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1 Introduction

Two of G. Matheron’s seminal contributions have been his development of
size distributions (else called ‘granulometries’) and his kernel representation
theory. The first deals with semigroups of multiscale openings and closings of
binary images (shapes) by compact convex sets, a basic ingredient of which
are the multiscale Minkowski dilations and erosions. The second deals with
representing increasing and translation-invariant set operators as union of
erosions by its kernel sets or as an intersection of dilations.

The semigroup structure of the basic multiscale morphological operators
led to the development (by Alvarez et al. [2], Brockett & Maragos [9], and
Boomgaard & Smeulders [60]) of Partial Differential Equations (PDEs) that
can generate them on a continuum of scales. In parallel, the representation
theory was extended by Maragos [36] to function operators as sup-inf of min-
max filterings by elements of a kernel basis. These two seemingly unrelated
research directions were later rejoined by Catte et al. [11] and by Guichard &
Morel [22, 23] who used the basis representation of multiscale sup-inf opera-
tors to develop PDEs that can generate them based on variants of the mean
curvature motion.

Many information extraction tasks in image processing and computer vi-
sion necessitate the analysis at multiple scales. Influenced by the work of
Marr (and coworkers) [42], Koenderink [31] and Witkin [63], for more than a
decade the multiscale analysis was based on Gaussian convolutions. The popu-
larity of this approach was due to its linearity and its relationship to the linear
isotropic heat diffusion PDE. The big disadvantage of the Gaussian scale-space
approach is the fact that linear smoothers blur and shift important image fea-
tures, e.g., edges. There is, however, a variety of nonlinear smoothing filters,
including morphological open-closings (of the Minkowski type [43, 56] or of
the reconstruction [53] and leveling type [47, 39]) and anisotropic nonlinear
diffusion [51], which can smooth while preserving important image features
and can provide a nonlinear scale-space.
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Until the end of the 1990s, morphological image processing had been based
traditionally on modelling images as sets or as points in a complete lattice
of functions and viewing morphological image transformations as set or lat-
tice operators. Further, the vast majority of implementations of multiscale
morphological filtering had been discrete. In 1992, inspired by the modelling
of the Gaussian scale-space via the linear heat diffusion PDE, three teams
of researchers independently published nonlinear PDEs that model the con-
tinuous multiscale morphological scale-space. Specifically, Alvarez, Guichard,
Lions and Morel [1] obtained PDEs for multiscale flat dilation and erosion,
by compact convex structuring sets, as part of their general work on devel-
oping PDE-based models for multiscale image processing that satisfy certain
axiomatic principles. Brockett and Maragos [8] developed PDEs that model
multiscale morphological dilation, erosion, opening and closing by compact-
support structuring elements that are either convex sets or concave functions
and may have non-smooth boundaries or graphs, respectively. Their work
was based on the semigroup structure of the multiscale dilation and erosion
operators and the use of morphological sup/inf derivatives to deal with the
development of shocks (i.e., discontinuities in the derivatives). In [59, Ch. 8],
Boomgaard and Smeulders obtained PDEs for multiscale dilation and erosion
by studying the propagation of the boundaries of 2D sets and the graphs of sig-
nals under multiscale dilation and erosion. Their work applies to convex struc-
turing elements whose boundaries contain no linear segments, are smooth and
possess a unique normal at each point. Refinements of the above three works
for PDEs modelling multiscale morphology followed in [2, 3, 9, 38, 40, 60]. Ex-
tensions also followed in several directions including asymptotic analysis and
iterated filtering by Guichard & Morel [22, 23], a unification of morphologi-
cal PDEs using Legendre-Fenchel ‘slope’ transforms by Heijmans & Maragos
[25], a common algebraic framework for linear and morphological scale-spaces
by Heijmans & Boomgaard [26] and PDEs for morphological reconstruction
operators with global constraints by Maragos and Meyer [47, 39].

To illustrate the basic idea behind morphological PDEs, we consider a 1D
example, for which we define the multiscale flat dilation and erosion of a 1D
signal f(x) by the set [−t, t] as the scale-space functions

δ(x, t) = sup
|y|≤t

f(x− y), ε(x, t) = inf
|y|≤t

f(x+ y).

The PDEs generating these multiscale flat dilations and erosions are [9]

∂δ/∂t = |∂δ/∂x|, ∂ε/∂t = −|∂ε/∂x|,
δ(x, 0) = ε(x, 0) = f(x). (1)

In parallel to the development of the above ideas, there have been some
advances in the field of differential geometry for evolving curves or surfaces us-
ing level set methods. Specifically, Osher & Sethian [50] have developed PDEs
of the Hamilton-Jacobi type to model the propagation of curves, embedded
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as level curves (isoheight contours) of functions evolving in scale-space. The
propagation was modelled using speeds along directions normal to the curve
that contain a constant term and/or a term dependent on curvature. Further-
more, they developed robust numerical algorithms to solve these PDEs by
using stable and shock-capturing schemes to solve similar, shock-producing,
nonlinear wave PDEs that are related to hyperbolic conservation laws [32].
Kimia, Zucker & Tannenbaum [29] have applied and extended these curve evo-
lution ideas to shape analysis in computer vision. Arehart, Vincent & Kimia
[4] and Sapiro et al. [54] implemented continuous-scale morphological dila-
tions and erosions using the numerical algorithms of curve evolution to solve
the PDEs for multiscale dilation and erosion. There are several relationships
between curve evolution and multiscale morphology, since the evolution with
constant normal speed models multiscale set dilation, and the correspond-
ing Hamilton-Jacobi PDEs contain the PDE of multiscale dilation/erosion by
disks as a basic ingredient. Furthermore, the level sets used in curve evolu-
tion have previously been used extensively in mathematical morphology for
extending set operations to functions [56], [41].

