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Introduction – Problem Definition

What is a relapse?
• Deterioration in the condition of mental patients.
• Signs of relapses appear in various modalities, including speech.

 Bipolar Disorder: longer pauses between utterances, increased formant frequencies.
 Schizophrenia: lower speech rate, decreased formant frequencies.

• Goal: Being able to detect and predict the appearance of relapses from spontaneous speech in patients in the
psychotic spectrum.
 Validation of subjective clinician evaluations.
 Ability to intervene by predicting the appearance of relapses.

• Majority of studies in the literature tackle the problem using supervised learning approaches, 
either feature-based [1] or using deep learning [2].

[1] J. Gideon, E. M. Provost, and M. McInnis, “Mood State Prediction from Speech of Varying Acoustic Quality for Individuals with Bipolar Disorder,” in Proc. ICASSP 2016
[2] L. He and C. Cao, “Automated Depression Analysis using Convolutional Neural Networks from Speech,” Journal of Biomedical Informatics, vol. 83, pp. 103–111, 2018.



Motivation - Contribution

Motivation:
• Appearance of relapses in patients is scarce -> opting for an unsupervised approach in an anomaly detection 

framework, since models can be trained only using data from stable time periods.
• Previous work used a deterministic Convolutional Autoencoder [3] for personalized relapse detection and prediction.
• How can we scale this approach at a universal (patient-independent) setting?

Contribution:
• Development of a Convolutional Variational Autoencoder (CVAE) on data collected from patient – clinician interviews.
• Training at spectrogram level, results aggregated in a per-session basis.
• Personalized models: Comparable performance between CVAEs and CAEs.
• Universal models: CVAEs significantly outperform CAEs, reach the performance of personalized models in conjunction with

personalized normalization and norm pooling for temporal aggregation.

[3] C. Garoufis, A. Zlatintsi, P. Filntisis, N. Efthymiou, E. Kalisperakis, T. Karantinos, V. Garyfalli, L. Mantonakis, N. Smyrnis, and P. Maragos, “An Unsupervised Learning 
Approach for Detecting Relapses from Spontaneous Speech in Patients with Psychosis,” in Proc. BHI 2021



Data Collection

• Study participants: 24 patients in the bipolar or psychotic spectrum.

• Annotations of the condition of the patients as stable or relapsing by the expert clinicians, based on:
 Monthly in-person clinical assessments between the patients and experienced clinicians, through which 

psychopathological scales are estimated. 
 Weekly unstructured (duration: 5-10 min) interviews conducted between patients and clinicians via a dedicated tablet 

app and then stored in a cloud server.
 Communication between the clinicians and the patient’s environment.

• Further data categorization as:
 Clean: Patient condition is annotated as stable.
 Relapse: A relapse has been detected by the 

clinicians.
 Pre-relapse: Interviews conducted up to 30 days 

prior to the appearance of a relapse.

• Both pre-relapse and relapse data are considered as anomalous.

09/20 10/20 11/20 12/20

Stable Pre-Relapse Relapse Stable

• In this work, we will use the short unstructured interviews between patients and clinicians.



Data Preprocessing

• Audio extracted from interviews, and downsampled to 16 kHz.
• Speech excerpts corresponding to the patients isolated using kaldi.
• Final utterance statistics: 12107 utterances/30509 sec.

• Computed mel-spectrograms for each speech utterance.
• Parameters: 512-sample window, 256-sample hop length, 128  

mel bands.   
• Spectrograms cut at slices of 64 frames (ca 1 sec.) -> 128x64 

input representation, then standardized and log-scaled.

Patient Speech Isolation:

Feature Extraction:

• Total amount of data used: 375 interviews, from 13 patients.
• 8 of the patients experienced a relapse during the course of the study.
• The rest were selected on the basis of amount of available speech data. 

Collected Dataset Statistics:
Patient demographics, as well as statistics on the 
amount of recorded and analyzed speech utterances.



Methodology: Variational Autoencoders

Sampler DecoderEncoder

• Probabilistic variant of classical autoencoders, first developed in [4]
• Encoder (inference model): Encodes its input into a low-dimensional latent representation, assumed to follow an

isotropic Gaussian distribution.
• Decoder (generative model): Attempts to reconstruct the input from a sample drawn from the learned distribution.
• Used in a variety of audio-related tasks, such as speech enhancement [5] and speech representation learning [6]

[4] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” arXiv preprint arXiv:1312.6114, 2013.
[5] H. Fang, G. Carbajal, S. Wermter, and T. Gerkmann, “Variational Autoencoder for Speech Enhancement with a Noise-Aware Encoder”, in Proc. ICASSP 2021
[6] J. Chorowski, R. Weiss, S. Bengio, and A. van den Oord, “Unsupervised Speech Representation Learning using WaveNet Autoencoders,” IEEE/ACM Trans. on 
Audio, Speech, and Language Process., vol. 27, no. 12, pp. 2041–2053, 2019.



