.

4.3 Robust Sliding.—mode Control

The above control laws assume that the MM’s dynamic model is precisely known, which in praciice is
not always true, especially in the case of an MM, To overcome this fact, several robust controllers were
proposed in the past for both linear and nonlinear systems [18]. In our case where the MM systera is-
nonlinear s suitable robust.control technique is the sliding mode control which can work even with severe
parametric uncertainties. The authors have tested. the sliding mode control on several types of robetic
systems- including industrial manipulators, biped robots and MMs [19, 20]. The sliding mode control
technique is based on the so called “sliding condition™ :

—1-~d—sTs <-n(s"s

ol W2 >0 (39)
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where § ="&+A'(—i (see (28)) with A being a symmetric positive definite matrix. By formal
maniputation one obtains: '

s=q+AG=q-4,. 4, =4, ~ A4 (40)
Now let us choose a Lyapunov function
V) =1s"As @)

where A is the mass (inertia) matrix of the MM (see (28)). Through differentiating J/(£) and using (28)
and (49) one obtains: '

ViHh=s" 7—-A{4,-Cq,-Fq, -G (42)
The control law is now selected as:
7 =7 —ksgn(s) (43)

where the term k sgn(s) is a vector with components &; sgn(s;)}. The control term 7 is selected such

that to make V(t) be equal to zero if there is not a dynamic impression in the estimated dynamic model,
i.e. as:

£=Ad,+Cq,+¥q,+G . (44)

where ;\, é F and G are the estimated matrices of the MM. ¥ A, C, F and G arc the real
matrices of the MM, the following errors are defined:

A=A-A,C=C-C,G=6-G,F=F-F
It is possible to select the components &; of the vector K such that:
k= |[A@i, +E(a.d4, + Fa, + G@)] |+ @

with 77, > 0. It is not difficult to verify that using the control law {(43)-(44)} with the gains %;
satisfying the inequality condition (45), the following condition holds: :

Vi< —i‘ s <0 ‘ (46)

=1

which means that the sliding surface § is reached in a finite time and the MM’s trajectories will remain
on the surface. Thus they will converge to the desired (target) trajectory g z(f) exponentially, despite the

fact that the parameters A , é , ﬁ' and é used in (44) are not the real (exact) ones.

5. Some Experimental Results

Our aim here is to give a set of represeniative results obtained by applying the motion planning and
control techniques presented in Section 3 and Section 4.
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5.1 MM Motion Planning Results

Consider an MM with a 2-DOF planar manipulator [11]:

kS

i pS(xS?yS)

5

Pe(Xe.Ve) o %

RS

Figure 2. A Planar MM with 2-DOF Manipuiator

If [y and [, are the link lengths and d is the distance from the platform center to the manipulator’s base
frame, then the MM kinematic equations are: ' ‘

X, = X, +dcosp+l cos(p+6) »Flz cos(¢+9§ +92)

47
Ve = Yp tdsing+] sin(@+6))+1, sin(p+6, +6,) @0

with parameters values §y = 0.5m , I, = 0.3m and d = 0.25m . The Jacobian matrix J is found to
be:

WF 0 —d-sp-h-so—b-spy —h-50 -1 50 -lz-S(P]z:i (48)

10 1 —decop-hep—bopy —h-ep—hicpp —h-cp

where s@ =sin @, s@ = sin(p+8,), spy =sin(p+0)+6,), cp=cosp, cp = cos(p+6,),
¢y, = cos(p+6,; +8,) . The extended Jacobian matrix J, (see Eq. (6)) is found to be:

J ‘
J, =) oS (49)
L‘P -cp 0 O 0} . ‘
Simi - e A ,
imilarly J,, and J ., in J= I_Jm 1§}, | are found to be:

o ~d-sp—by-sp~b-spiy | ~d-co=h-cpy~b-cp
Jm—[ :"Jn—m2

i

|

|
= 0 1 -“li'SQDi"lz'Sgolz i *”l}'C(Dl—lz'Cgﬂlz (50)

—bh-spy 3 —hepy
and J, ,, Jo um for J, arefound to be:
1 0 s

Jom = 0 i —cyp (51)

~d-sp—k sp,~b-spy, —d-co-h-cpp—h-cpy O
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5 AThwchespe —hoom—hepn O (52)
e.n—nm Y lz.sq)lz '_E{"“ ; ""]2 "C_{Biz 0

The matrices Q and Q, are found by using (50), (51) and (52) in the definition equations:

Q= h"-m "'}';} i ~Lm L Q.= lJe,n—m 'J;,lm E —In_m]

A multitask was considered consisting of two sequential tasks defined by the equations:

0.707t +0.889 (t-3)+3.01
xe,l = d xe,2 = (53)
0.707¢ + 0389 2.51

where a static force f =[0,10,0,0,0, O}T N is exerted on the end effector in the 2nd task. The
corresponding actuator torque vector is equal to:
r,=J T (q,)f
The objective function for the two tasks are:
. LT ‘
Vi(ar, @) =541 @ (sttask)
. . T
V(4,.9,) = ‘%‘hqz +"§fT§Tz (2nd task)
The platform considered is of the nonholonomic type with constraint
G=%,cosp—y,sing
The resulting motion of this nonholonomic MM is shown in Figure 3, and the time variation of the torque
norm 4777 in Figure 4.