Multiscale dilations and erosions of binary images can also be obtained
via distance transforms. Using Huygens’ construction, the boundaries of mul-
tiscale dilations–erosions by disks can also be viewed as the wavefronts of
a wave initiating from the original image boundary and propagating with
constant normal speed in a homogeneous medium [7]. This idea can also be
extended to heterogeneous media by using a weighted distance function, in
which the weights are inversely proportional to the propagation speeds. In
geometrical optics, these distance wavefronts are obtained from the isolevel
contours of the solution of the Eikonal PDE. This ubiquitous PDE (or its so-
lution as weighted distance) has been applied to solving various problems in
image analysis and computer vision [27] such as shape-from-shading [52, 30],
gridless halftoning, and image segmentation [61, 46, 49, 38, 40].

Modelling linear and morphological scale-space analysis via PDEs has sev-
eral advantages, mathematical, physical, and computational. In particular,
there exist several efficient numerical algorithms which implement morphology-
related PDEs on a discrete grid [50, 58, 23]. Thus, one can have both the
advantages of continuous modelling and discrete processing.

This chapter is organized as follows. In section 2, we review all first-order
PDEs coming from the asymptotic form of classical multiscale dilations and
erosions. In section 3, we state the most general results about PDEs asso-
ciated with the rescaling of any local increasing operator. Section 4 treats
the opposite viewpoint : instead of constructing the PDE by iterating local
morphological operators, it starts with a scale space abstract set of axioms
on multiscale image analysis. A scale space in this abstract setting is nothing
but a scale indexed family of operators Tt, understood as operators smoothing
more and more the image when the scale t increases. Under sound axioms,
it can be proved that scale spaces are equivalent to the action of nonlinear
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or linear parabolic PDEs. A further classification of the PDEs is sketched,
according to their invariance properties. Section 5 takes the last turn by fo-
cusing on the curve evolution interpretation of all that. Actually, all contrast
invariant image scale spaces can be described as curve scale spaces applied
to each level line of the image. This point of view has become popular under
the name of “level set methods” and yields the nice geometric interpretation
of contrast invariant scale spaces as “curvature flows”. Needless to be said,
this rich subject cannot be but sketched in one book chapter and actually
deserves a long and mathematically clean presentation. Probably the presen-
tations closest to our viewpoint here are F. Cao’s book [10] and the book to
appear [23].

2 PDEs for Multiscale Morphological Operators

The main tools of low-level morphological image processing are a broad class
of nonlinear signal operators formed as parallel and/or serial interconnections
of the two most elementary morphological signal operators, the Minkowski
dilation ⊕ and the erosion �:

(f ⊕ g)(x) �
∨
y∈E

f(y) + g(x− y)

(f � g)(x) �
∧
y∈E

f(y)− g(y − x),

where
∨

and
∧

denote supremum and infimum, and the signal domain can
be continuous E = R

d or discrete E = Z
d. The signal range is a subset of

R = R ∪ {−∞,+∞}. Compositions of erosions and dilations yield two useful
smoothing filters: the opening f �→ (f � g)⊕ g and closing f �→ (f ⊕ g)� g.

2.1 PDEs Generating Dilations and Erosions

Let k : R
2 → R be a unit-scale upper-semicontinuous concave structuring

function, to be used as the kernel for morphological dilations and erosions.
Scaling both its values and its support by a scale parameter t ≥ 0 yields a
parameterized family of multiscale structuring functions

kt(x, y) �
{
tk(x/t, y/t), for t > 0 ,
0 at (x, y) = (0, 0) and −∞ else, for t = 0,

(2)

which satisfies the semigroup property

ks ⊕ kt = ks+t. (3)

Using kt in place of g as the kernel in the basic morphological operations
leads to defining the multiscale dilation and erosion of f : R

2 → R by kt as
the scale-space functions
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δ(x, y, t) � f ⊕ kt(x, y), ε(x, y, t) � f � kt(x, y), (4)

where δ(x, y, 0) = ε(x, y, 0) = f(x, y).
In practice, a useful class of functions k consists of flat structuring func-

tions

k(x, y) =

{
0 for (x, y) ∈ B,
−∞ for (x, y) �∈ B,

(5)

which are the 0/ − ∞ indicator functions of compact convex planar sets B.
The general PDE4 generating the multiscale flat dilations of f by a general
compact convex symmetric B is [2, 9, 25]

∂δ

∂t
= sptfB(δx, δy), (6)

where sptfB(·) is the support function of B:

sptfB(x, y) �
∨

(a,b)∈B

ax+ by. (7)

Useful cases of structuring sets B are obtained by the unit balls Bp = {(x, y) :
‖(x, y)‖p ≤ 1} of the metrics induced by the Lp norms ‖·‖p, for p = 1, 2, . . . ,∞.
The PDEs generating the multiscale flat dilations of f by Bp for three special
cases of norms ‖ · ‖p are as follows:

B = rhombus (p = 1) =⇒ δt = max(|δx|, |δy|) = ‖∇δ‖∞, (8)

B = disk (p = 2) =⇒ δt =
√

(δx)2 + (δy)2 = ‖∇δ‖2, (9)

