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4. System architecture 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  The sonic output of the system consists of sine waves of a  
  single central frequency, provided by Portaudio [3]. 

1. Outline – Contributions 
 

• MoveSynth: an interactive real-time performance system 
for two players, who collaborate to compose music. 

• The interaction takes place using full-body movements, 
arm postures and continuous gestures. 

• To this end, the skeleton tracking of Kinect v2 is used. 

• Geometric features are extracted and used for classifying 
arm postures and continuous gestures. 

• An evolutionary algorithm is used to find the optimal arm 
posture – musical note mapping. 

• Extensive experimentation with HMMs and nearest 
neighbor algorithm regarding the continuous gesture 
classification, concluding to an 1-nn algorithm using a 
compressed search space (20 templates per gesture class). 

• Online results: 92.11% for continuous gestures, 99.33% for 
arm postures. 

• Generally, encouraging human evaluation study. 
 

6. Arm Posture – Note Mapping 
 

 

 

 

 

 

 

 

 

 
 

 
 

 
• The optimal posture-note mapping was found by using an 
evolutionary algorithm. Cost function: 
• Posture classification: Template matching over all 
postures, using the geometric features described above. 

3. MoveSynth 
 

• An interactive system for two players, who, by moving in 
front of a Kinect sensor, will compose music. 
 

Interaction modes 
 

 

 

 

 
 

 
•A common theme among these modes is that player 1 has 
the role of the primary composer, whilst player 2 settles into 
a supporting role. 

Mode Player  1 Player 2 

1 Notes through arm 

postures 

Control via 

gestures 

2 Pitch/volume via hand 

position 

Control via 

gestures 

3 Notes through arm 

postures 

Volume via hand 

position 

5. Feature Extraction 
 

                                 (x,y,z skeletal data) 
 
 

 

 

 

 

 

 

 

 

 

Final geometric features: a 12D  representation of the arm 
posture per frame (the direction vectors for both upper and 
lower arms, concatenated). 

7. Gesture Recognition Pipeline 

 

  
 
     Skeletal data                                                Respective action 
 
• Activity detection: uses a speed threshold on the joints to 
detect action. 
• Gesture acceptance: uses a distance threshold between the 
detected gesture and existing gesture templates to determine 
whether the detected gesture belongs to our “desired set”. 

ȷctivity 

Detection 

Gesture 

Classification 

Gesture 

Acceptance 

[Left Hand, Right Hand] Note 

[Down, Down] C5 

[Down, Front] C5# 

[Down, Stretched] D5 

[Stretched, Stretched] D5# 

[Stretched, Down] E5 

[Front, Stretched] F5 

[Diag. Str., Diag. Str.] F5# 

[Front, Front] G5 

[Up, Front] G5# 

[Diag. Up, Diag. Up] A5 

[Up, Up] A5# 

[Up, Down] B5 

10. Quantitative Evaluation 
 

 Online static posture classification: 99.33%  
 

Online continuous gesture classification 
 
 

 
 
 
 
 

 
 

Pose ɬ note mapping evaluation 
 

 
 
 
 
 
 
Simulated in Matlab all spatial transitions with distance up 
to 3 notes, interpolating 50 postures between each posture 
pair. 

 
 
 

 

 

 

 

/// G1 G3 G5 G9 G11 

G1 8 

G3 6 

G5 1 7 

G9 8 

G11 2 6 
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12. Conclusions / Future Work 
 

• Results are encouraging with regards to both the 
robustness and enjoyability factors. 
• Potential future work includes research on increased 
collaboration and more suitable posture-note mappings. 

http://cvsp.cs.ntua.gr 

Dist. #frames #mistakes Accuracy 

1 551 17 96.91% 

2 501 35 93.01% 

3 451 46 89.80% 

All 1503 98 93.48% 

11. Qualitative Evaluation 
 

• 9 test users, both possible performer roles, all modes.  
• The questionnaire they filled afterwards including 
comments in written form, as well as their opinion about: the 
system’s learning curve and intuitiveness, their excitement 
and control over the system, as well as the pleasantness of 
the sonic output, in 5-pt Likert scales. 
 

 
 
 
 
 
 
 
 
 
• Very high ratings about the user excitement and control 
over the system, the mapping was regarded quite intuitive. 
• Requests included more fine grained movements. 
• Also, a preference to Mode 3 was shown by the users. 

2. Microsoft Kinect 
 

• Introduced by Microsoft in 
  2010 for Xbox; adapted in 2011 
  for PC platforms. 
• A multi-purpose tracking  
  device, including RGB and  
  depth  sensors, as well as  
  skeleton tracking (25 joints) 
  for a maximum of 6 people. 
 

Upper/lower arm  

per direction 

lengths 

8. Gesture Figures 
 

 
G1 
(start) 
 
 
 
G3 
(swipe) 
 
 
 
G5 
(timbre/ 
interval 
change) 
 
G9 
(stop) 
 
 
G11 
(timbre/ 
interval 
change) 
 
Gestures used: G1,3,5,9,11 from the MSRDC gesture database. 
[7] 
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Unit length 

normalization 

User/camera 

angle rotation 

Hand position 

Geometric 

feature 

extraction 

Continuous 

gesture 

recognition 

Static hand 

posture 

recognition 

9. Gesture Recognition  
Offline Results  

• Gesture duration taken equal to 1 second (30 frames) so we 
represent it using 30 successive “posture descriptor” vectors. 
 

Baseline accuracy percentages 
 

 

 

 

 
• Additional experiments included compressing the data (by 
reducing either their dimensionality using PCA or the size of 
the search space  using k-means) and applying 
multidimensional Dynamic Time Warping  to them. 

Classifier Optimal Setup Acc. (%) 

Disc. HMMs 7 states, 80 codewords 93.1% 

Cont. HMMs 5 states, 5 mix. comps 97.1% 

kNN 1 voting neighbor 98.6% 
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