i Pt Tk
Gommation POTZSN o ecilal 01,3 40
ALXET" Frnat onbguration
tnitiad
Confighuration
{a) atiad sodution
| 2nd Task

(1.2 81}

{b) Final sohition

Figure 3. Initial and Final Solution for the Motion of the MM Performing A Deuble Task
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Figure 4. Torque Norm Variation for the MM Performing A Double Task

5,2 MM Sliding-Mode Control Results

The sliding-mode control has been applied to the omnidirectional MM shown in Figure 1b. The kinematic
equations of this MM are: : ‘

Vx="x, + [12 cosf, + L cos(y +0; )]COS(€0 +6)
*y,="y, +[l; cos0, + 1 cos(0, + 95)}sin(p+6;) e

Yz, =R, +H +h+1,sin @ +155in(0; +63)

where I, (i =1,2,3) are the link lengths, R, is the radius of the wheels and H is the wicdih of the
platform. The Jacobian matrix J can be derived from (54) in the usual way. The MR’s dynamic modal ‘
has the form (28) where the matrices A(q), B(q), C(q) and G(q) have the siandsxd meaning 2nd
F is a diagonal matrix containing the viscous coefficients.

The Iengths of the links and the distance between the center of gravity of the platform and the whesl-
assemblies are assumed to be exactly known. For all other parameters, we assume a bounded mange of |
possible values for every parameter choosing the “mean” values of these ranges as ihe esiimaied
parameters, and the “extreme” values of the ranges as the real parameters. The estimated values of the
parameters used in the experiments are shown in Table 1.

Studies in Informatics and Control Vol. 10, No, 2, June 2001 123




Table 1. Numerical Values of the Mobile Manipulator’s Parameters

Mass of each lateral orthogonal-wheel : 05K
Radius of the wheels 0.0245 m
Mass of the platform 30Kg
Distance between the platform's center of gravity and each assembly 0.178 m
Moment of inertia of the platform with respect to z axis 0.93750 Kgm”
Mass of link 1 1.25m
Morment of inertia of link 1 with respect to x axis 0.01004 Kgm®
Mass of link 2 417 Kg
Length of link 2 0.5m
Position of the center of mass of link 2 along the link 2 025m
Moment of inertia of link 2 with respect to x axis 0.34972 Kgm®
Moment of inertia of link 2 with respect to z axis 0.00445 Kgm’
Mass of link 3 0.83 Kg
Length of link 3 0.10m
Position of the center of mass of link 3 along the link 3 0.05m
Moment of inertia of link 3 with respect to x axis 0.00321 Kgm’
Moment of inertia of link 3 with respect to z axis 0.00089 Kgm®
Viscous coefficient for all rotational points 0.1 Nms |

The real values of the parameters are given in Table 2.

Table 2. Real Numerical Values of the Mobile Manipulator Parameters

Mass of each lateral orthogonal-wheel 0.525 K (5% more)
Radius of the wheels 0.0245 m (exact)
Mass of the platform 33 K (10% more)
Distance between the platform's ¢. of g. and each assembly 0.178 m (exact)
Moment of inertia of the platform with respect to z axis 0.984375 Kgm® (5% more)
Mass of link 1 1.375 m (10% more)
Moment of inertia of link 1 with respect to x axis 0.010542 Kgm’® (5% more)
Mass of link 2 5.421 Kg (30% more)
Length of link 2 0.5 m {exact)
Position of the center of mass of link 2 along the link 2 0.25 m (exact)
Moment of inertia of link 2 with respect to x axis 0.367206 Kgm” (5% more)
Moment of inertia of link 2 with respect to z axis 0.0046725 Kgm® (5% more)

Mass of link 3 1.0790 Kg (30% more)
Length of link 3 0.10 m (exact)
Position of the center of mass of link 3 along the link 3 0.05 m (exact)
Moment of inertia of link 3 with respect to x axis 0.0033705 Kgm® (5% more)
Moment of inertia of link 3 with respect to z axis 0.0009345 Kgm” (5% more)
Viscous coefficient (for all rotational joints) 0.13 Nms (30% more)

Two cases were considered: a straight-line trajectory and a circular trajectory of the platform’s center of
gravity. In both cases, a constant rotational velocity of 1° per second with respect to the absolute
coordinate system is required for the platform. For the joint variables a ramp profile was chosen. The
results for the circular trajectory are shown in Figure 5.
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Figure 5, R,upﬁst Control of the MM: Circalar Trajectory for the Platform’s Center of Mass

The results for the straight-line trajectory are of. similar quality, aid: show that the sliding controller is
very robust with respect to large parameter’s imprecision (uncertainty). Comparing these results with the
ones obtained with the pure feedback linearizing computed torque controller, reveals the superiority of the
sliding mode controller. . ‘ o
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5.3 Two-step Feedback Linearizing-Decoupling Contrel