B = square (p = ∞) =⇒ δt = |δx|+ |δy| = ‖∇δ‖1, (10)

with δ(x, y, 0) = f(x, y). The corresponding PDEs generating mutliscale flat
erosions are

B = rhombus =⇒ εt = −‖∇ε‖∞, (11)
B = disk =⇒ εt = −‖∇ε‖2, (12)

B = square =⇒ εt = −‖∇ε‖1, (13)

with ε(x, y, 0) = f(x, y).
These simple but nonlinear PDEs are satisfied at points where the data

are smooth, that is, the partial derivatives exist. However, even if the initial
image or signal f is smooth, at finite scales t > 0 the above dilation or erosion
evolution may create discontinuities in the derivatives, called shocks, which
then continue propagating in scale-space. Thus, the multiscale dilations δ or
erosions ε are weak solutions of the corresponding PDEs, in the sense put
4 Notation often used for PDEs: ut = ∂u/∂t, ux = ∂u/∂x, uy = ∂u/∂y, Du =
∇u = (ux, uy), div(v, w)) = ∇ · (v, w) = vx + wy.
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forth by Lax [32]. Ways to deal with these shocks include replacing standard
derivatives with morphological derivatives [9] or replacing the PDEs with dif-
ferential inclusions [44]. The most acknowledged viewpoint on this, however,
is to use the concept of viscosity solutions. For first-order PDEs, a good expo-
sition is given in Barles [5] or in the classic [14]. Probably the shortest, more
pedagogic and up to date presentation of viscosity solutions is the recent one
by Crandall [13].

Next, we provide two examples of PDEs generating multiscale dilations by
graylevel structuring functions. First, if we use the compact-support spherical
function

k(x, y) =

{√
1 + x2 + y2 for x2 + y2 ≤ 1,

−∞ for x2 + y2 > 1,
(14)

the dilation PDE becomes

δt =
√

1 + (δx)2 + (δy)2. (15)

As shown in [9], this can be proven by using the semigroup structure of di-
lations and the first-order Taylor’s approximation for the difference between
dilations at scales t and t+dt. Alternatively, it can be proven using slope trans-
forms, as explained in the next section. As a second example of structuring
function, if k is the infinite-support parabola

k(x, y) = −r(x2 + y2), r > 0, (16)

the dilation PDE becomes

δt = [(δx)2 + (δy)2]/4r. (17)

This can be proven using slope transforms.

2.2 Slope Transforms and Dilation PDEs

All of the above dilation (and erosion) PDEs can be unified using slope trans-
forms. These transforms [37, 15] are simple variations of the Legendre-Fenchel
transform. The word ‘slope’ was given only for insights because the eigenfunc-
tions of a morphological dilation-erosion system are straight lines parameter-
ized by their slope. Further, for morphological systems we can consider a new
domain, called a ‘slope domain’, where morphological sup-inf convolutions
in the time-space domain become addition of slope transforms in the slope
domain.

Let the unit-scale kernel k(x, y) be a general upper-semicontinuous concave
function and consider its upper slope transform5

5 In convex analysis, given a convex function h(x) there uniquely corresponds an-
other convex function h∗(a) =

W
x a · x − h(x), called the Legendre-Fenchel con-

jugate of h. The lower slope transform of h, defined as H∧(a) =
V

x h(x) − a · x,
is the dual of the upper slope transform. Obviously, the former is closely related
to the conjugate function since h∗(a) = −H∧(a).
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K∨(a, b) �
∨

(x,y)∈R2

k(x, y)− (ax+ by) (18)

Then, as shown in [25, 44], the PDE generating multiscale signal dilations by
k is

∂δ/∂t = K∨(δx, δy) (19)

Thus, the rate of change of δ in the scale (t) direction is equal to the upper
slope transform of the structuring function evaluated at the spatial gradient
of δ. Similarly, the PDE generating the multiscale erosion by k is

∂ε/∂t = −K∨(εx, εy). (20)

For example, the PDE (6) modelling the general flat dilation by a compact
convex set B is a special case of (19) since the support function (7) of B is the
upper slope transform of the 0/ − ∞ indicator function of B. Likewise, the
PDE (17) modelling multiscale dilations by parabolae results simply from (19)
by noting that the upper slope transform of a concave parabola is a convex
parabola.

All of the dilation and erosion PDEs examined are special cases of
Hamilton-Jacobi equations, which are of paramount importance in physics.
Such equations usually do not admit classic (i.e., everywhere differentiable)
solutions. Viscosity solutions of Hamilton-Jacobi PDEs have been extensively
studied by Crandall et al. [14]. The theory of viscosity solutions has been ap-
plied to morphological PDEs by Guichard & Morel [23]. Finally, Heijmans &
Maragos [25] have shown via slope transforms that the multiscale dilation by
a general upper-semicontinuous concave function is the viscosity solution of
the Hamilton-Jacobi dilation PDE of Eq. (19).