Methodology: Variational Autoencoders

• Encoder: 3 convolutional blocks, alternating 2D-convolutional 
layers and 2D max pooling layers, increasing number of filters + 
pair of parallel layers to estimate     and      .     

• Decoder: 4 convolutional blocks, alternating 2D-upsampling 
layers and 2D convolutional layers, decreasing number of filters.

• Activations: LeakyReLU (no activation at the output layer)
• Loss functions:

 MSE loss at the output of the network, between the true 
and estimated spectrograms.

 KL loss at the distribution of the encoded embeddings,
between the learned distribution and the spherical isotropic 
Gaussian,           .  

Sampler DecoderEncoder



Experimental Setup

• 5-fold cross-validation, data from the same session are assigned to the same fold.
 Training: Only data from time periods where the patient condition was stable
 Testing: Mixture of data from stable and anomalous (pre-relapsing or relapsing) time periods.

• Adam (lr=0.0003), batch size of 8.
• 200 epochs maximum, early stopping applied at 10 epochs.
• Loss weights:                  , and    

Training Details:

• Experiments for both personalized (separate model for each patient) and universal (one model for all 
patients) cases.

• Baseline: The CAE model presented in [3].
• Ν = 32 filters at the outer convolutional layer, for both CAE and CVAE models.

• Evaluation Metric: Mean ROC-AUC score over all sessions.

[3] C. Garoufis, A. Zlatintsi, P. Filntisis, N. Efthymiou, E. Kalisperakis, T. Karantinos, V. Garyfalli, L. Mantonakis, N. Smyrnis, and P. Maragos, “An Unsupervised Learning 
Approach for Detecting Relapses from Spontaneous Speech in Patients with Psychosis,” in Proc. BHI 2021



Experimental Setup – Ablation Studies

• Probe point for the anomaly scores:
 CAE: Output reconstruction MSE
 CVAE: Output reconstruction MSE and input embedding KL divergence.

• Normalization scheme (universal models):
 Global normalization, i.e. a shared normalization transform for all patients.
 Per-patient normalization, i.e a separate normalization transform for each patient.

• Temporal aggregation function of the per-session anomaly scores:

 Average pooling (AP): 𝑆 =
1

𝑁
 𝑖=1
𝑁 𝑠𝑖

 Max pooling (MP): 𝑆 = max(𝑠𝑖)

 Norm pooling (NP): 𝑆 =
1

𝑁
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, p = 10.



Results: Personalized Models

• The performance of the proposed CVAE is 
comparable to that of the deterministic CAE in the 
personalized case.

• No statistically significant difference (p > 0.05) 
between models.

• Average pooling performs the best when using the 
reconstruction MSE as the anomaly score for both 
CAE and CVAE models.

• Norm pooling gives the best results when using 
the KL divergence as the anomaly score.

• Per patient results: ROC-AUC score above 0.75 for
4/8 patients, above 0.65 for 6/8

Per-patient ROC-AUC scores for the discrimination between 

sessions that correspond to stable, or anomalous, condition, 
for both CVAE and CAE personalized models. 

Average per-patient ROC-AUC score for the discrimination 

between sessions that correspond to stable, or anomalous, 
condition, for both CVAE and CAE personalized models. 



Results: Universal Models

• The CVAE model outperforms by a large margin the
baseline CAE, especially when obtaining the anomaly
score from the KL divergence.

• Application of per-subject normalization leads to 
performance equivalent to the one achieved by the 
personalized models.

• Statistically significant improvement (p < 0.05) over the 
baseline when using personalized normalization and the KL 
divergence as anomaly score.

• Norm pooling appears to perform the best as a temporal
aggregation function.

• CVAEs perform better at a patient-independent setting ->
speaker-invariant representations? [6]

[6] J. Chorowski, R. Weiss, S. Bengio, and A. van den Oord,“Unsupervised Speech Representation Learning using WaveNet Autoencoders,” IEEE/ACM Trans. on Audio, 
Speech, and Language Process., vol. 27, no. 12, pp. 2041–2053, 2019.

Average ROC-AUC score for the discrimination between sessions that 

correspond to stable, or anomalous, condition, for both CVAE and CAE 
universal models. 



Results: Qualitative Analysis

• KL scores for two interview sessions over time:
 Stable condition (dashed blue)
 Relapsing condition (orange).

Observations:
• Not significantly higher KL scores during the relapsing session
• Appearance however of a few peaks (in red circles)
• Aural inspection of the respective segments -> abrupt

in-utterance disruptions of the patient’s speech flow.



Conclusions & Future Work

Explored the potential of Convolutional Variational Autoencoders (CVAEs) in speech-based relapse detection 
prediction in psychotic patients.
• Personalized case: Comparable performance to a CAE baseline.
• Universal case: Significant improvement over CAEs, in conjunction with a personalized normalization

scheme. 

What’s next?
• Utilization of multimodal information, such as text transcripts, or data collected from smartwatches.
• Taking advantage of longer-term dependencies in interviews:

 During the same utterance.
 In successive utterances.
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