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Correspondence

A System for Finding Speech Formants
and Modulations via Energy Separation

Helen M. Hanson, Petros Maragos, and Alexandros Potamianos

Abstract—This correspondence presents an experimental system that
uses an energy-tracking operator and a related energy separation al-
gorithm to automatically find speech formants and amplitude/frequency
modulations in voiced speech segments. Initial estimates of formant center
frequencies are provided by either LPC or morphological spectral peak
picking. These estimates are then shown to be improved by a combination
of bandpass filtering and iterative application of energy separation.

I. INTRODUCTION

The ability to automatically find and track resonant frequencies of
the speech production system, called “formants,” is an important part
of speech processing, because formants play a major role in most
speech applications [10]. Traditional methods for formant finding are
peak picking of the cepstrally-smoothed or LPC spectrum {8], [11], or
finding the roots of the LPC polynomial [1]. These methods assume
that the formants are constant within an analysis frame. However, in a
recently proposed modulation model [4]-[6], resonances are modeled
as damped AM-FM signals

2(t) = a(t) cos[¢o(t)]
i

= a(t)cos[2m(fet + fun q(T)dT) + 0(0)] ¢))

0
with a time-varying instantaneous frequency (in hertz)
1.

and a (generally nonexponential) amplitude a(t). The formant fre-
quency f(t) may vary around its center value f. according to a
frequency modulating signal ¢(t) € [—1,1], with f.. € (0, fc) the
maximum deviation, To estimate the amplitude and frequency signals,
Maragos, Kaiser, and Quatieri [5] developed an energy separation
algorithm (ESA) that uses a nonlinear energy operator to track the
instantaneous energy of the source generating the AM-FM signal and
separate it into its amplitude and frequency components. This energy
operator, defined as ¥ [x(t)] = (&(£))? — x(t)¥(t), was developed
by Teager [13] and Kaiser [2], [3].

To apply the ESA to speech, one must isolate the resonances by
bandpass filtering. We do this with a Gabor filter having impulse

response g(t) = exp(—a’t?) cos(w.t). w. = 2xf., and frequency
response
_ﬁ . (W'_ ")2 (*‘J+'-Ut)2
Glw) = 90 \CXP T + exp Tz 3)
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There is a question as to the best method of choosing the center
frequency f. and bandwidth parameter o of the filter. The carrier
frequency f. of the AM-FM signal may be a logical choice, but
determining it may not be straightforward because the peak frequency
of the spectrum of an AM-FM signal is close to, but not always equal
to, f.. Furthermore, the choice of a is complicated because the filter
must be as wide as is possible to include the formant modulations,
but narrow enough to exclude those of neighboring formants.

We would like to automatically determine the center frequencies of
the bandpass filters used to extract the component AM-FM signals of
the speech segment and then determine the modulations around these
center frequencies, assuming we have a reasonable estimate of the
filter bandwidths. The system presented here is aimed at achieving
this goal. The outline of the correspondence is as follows. We first
review the energy operator and ESA in continuous- and discrete-
time. Then, an iterative energy separation algorithm is described,
which eliminates the need for precise values of formant center
frequencies because the ESA is used to converge to that center
value. Next, the system is presented, where both traditional (LPC)
and non-traditional methods (morphological filtering) are employed
to find initial values of the formant center values, and then the
iterative separation algorithm is applied to refine them and track the
modulations. Experimental results are presented that demonstrate its
effectiveness. Finally, we conclude and discuss some extensions of
our work.

II. BACKGROUND

Given an AM-FM signal x(t) = a(t) cos[¢(t)] as in (1), it has
been shown in {4], [6] that

T [z(t)] = [a(t)d(t)] @)

To separate amplitude from frequency in the above energy product,
it has been shown in [5] that

1 [P fa(t)]
o m = f(t) )]

. [z(t)]
NARETD)

Thus, (5) and (6), referred to as the continuous-time energy separation
algorithm (ESA), can estimate the amplitude envelope la(t)| and
instantaneous frequency f(t) of an AM-FM signal at each time
instant. The approximations in (4)—(6) are valid under certain general,
realistic constraints that restrict the bandwidths of a(t), f(¢) and the
maximum frequency deviation f,. of the FM part to be much smaller
than the carrier frequency f..