2.3 PDEs Generating Openings and Closings

Let u(x, y, t) = [f(x, y)� tB]⊕ tB be the multiscale flat opening of an image
f by the disk B. This standard opening can be generated at any scale r > 0
by running the following PDE [2]

ut = −max (sgn(r − t), 0) ‖∇u‖2 + max (sgn(t− r), 0) ‖∇u‖2, (21)

from time t = 0 until time t = 2r with initial condition u(x, y, 0) = f(x, y),
where sgn(·) denotes the signum function. This PDE has time-dependent
switching coefficients that make it act as an erosion PDE during t ∈ [0, r]
but as a dilation PDE during t ∈ [r, 2r]. At the switching instant t = r this
PDE exhibits discontinuities. This can be dealt with by making appropriate
changes to the time scale that make time ‘slow down’ when approaching the
discontinuity at t = r, as suggested by Alvarez et al. [2]. Of course, the solution
u of the above PDE is an opening only at time t = r, whereas the solutions at
other times is not a opening. In a different work, Brockett & Maragos [9] have
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developed a partial differential-difference equation that models at all times
the evolutions of multiscale openings of 1D images by flat intervals. This does
not involve only local operations but also global features such as the support
geometry of peaks of f at various scales.

The reconstruction openings have found many more applications than the
standard openings in a large variety of problems. We next present a nonlinear
PDE that can model and generate openings and closings by reconstruction.
Consider a 2D reference signal f(x, y) and a marker signal g(x, y). If g ≤ f ev-
erywhere and we start iteratively growing g via incremental flat dilations with
an infinitesimally small disk ΔtB but without ever growing the result above
the graph of f , then in the limit we shall have produced the reconstruction
opening of f (with respect to the marker g). The infinitesimal generator of
this signal evolution u(x, y, t) can be modelled via the following PDE, studied
by by Maragos & Meyer [47, 39],

ut(x, y, t) = ‖∇u‖sgn[f(x, y)− u(x, y, t)],
u(x, y, 0) = g(x, y), (22)

where sgn(r) equals 1 if r > 0, −1 if r < 0 and 0 if r = 0. The mapping from
the initial value u0(x, y) = u(x, y, 0) to the limit u∞(x, y) = limt→∞ u(x, y, t)
is the reconstruction opening filter. If we reverse the roles of f and g, in the
limit we obtain the reconstruction closing of f with respect to the marker
g. Now, if there is no specific order between f and g, the PDE has a sign-
varying coefficient sgn(f − u) with spatiotemporal dependence, which acts as
a global constraint that controls the instantaneous growth. The final result
u∞(x, y) is equal to the output from a more general class of morphological
filters, called levelings [47], which have many useful scale-space properties and
contain as special cases the reconstruction openings and closings. For stability
of the solution of the leveling PDE, g has to be uniformly continuous in the
viscosity sense.

3 Asymptotic of Increasing Operators

We consider a family F of functions from E into R representing a class of
images. An operator S, from F into F , is said increasing or monotone if
∀f, g ∈ F , (∀x ∈ E, f(x) ≥ g(x)) =⇒ (∀x, Sf(x) ≥ Sg(x)).

In all the following we will assume that S commutes with spatial transla-
tions of the image, in other words we assume that S is invariant by translation.

Note: It is a general property of the increasing and translation invariant
operators to preserve the Lipschitz property of any Lipschitz function. Conse-
quently, a possible choice for F can be made by considering the set of Lipschitz
functions.
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3.1 Increasing Operators

The following formulae, inspired from work of Matheron [43], Serra [56], and
Maragos [36] gives us a general form for any increasing and translation invari-
ant operator:

Let S be a increasing function operator defined of F , invariant by trans-
lation and commuting with the addition of constants. There exists a family
IF 1(S) of functions from E into R ∪ {−∞,+∞} such that for all functions f
of F , we have

Sf(x) =
∧

g∈IF 1(S)

∨
y∈E

f(y)− g(x− y).

Similarly, there exists another family of functions IF 2(S) such that

Sf(x) =
∨

g∈IF 2(S)

∧
y∈E

f(y)− g(x− y).

The special cases where IF are made of a single function g correspond to
the classical Minkowski dilation and erosion that have already been presented
in section 2.

Examples of classical increasing operators (or “filters”) that cannot be
represented with a IF made of a single function are e.g. the “median” filter
or the “mean” filter. In fact, it would be probably vain to try to classify all
possible increasing filters. So, in this section, we wish to specify the general
forms of the PDEs related to increasing filters.

3.2 Scaled and Local Increasing Operators

We consider a scaled increasing operator Sh, where the scale h is a positive
real number. We say that Sh is a local increasing operator if for all u and
v such that u(y) > v(y) for y in a neighborhood of x and y �= x, then for h
small enough we have

(Shu)(x) ≥ (Shv)(x)

Roughly speaking, a local increasing operator is a scale operator whose
action is reduced when its scale decreases. Easy way to construct a local
increasing operator Sh from an increasing operator S is to localize the action
of the family of functions IF : e.g., one can set Sh as in [24]:

Sh(u)(x) =
∧

g∈IF

∨
y∈E

(u(x + y)− hβg(y/hα)), (23)

for some α, β ≥ 0. This construction, with adequate choices of α and β will
transform e.g. the mean, median, erosion or dilation filters on a disk of radius
1, into their corresponding respective localized versions on a radius h disk.
However, in general, this construction is not sufficient to get a local increasing
operator from any increasing operator S.
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We finally need some technical assumption stating that a very smooth
image must evolve in a smooth way with the considered operator. Let us
recall that we initially assume that the operator is translation-invariant, so
that the analysis on its asymptotic could be done at x=0 or any other point x.
So choosing any point x, let QA,p,c(y) = 1

2 (A(y−x),y−x)+ (p,y−x)+ c be
a quadratic form on E. (If E = R

N then A is a N ∗N matrix (A = D2Q(x)),
p a vector of R

N (p = DQ(x)) and c a constant.)
We shall say that a local increasing operator is regular if there exists a

function F (A, p, c), continuous with respect to A, such that

∀QA,p,c,
(ShQ−Q)(x)

h
→ F (A, p, c) when h→ 0.