Consider the planar MM of Figure 2 which, in the frame O p = XpYp> has the kinematic equations:
oo | X, || Px,+]cosE + 1 cos(6,+6,) 4
p.=|, " |7, ) . =6,(q,) (55)
¥, v, +isiné, +1,sin(6, + 6,)

In O, ~x,y, the set point p,(x,,y,) for the MM, ie. for the arm’s end point at the preferred
configuration, is equal to:

P 2, 2 ¥2
f’ps:[ xs}z be+(11 ”2} (56)
Pys Py,

and obviously is a fixed position in Op. The arm is in its preferred configuration if 4 pe=p P

Therefore, the manipulator is driven into the prefersed configuration if Pp, is broaght to ¥p, in the
world coordinate frame (., . From Figure 2 we find that: ‘

" ¥x x,+l cosgp—1sing |2
={ 7= = 57
P [“’yj [yp+lxsin¢+lycos¢ o(a,) ©n
and_
w X —_—t
"pe=| ¢ =] ] +[cf)w - q"’ Pe (58)
Ye| |Yp| Lsing cosg

The set-point of 4 p. at time # is found by solving (58) with respect to 4 P.- The output vector is

selected to consist of the two components of ¥ p,, and the two components of Yp P X3¢

» Yx, |

y=|22|= s {f&ﬂ%&l} - {fl(.".)} ‘ | (59)
Y3 Pxe T (Gm) ¢ (x)
Yal | Py.]

We observe that here the output equation (59) does not involve directly the input torque vector 7 . Due to
this and to the special structure of the MM’s dynamic model (12) the following 2-step feedback
linearizing-decoupling conirol procedure was proposed in [16, 17].

Step 1 Taking the equation for %4 in (12),ie.
. _ 1 -1 1Y
X; =K C+K 'Sr, x3=1 {60)

we see that the control law
7 =8 (Ku-C) (61)
gives X3 = u which simplifies the model (12) as:
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Fv' 0
i=a'(x)+B'(u, a'(¥)={4q,, |, B'(x)={0 (62)
0 I
Step 2 Through differentiating the sub-vectors ¥15 =[ ¥, ¥2 V and y34 =[¥3, ¥4 T in (59) until u
appears explicitly, and taking into account (62), we get:

p
6‘ 1%.0]
Y2 =6 (x)= =| —-F v
'3‘}9 g
_ {63a)
Y12‘cl(x) Do g 4| L Doy
6‘1'}: dz‘ 5‘q.P.
. . o065 |,
Y34 = ()= (’é“z—]‘lm
( I
(63b)
.. . 064 |.. 065
Al X | = W .
Y34 =5 (%) [5‘1:;"}1’” [dt [aqm qu
From (63a) and (63b) we obtain -
661': 0
oq;
§ =M (x)u-+ M- (x)x3, M) =] 7 (64a)
0 dey:
O
To decouple the inputs-and outputs of (64a) U must be-selected such. that: .
y=Au: , (64b)
where the matrix A is diagonal and W is the new input vector.
From (64a) and (64b) we sec that the desired input-output - deconpling feedback control-law is:
u=n"" (x){Am —M-?'(k)x3=l ‘ (65)

Of course M*'(x) should be nonsingular. This is so if the-arm is not in.any singular configuration and
theset point:P ;- is not situated on the wheel axis.

A wide.set of results has-been produced for the following tasks:

- The arm’s end effector:must follow- a straight:-line:

- The:arm’s end-effector has to-follow a circalar line:

- 'The platform has:to follow a straight- line at a constant velocity along the y-directionin O,, and the
arm is commanded independently; to follow an-oscillatory motion along the x-axis relative to the
vehicle frame::

In all cases, it has been verified that the full-state control gives much better: tracking accuracy compared
(o the case where some or all of the interaction terms in Eq.(9a,b) are omitted. The resulting trajectory for
the cireular task is shown in Figure 6 [17].
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Figure-6. Simulation Trajectory for the Circular Path Task
6. Conclusions

The inclusion of the dynamic interaction terms (forces/torques) in the models and controllers of Ms
ensures a much better tracking performance compared to the case where some or all of these terms are
omitted, This has been verified in a number of simulation experiments by many authors including the
authors of this paper. Over the years many types of control have been applied to mobile platforms, robotic
manipulators and mobile manipulators. All of them use as a basis the feedback linearizing concept
combined with other particular techniques. This paper focused on the shding-mode control technique and
on a special feedback linearizing and decoupling technique which is implemented in two steps. For the
motion planning problem the Lee and Cho approach has been adopted, by which the commutation
configurations and the motion trajectory are simultancously obtained via numerical search. A minimal set
.of simulation results were included in the paper, to support the theoretical expectations. It remains to see
how the above full-state controllers bebave when applied to real MMs under real conditions. The authors
are working towards applying full-state control on the ROBUTER MM which is available in intelligent
Robotics and Automation Laboratory.
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