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Introduction

• Source Separation: Given an observed mixture of 
signals, extract the various signal components that 
constitute the original signal.

• Music Source Separation (MSS):  The task of 
recovering the various vocal or instrumental sources
that constitute a music signal.
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Background – I: Conv-TasNet

State of the art performance in music source separation, 
but prone to the introduction of sonic artifacts.
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Y. Luo and N. Mesgarani, “Conv-TasNet: Surpassing Ideal Time–Frequency Magnitude Masking for Speech Separation,” 
IEEE TASLP 2019



Background – II: Wave-U-Net

Explored not only for source separation, but speech 
denoising/enhancement as well.

Iteratively downsamples and
filters the input waveform to
create deep representations.

Alternately filters and upsamples
the deep representations of the
encoder to reconstruct the sources.
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D. Stoller, S. Ewert, and S. Dixon, “Wave-U-Net: A Multi-Scale Neural Network for End-to-End Audio Source 
Separation,” in Proc. ISMIR 2018



Overview

• Masking-based module, to create an initial source estimate.
• Skip-connection autoencoder, in order to refine the estimate.
• Deep supervision, applying loss functions at multiple 
probe points.
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Overview : Network Parameters

Masking Network Denoising Network
Conv-TasNet base architecture
 1 vertical stack
 9 dilated convolutional layers
 Batch Normalization
 LeakyReLU activation function

Wave-U-Net base architecture
 Amount of filters halved
 LSTM placed in bottleneck
 12 Downsampling/Upsampling blocks
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Dataset

musdb18 dataset: 150 songs (100 train, 50 test)

Apart from the complete songs, also included 
are the separate tracks for 4 sources

Singing voice separation: 
Only utilize complete and vocal tracks

Data preprocessing:
Downmixing to mono, downsampling at 22050 Hz.
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Z. Rafii, A. Liutkus, F.-R. Stoter, S. I. Mimilakis, and R. Bittner, “MUSDB18- A Corpus for Music Separation,” 2017, 
https://doi.org/10.5281/zenodo.1117372



Training & Evaluation Protocol

• Training/validation split: 3:1

• End-to-end network training

• Loss functions: MSE/MAE combinations

• Adam (0.0001), Early stopping (20 epochs)

• No data augmentation

Training Setup

Evaluation Protocol
• Standard museval metrics: SDR (dB), SIR(dB), SAR(dB)

• PES (dB), VAD (%) for silent segments

Song-wise: median

Segment-wise: 
median/mean

E. Vincent, R. Gribonval, and C. Fevotte, “Performance Measurement in Blind Audio Source Separation”, IEEE TASLP 2007



Results I

• HTMD-Net performs comparably to the Conv-TasNet, 
better than the Wave-U-Net
• Improved performance regarding SIR, and silent-segment
performance (mean segment-wise SDR, PES, VAD)
• Overall, MAE-trained models perform more robustly
under vocal absence

Comparison of the HTMD-Net to a reimplementation of Conv-TasNet and a
Wave-U-Net. Bold denotes the best results at a statistical significance level of p < 0.01.
Higher values are better for all metrics except PES (dB).



Results II

• The MSE/MAE HTMD-Net variant achieves competitive scores in
the majority of metrics.
• Deep supervision positively affects the SIR, the average SDR, and
the PES/VAD metrics.
• However, a non-deeply supervised model also performs  
comparably to the Conv-TasNet in the song-wise metrics!

Comparison between the various training protocols used for HTMD-Net. Higher values are 
better for all metrics, except PES (dB).



Results III

High SDR/SIR values for deeply 
supervised variants, not so for
the non-supervised one.

SAR values are however 
competitive!

Lower parameter footprint 
compared to both baselines.

Slower runtime than the 
Wave-U-Net, x3-x4 speedup 
compared to the Conv-TasNet.

Comparison between the intermediate
outputs in the bottleneck of HTMD-Net depending

on the L2 used, when using MAE as the L1. 

Comparison of the HTMD-Net to a 
reimplementation of Conv-TasNet and 

Wave-U-Net, regarding execution 
runtime and parameter footprint.



Results IV

• HTMD-Net more successful in removing the instrumental
interferences in inactive vocal segments.

• However, not as accurately following the vocal contour.

An 8-sec vocal track excerpt from the musdb18 test set (left), and its estimates by
HTMD-Net (orange) and Conv-TasNet (blue) in segment (center) and utterance (right) level.



Results V



Conclusions

• Presented HTMD-Net, a hybrid time-domain system 
for audio source separation, consisting of a masking 
and a denoising component.

• Competitive performance compared to a number of 
baselines, while retaining computational efficiency.

• Improvements regarding energy suppression and SIR, 
especially when trained using the MAE.



Thank you for your attention!

For more information, demos, and current results: http://cvsp.cs.ntua.gr and http://robotics.ntua.gr

http://cvsp.cs.ntua.gr/
http://robotics.ntua.gr/