In [2], Alvarez et al gave the general asymptotic shape of any local and
increasing operator:
Fundamental Asymptotic Theorem: Let Sh be a local regular increasing
operator and F the real function associated with the regularity assumption.
Then Sh satisfies

((Shu− u)/h)(x) → F (D2u(x), Du(x), u(x)) (24)

as h tends to 0+ for every C2 function u and every x. In addition, F is
nondecreasing with respect to its first argument : If A ≥ Ã, for the ordering
of symmetric matrices,

then, F (A, p, c) ≥ F (Ã, p, c)). (25)

This easy to prove theorem reduces the classification of all iterated local
and increasing operators to the classification of all interesting functions F . In
dimension 2, these real functions have six arguments. This number, however,
can be drastically reduced when we impose obvious and rather necessary and
useful invariance properties to the increasing operator.

This theorem also shows that the study of the asymptotic behavior of an
increasing operator can be reduced to the study of its action on a parabolic
function (QA,p,c).

4 The Scale-Space Framework

In this section, we consider an abstract framework, the “scale space”, which
at the end boils down, from the algorithmic viewpoint, to iterated filtering.
Now, this framework will make it easier to classify and model the possible
asymptotic behaviors of iterated increasing operators.

The scale space theory was founded (in a linear framework) by Witkin [63],
Marr [42], and Koenderink [31]. Many developments have been proposed, see
e.g. [33] for further references on that particular field.



Partial Differential Equations for Morphological Operators 379

We can see a “scale space” as a family of increasing operators {Tt}t≥0,
depending on a scale parameter t. Given an image u0(x), (Ttu0)(x) = u(t,x)
is the “image u0 analyzed (in fact : smoothed) at scale t”. For simplicity, F
will be the set of Lipschitz functions on E = R

N .
We assume that the output at scale t can be computed from the output

at a scale t − h for very small h. This is natural, since a coarser analysis of
the original picture is likely to be deduced from a finer one without any de-
pendence upon the original picture. By that way the finest picture smoothing
is the identity. Tt is obtained by composition of “transition filters”, which
we denote by Tt+h,t. For simplicity, we will assume here that Tt+h,t will not
depend on t, so that one can set Sh = Tt+h,t. (The general case can be found
in [23]). We then say that the scale space {Tt}t≥0 is pyramidal if there exists
an operator Sh such that for all t one has:

Tt+h = Sh ◦ Tt

Note that a much stronger version of the pyramidal structure is the semigroup
property already presented in section 2.

Since the visual pyramid is assumed to yield more and more global in-
formation about the image and its features, it is clear that when the scale
increases, no new feature should be created by the scale space : the image at
scale t’>t must be simpler than the image at scale t. Furthermore, the tran-
sition operator Sh is assumed to act “locally”, that is, to look at a small part
of the processed image and in a monotone way. In other terms, Sh should be
a regular and local increasing operator.

At last, we say that a scale-space {Tt}t≥0 is causal if it is pyramidal and if
its transition operator Sh is a translation invariant, regular and local increas-
ing operator. To some extent, as increasing operators are the “basic” tools
of morphology, causal scale-spaces can be seen as Morphological Flows.
Operators seen in section 2.2 defined examples of causal scale-spaces or “mor-
phological flows”.

4.1 Causal Scale Space, Increasing Operators and PDEs

We consider a causal scale space {Tt}t≥0 that commutes with addition of
constants; i.e., for any constant C, we have Tt(u+C) = Tt(u)+C. We denote
by F the asymptotic of the transition operator associated to Sh. We know from
Eqn. (24) that F has the shape: F (A, p, c). The commutation with addition of
constants removes the dependence on c, which therefore yields for F a F (A, p)
shape.

The next theorems state the equivalence between causal scale-space and
viscosity solutions of parabolic PDE. They require some technical assumptions
on the shape of the function F that will be given later.
Theorem 1

Let Tt be a causal scale-space. Then for any Lipschitz function u0: u(t, .) =
Tt(u)(.) is the viscosity solution of
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∂u

∂t
= F (D2u,Du) (26)

with initial condition u(0, .) = u0.
Theorem 2

The operator Tt that associates to a Lipschitz function u0 the (unique)
viscosity solution of the equation (26) at scale t is a increasing operator on
Lipschitz functions and Tt defines a causal scale-space.

Proofs of these theorem has been given under some regularity condi-
tions on function F . E.g. in [23], Guichard & Morel prove that the pre-
ceding theorems hold if F is assumed continuous for all A, p �= 0 and
such that there exists two continuous functions G+(A, p) and G−(A, p), with
G+(0, 0) = G−(0, 0) = 0; ∀A ≥ 0, G+(A, 0) ≥ 0 and G−(−A, 0) ≤ 0 and
∀A, p, G−(A, p) ≤ F (A, p) ≤ G+(A, p). These conditions are in fact not so
restrictive since they are satisfied by all equations mentioned in the present
chapter.

