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1. Introduction 
● Contrastive self-supervised learning: Representation learning from augmented, 

anchor-positive pairs of large, unlabelled data collections
○ Representations of each pair are enforced to be as close as possible.
○ Representations of different pairs are enforced to deviate from each other.

● Motivation: The various co-playing sources in musical pieces are harmonically and 
rhythmically coordinated, and their existence/absence carries semantic information.

● Contribution: A framework for music representation learning, using music source 
association (MSA) as a pretext task in a contrastive learning setup

○ Pretraining: Associate a music excerpt with a randomly selected extracted source.
○ Semantic information incorporated by modeling the existence or absence of 

sources in the musical piece.
○ Competitive results to self-supervised alternatives in three downstream tasks.
○ Insights about the correlation between particular tags and musical sources.

2. Methodology

● Positive Pair Creation: Match each musical piece excerpt with a time-shifted source 
excerpt from the same piece.
○ Each batch contains instances from the same source.
○ Some batches also include silent instances of the target source.

● Backbone Encoder: Based on EfficientNet-B0 (similar to COLA [1])
○ Series of inverted residual depth-wise convolutional blocks, reduce input resolution.
○ Max-pooling and linear layer for flattening the representation → 512-D embedding.

● Contrastive Loss Objective:  Variant of the NT-XEnt Loss:                                          , 
due to the false positives from silent source excerpts. 
○    contains the anchor embeddings per batch.
○        contains the non-silent positive embeddings and the centroid of the silent ones.  
○ Applied upon linear projections of embedding pairs in a batch-wise fashion.
○ Bilinear similarity used as the similarity function.

 

4. Multi-Source Models: Results

5. Source-Targeted Models: Results

● MSA outperforms the COLA [1] baseline in all three downstream tasks.
● Comparable performance to the data-driven MWS method [2], as well as CLMR [3].
● Improved results compared to random masking → musically meaningful soft 

masking is necessary to learn useful representations. 

Comparison to baselines:

Ablation study:

● Inclusion of non-silent source segments during pre-training improves performance 
in auto-tagging and genre classification, not in instrument classification.

● Similar effect observed regarding intra-batch source homogeneity and the 
proposed loss function.

● Time shifting of the source excerpts is critical to the performance. 

Qualitative Analysis:

● Faster convergence than MWS 
during the early stages of 
pre-training, but

● Performance balances out as 
pre-training progresses due to 
the multitude of augmented 
examples MWS generates.

● In contrast to environmental 
sounds [4], the quality of the 
separated sources impacts the 
performance.

3. Experimental Setup
● Two-stage training:

○ Pre-training the encoder, with a contrastive loss objective, to associate music 
pieces with source excerpts from a pre-training dataset 

○ Training shallow classifiers on top of the frozen encoder in downstream tasks.

Pre-Training:
● Dataset: Magna-Tag-A-Tune (MTAT): 25863 songs, 30 sec each, 188 tags

○ The top-50 most frequent are used as a popular benchmark
○ We further filter the dataset, using only songs with at least one top-50 tag.

● MTAT does not include source tracks → acquisition of source tracks (bass, drums, 
vocals, accompaniment) via an automatic source separation system (open-unmix).

● Data preprocessing: Mel-spectrogram computation (4-sec length, 25ms window, 
10ms overlap, 64 mel bands), 1-sec segments cropped during training
○ Source segments with low mean energy are replaced with silence.

● Training: 10000 training steps, batch size 128, Adam (lr = 0.001, halved at 5000 steps)

Shallow classifier training:
● Downstream tasks: Music auto-tagging (MTAT), instrument classification (NSynth), 

music genre recognition (FMA) – commonly used train/validation/test splits.
○ Reporting results for both filtered (MTAT) and unfiltered (MTAT*) dataset versions. 

● Classifiers: Linear (MTAT and FMA), 1-layer MLP (NSynth)
● Training/inference in spectrogram-level, aggregation per musical piece via averaging
● Results reported are the average of 5 runs for each model.

Baselines (trained with the same pre-training dataset and protocol)
● The unmodified COLA [1] framework.
● The COLA framework [1], along with the data-driven methodology for pair creation 

devised in Zhao et al. (masking, warping and shifting - MWS) [2].
● The COLA framework, but with sources extracted by random soft masking.
● CLMR [3] (results mined from [2] and [3]).

● On average, the vocal and accompaniment-based models perform the best.
● Drum and bass-based models do not beat COLA (exception: genre recognition)
● In general, the multi-source model performs better than all targeted ones.
● Tag-wise average PR-AUC scores for source-targeted models, relative to COLA:

● Models display a specialization, according to the target pre-training source.
○ Drums → percussive and rhythmic features (drums, beat).
○ Accompaniment → accompanying instruments (violin, piano, guitar).

Acknowledgements
This research was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “3rd Call for H.F.R.I. Research Projects to support Post-Doctoral Researchers” (Project 
Number: 7773). For more information: https://i-mreplay.athenarc.gr/

6.Conclusions
● Proposed a contrastive learning framework for learning representations for musical 

audio, using musical source association as a pretext task.
○ Competitive performance to other methods in a number of downstream tasks. 
○ Can be steered towards specific features, based on the selected musical source.

● Future work:
○ Explore the scalability of the framework in larger datasets or with different encoders
○ Examine the feasibility of the learned embedding subspace for source-wise music 

recommendation and similarity.
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