4.2 Geometric and Contrast Invariant Scale Spaces

We shall now list a series of axioms which state some invariance for the scale
space. We begin by considering a “contrast invariance” assumption, that the
scale space should be independent from the (arbitrary) graylevel scale. We
shall say that a scale space is contrast invariant if

g ◦ Tt = Tt ◦ g, (27)

for any nondecreasing and continuous function g from R into R. The con-
trast invariance is a particular formalization of the invariance of image anal-
ysis with respect to changes of illumination. This invariance has been stated
in perception theory by Wertheimer [62], as early as 1923. In Mathematical
Morphology, the contrast invariance is commented and used e.g. in Serra [56],
or by Maragos et al [41]. Within the scale-space framework, Koenderink [31]
insists on that invariance but did not proceed due to incompatibility with
some imposed linearity property. We will see, in section 5, that in addition to
this link with perception, “contrast invariance” generates an interesting link
between function evolution and set or curve evolution.

Let R be an isometry of R
N and denote by Ru the function Ru(x) =

u(Rx). We shall say that a scale space Tt is euclidean invariant if for every
isometry R of R

N into R
N , RTt = TtR.

Finally, we state an axiom which implies the invariance of the scale space
under any affine projection of a planar shape. Set for any such transform
Af(x) = f(Ax). We shall say that a scale space Tt is affine invariant if for
any linear application A of R

N with det(A) = 1, we have ATt = TtA.
If we impose the euclidean and contrast invariance, then Ttu0 obeys a

restricted form of the equation (26). A general study in dimension N can be
found in [20]. We just recall from [2] the two dimensional case.
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(i) Let Tt be a euclidean and contrast invariant causal scale space and u0

be a Lipschitz function, then u(t) = Tt(u0) is the viscosity solution of

∂u

∂t
= |Du|β(curv(u)), (28)

where β is a continuous nondecreasing real function.
(ii) If the scale space is, in addition, affine invariant, then the only possible
equation is, up to a rescaling,

∂u

∂t
= |Du|(curv(u))1/3. (29)

where, for any C2 function f and where Df �= 0, curv(f) = κ(f) = div( Df
|Df | ),

is the curvature of the level line at the considered point.
Conversely, as proved in [23], the operator Tt that associates to a function

u0 the (unique) viscosity solution of the preceding equations at scale t is
a euclidean and contrast invariant increasing operator on Lipschitz functions
and the family Tt defines a euclidean and contrast invariant causal scale-space.

4.3 Iterations of Increasing Operators and PDEs

We have seen that the causal scale space framework ends up with some par-
ticular parabolic equations. However, this very formal definition of scale space
might seem very restrictive to be of any interest. Question occurs on how to
get a scale space from any scaled increasing operator ?

The following heuristic answers the question:

• choose a increasing operator S, e.g the mean, the median, the dilation, the
erosion, etc...

• localize it: Sh, e.g by using equation (23),
• iterate it: Set (Tn)t = (Sh)n with hn = t.

When n → ∞ if the sequence (Tn)t converges to some operator Tt, then Tt

is a causal scale-space. More precisely, consider u0 a Lipschitz function and
set un(t) = (Tn)t(u0). If un(t) converges when n tends to ∞, then u(t) =
limn→∞un(t) is the viscosity solution of equation (26) with F given by the
asymptotic of Sh (equation (24)).

The shape of function F will necessary inherit from the invariance property
of the increasing operator S. E.g. if S is contrast and euclidean invariant,
then F is necessarily of the form F (D2u,Du) = |Du|β(curv(u)), for some
increasing function β.

Unfortunately convergence has not been proved for general forms of local
and increasing operators Sh. Let us cite some basic examples: if Sh is the
mean filter on a disk of radius h2, then Tt will solve the heat equation

∂u

∂t
= Δu
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which confirms a well known result. If Sh is a median filter on a disk of radius
h2, then Tt will solve the mean curvature motion

∂u

∂t
= |Du|curv(u) = |Du|κ

This last equation will be more deeply considered in the following section.

5 Curve Evolution and Morphological Flows

Consider at time t = 0 an initial simple, smooth, closed planar curve Γ (0)
that is propagated along its normal vector field at speed V for t > 0. Let this
evolving curve (front) Γ (t) be represented by its position vector C(p, t) =
(x(p, t), y(p, t)) and be parameterized by p ∈ [0, J ] so that it has its interior
on the left in the direction of increasing p and C(0, t) = C(J, t). The curvature
along the curve is

κ = κ(p, t) � yppxp − ypxpp

(x2
p + y2

p)3/2
. (30)

A general front propagation law (flow) is

∂C(p, t)
∂t

= VN(p, t), (31)

with initial condition Γ (0) = {C(p, 0) : p ∈ J}, where N(p, t) is the in-
stantaneous unit outward normal vector at points on the evolving curve and
V = Ct ·N is the normal speed, with Ct = ∂C/∂t. This speed may depend
on local geometrical information such as the curvature κ, global image prop-
erties, or other factors independent of the curve. If V = 1 or V = −1, then
Γ (t) is the boundary of the dilation or erosion of the initial curve Γ (0) by a
disk of radius t.

An important speed model, which has been studied extensively by Osher
and Sethian [50, 58] for general evolution of interfaces and by Kimia et al.
[29] for shape analysis in computer vision, is

V = 1− εκ, ε ≥ 0. (32)

As analyzed by Sethian [58], when V = 1 the front’s curvature will develop
singularities, and the front will develop corners (i.e., the curve derivatives
will develop shocks—discontinuities) at finite time if the initial curvature is
anywhere negative. Two ways to continue the front beyond the corners are
as follows: (1) If the front is viewed as a geometric curve, then each point
is advanced along the normal by a distance t, and hence a “swallowtail” is
formed beyond the corners by allowing the front to pass through itself. 2) If the
front is viewed as the boundary separating two regions, an entropy condition
is imposed to disallow the front to pass through itself. In other words, if the
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front is a propagating flame, then “once a particle is burnt it stays burnt” [58].
The same idea has also been used to model grassfire propagation leading to
the medial axis of a shape [7]. It is equivalent to using Huygens’ principle to
construct the front as the set of points at distance t from the initial front. This
can also be obtained from multiscale dilations of the initial front by disks of
radii t > 0. Both the swallowtail and the entropy solutions are weak solutions.
When ε > 0, motion with curvature-dependent speed has a smoothing effect.
Further, the limit of the solution for the V = 1−εκ case as ε ↓ 0 is the entropy
solution for the V = 1 case [58].

To overcome the topological problem of splitting and merging and numer-
ical problems with the Lagrangian formulation of Eq. (31), an Eulerian for-
mulation was proposed by Osher and Sethian [50] in which the original curve
Γ (0) is first embedded in the surface of an arbitrary 2D Lipschitz continu-
ous function φ0(x, y) as its level set (contour line) at zero level. For example,
we can select φ0(x, y) to be equal to the signed distance function from the
boundary of Γ (0), positive (negative) in the exterior (interior) of Γ (0). Then,
the evolving planar curve is embedded as the zero-level set of an evolving
space-time function φ(x, y, t):

Γ (t) = {(x, y) : φ(x, y, t) = 0} (33)
Γ (0) = {(x, y) : φ0(x, y, 0) = φ(x, y) = 0}. (34)

Geometrical properties of the evolving curve can be obtained from spatial
derivatives of the level function. Thus, at any point on the front the curvature
and outward normal of the level curves can be found from φ (assume φ < 0
over curve interior):

N =
∇φ
‖∇φ‖ , κ = div

( ∇φ
‖∇φ‖

)
. (35)

The curve evolution PDE of Eq. (31) induces a PDE generating its level
function:

∂φ/∂t = −V ‖∇φ‖,
φ(x, y, 0) = φ0(x, y). (36)

If V = 1, the above function evolution PDE is identical to the flat circular
erosion PDE of Eq. (12) by equating scale with time. Thus, we can view this
specific erosion PDE as a special case of the general function evolution PDE
of Eq. (36) in which all level curves propagate in a homogeneous medium with
unit normal speed. Propagation in a heterogeneous medium with a constant-
sign V = V (x, y) leads to the eikonal PDE.

5.1 Dilation Flows

In general, if B is an arbitrary compact, convex, symmetric planar set of unit
scale and if we dilate the initial curve Γ (0) with tB and set the new curve



384 Frederic Guichard, Petros Maragos, and Jean-Michel Morel

Γ (t) equal to the outward boundary of Γ (0) ⊕ tB, then this action can also
be generated by the following model [4, 54] of curve evolution

∂C
∂t

= sptfB(N)N (37)

Thus, the normal speed V , required to evolve curves by dilating them with B,
is simply the support function of B evaluated at the curve’s normal. Then, in
this case the corresponding PDE (36) for evolving the level function becomes
identical to the general PDE that generates multiscale flat erosions by B,
which is given by (6) modulo a (−) sign difference.

5.2 Curvature Flows

Another important case of curve evolution is when V = −κ; then,

∂C
∂t

= −κN =
∂2C
∂s2

(38)

where s is the arc length. This propagation model is known as Euclidean geo-
metric heat (or shortening) flow, as well as mean curvature motion. According
to some classic results in differential geometry, smooth simple curves, evolv-
ing by means of (38), remain smooth and simple while undergoing the fastest
possible shrinking of their perimeter [18], [19]. Furthermore, any non-convex
curve converges first to a convex curve and from there it shrinks to a round
point.

If the function φ(x, y, t) embeds a curve evolving by means of (38), as its
level curve at a constant level, then it satisfies the evolution PDE

∂φ/∂t = div(∇φ/||∇φ||)||∇φ|| = κ||∇φ||

This smooths all level curves by propagation under their mean curvature. It
has many interesting properties and has been extensively studied by many
groups of researchers, including Osher & Sethian [50], Evans & Spruck [17],
Chen, Giga & Goto [12] and Alvarez et al. [2].

Solutions of the Euclidean geometric heat flow (38) are invariant with re-
spect to the group of Euclidean transformations (rotations and translations).
Extending this invariance to affine transformations creates the affine geomet-
ric heat flow introduced by Sapiro and Tannenbaum [55]

∂C
∂t

= −κ1/3N =
∂2C
∂α2

(39)

where α is the affine arc length, i.e., a re-parameterization of the curve such
that det[Cα Cαα] = xαyαα − xααyα = 1. Any smooth simple non-convex
curve evolving by the affine flow (39) converges to a convex one and from
there to an elliptical point [55]. This PDE was also independently developed
by Alvarez et al. [2] in the context of the affine morphological scale-space,
already seen in section 4.2.
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5.3 Morphological Representations of Curvature Flows

Matheron’s famous representation theorem [43] states that any set operator Ψ
on P(Rd) that is translation-invariant (TI) and increasing can be represented
as the union of erosions by all sets of its kernel Ker(Ψ) = {X : 0 ∈ Ψ(X)} as
well as an intersection of dilations by all sets of the kernel of the dual operator:

Ψ is TI and increasing =⇒ Ψ(X) =
⋃

A∈Ker(Ψ)

X �A, X ⊆ R
d.

This representation theory was extended by Maragos [35, 36] to both function
and set operators by using a basis for the kernel. As we have seen in section
3.1, according to the basis representation theory, every TI, increasing, and
upper-semicontinuous (u.s.c.) operator can be represented as a supremum of
morphological erosions by its basis functions. Specifically, let ψ be a signal
operator acting on the set of extended-real-valued functions defined on E = R

d

or Z
d. If Ker(ψ) = {f : ψ(f)(0) ≥ 0} defines the kernel of ψ, then its basis

Bas(ψ) is defined as the collection of the minimal (w.r.t. ≤) kernel functions.
Then [36]:

ψ is TI, increasing, and u.s.c. =⇒ ψ(f) =
∨

g∈Bas(ψ)

f � g

Dually, ψ can be represented as the infimum of dilations by functions in the
basis of its dual operator ψ∗(f) = −ψ(−f).

If the above function operator ψ is also flat (i.e., binary inputs yield binary
outputs), with Ψ being its corresponding set operator, and commutes with
thresholding, i.e.,

Xλ[ψ(f)] = Ψ [Xλ(f)], λ ∈ R (40)

where Xλ(f) = {x ∈ R
d : f(x) ≥ λ} are the upper level sets of f , then ψ is a

supremum of flat erosions by the basis sets of its corresponding set operator
Ψ [36]:

ψ(f) =
∨

S∈Bas(Ψ)

f � S

where the basis Bas(Ψ) of the set operator Ψ is defined as the collection of
the minimal elements (w.r.t. ⊆ ) of its kernel Ker(Ψ).

Equation (40) implies that [57, p. 188] the operator ψ is ‘contrast-invariant’
or ‘morphologically-invariant,’ which means that [56, 1, 22]

ψ(g(f)) = g(ψ(f))

where g : R → R is any monotone bijective function, and g(f) is the image
of f under g. Such a function g is called an ‘anamorphosis’ in [56, 57], or a
‘contrast-change’ in [1, 22].
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The above morphological basis representations have been applied to vari-
ous classes of operators, including morphological, median, stack, and linear fil-
ters [35, 36, 41]. Moreover, one can define TI, increasing and contrast-invariant
filters as supremum (or infimum) of flat erosions (or dilations) by sets belong-
ing to some arbitrary basis B. Catté, Dibos & Koepfler [11] selected as a basis
the scaled version of a unit-scale isotropic basis (the set of all symmetric line
segments of length 2)

B � {{(x, y) : y = x tan(θ), |x| ≤ | cos(θ)|} : θ ∈ [0, π)} (41)

and defined the following three types of multiscale flat operators It,St, Tt:

It(f)=
∨
S∈B

f �
√

2tS ⇐⇒ ∂C/∂t=−max(κ, 0)N (42)

St(f)=
∧
S∈B

f ⊕
√

2tS ⇐⇒ ∂C/∂t=min(κ, 0)N (43)

Tt(f)=[I2t(f) + S2t(f)]/2 ⇐⇒ ∂C/∂t=−κN (44)

If these operators operate on a level function embedding a curve C as one of its
level lines, then this curve evolves according to the above following three flows
[11]. Hence, the above multiscale operators, which are sup-of-erosions and inf-
of-dilations by linear segments in all directions, are actually curvature flows. A
generalization of this result was obtained, within the framework described in
section 4, in Guichard and Morel [22], by assuming that B is any bounded and
isotropic collection of planar sets. Furthermore, in slightly different settings it
has been shown that, by iterating n times a median filter, based on a window
of scale h, we asymptotically converge (when h→ 0, n→∞, with nh = t) to
the curvature flow. The mathematical proof was given in [16], [6], following a
conjecture of [45].

The above morphological representations deal with Euclidean curvature
flow. Furthermore, by defining a unit-scale morphological basis B as a collec-
tion of convex symmetric sets invariant under the special linear group, it has
been shown in [22] and in [20] that n iterations of morphological flat oper-
ators at scale h, which are sup-of-erosions, inf-of-dilations, or their alternate
compositions, converge (when h→ 0, n→∞, with nh = t) to the affine cur-
vature flow. An efficient implementation of the iterated affine invariant curve
evolution has been proposed in [48]. It yields a fast implementation of the
curve affine scale space and has proved its effectiveness in shape recognition
[34]. An example of shape smoothing using this affine scale-space is shown in
Fig. 1.

6 Conclusion

In this chapter we have presented some basic results from the theory of non-
linear geometric PDEs that can generate multiscale morphological operators.
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Fig. 1. Smoothing curves with the Affine Scale Space. Top: a text image corrupted
by noise. Middle: thresholding the image reveals characters as irregular level lines.
Bottom: the same level lines, smoothed with the affine scale space. The smoothing
process produces curves almost independent of the noise, which is a requirement for
robust pattern recognition. Algorithm used follows the affine erosion introduced in
[48]. -Experiment courtesy of Lionel Moisan-

Further, we have outlined the relationships of these results with G. Matheron’s
development of size distributions and kernel representation theory.

Interpreting and modelling the basic morphological operators via PDEs
opens up several new promising directions along which mathematical mor-
phology can both assist and be assisted by other PDE-based theories and
methodologies of image analysis and computer vision. Examples include scale-
space analyses, variational methods of vision, level sets implementations of
2D/3D geometric flows, and their applications to major research problems
such as image segmentation, object detection & tracking, and stereopsis.
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