A similar set of equations has been derived for discrete-
time AM-FM signals, defined by x(n) = a(n)cos[d(n)] =
a(n)cos (2=T [ f(m)dm), where |a(n)| is the discrete-time
amplitude envelope, f(n) is the instantaneous frequency (in
hertz), a sampled version of (2) and T is the sampling period.
By applying the discrete-time Teager-Kaiser energy operator (2],
¥ [e(n)] = 2*(n) — a(n = L)ae(n + 1), to the signal x(n) and
its backward difference, y(n) = x(n) — x(n — 1), it is shown in
[4]-[6] that

& |a(t)]- (6)

Wyle(n)] = a(n) sinE[QTrTf(n )
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Fig. 1. (a) The Fourier magnitude spectrum of 25 ms of the vowel /e/. The Gabor filters (center frequencies at 3200, 3440, and 3700 Hz) used for isolating
the formant that peaks at 3440 Hz are superimposed on the spectrum. (b) The instantaneous formant frequency, f(n), when the filter has center frequency
fo = 3200 Hz. (c) f(n) when f. = 3440 Hz (the formant peak frequency). (d) f(n) when f. = 3700 Hz. In (b)—(d) the center frequency of the filter
and the average instantaneous frequency are indicated with dashed and dotted lines, respectively.

1 Tafy(n)] + Valy(n + ]
32T arccos (1 - 4% 3jo(n)] ) = f(n) (@)
U 4lz(n)) ~ .
1 (\If y(:}yw( z;(n+1) )2 % fatml- ®
alz(n

Equations (7) and (8) are referred to as the discrete-time ESA. At each
sample it provides an estimate of the envelope and instantaneous
frequency using only a 5-sample moving window, at a very small
computational complexity. The approximations involved are valid as
long as the amplitude envelope and instantaneous frequency do not
change too much or too quickly in time compared with the carrier
frequency. In implementing the ESA, we pre-smooth the energy
signals ¥,[x(n)] and ¥4fy(n)] with a 7-point binomial smoothing
filter, because this can reduce the approximation errors by about 50%

[9].

TI. AN ITERATIVE METHOD FOR DETERMINING
FORMANT CENTER FREQUENCIES AND MODULATIONS

We next describe an iterative method that reduces the importance
of having good initial estimates of f. when applying the ESA, and
allows us to follow formants within a voiced speech segment.

From the results of our early experiments with the ESA, we noticed
that when the center frequency of the filter was off by even several
hundred hertz, the average value of the instantaneous frequency was
often close to the formant peak frequency. Fig. 1 shows an example
of this.

o

-— F_¢=1700 Hz
-- F_c=1563 Hz

NORMALIZED MAGNITUDE in dB
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Fig. 2. The iterative ESA was started at fp) = 1700 Hz for this speech seg-
ment. Only one iteration was necessary for it to converge to F2 = 1563 He,
a difference of about 140 Hz.

Based on this observation and a suggestion by Kaiser', we reasoned
that we might be able to use f(n) to iteratively estimate the center
frequency of the formant, adjusting the center frequency of the filter
on each iteration. Assuming in the AM-FM model for a speech
resonance (1) that the frequency modulating signal ¢(¢) has a zero
mean within the short-time speech analysis frame, an estimate for
the formant center frequency f. can be the average of f(t). Thus,
we have implemented the idea of iterative estimation by using the

1], F. Kaiser initially suggested the iteration in the ESA, 1991.
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Fig. 3. (a) 20 ms of the vowel /#/ spoken by a female. (b) 20 ms of the vowel Ju/ spoken by a female. In both (a) and (b), the solid and dashed lines
represent the speech and LPC spectra, respectively, while the vertical dotted lines indicate the formant center frequencies found by the iterative ESA.

rule; fOTY = = Zj}:ol £Y2(n). That is, the center frequency of
the Gabor bandpass filter on the (j + 1)th iteration is set equal to
the average value of f(n) on the jth iteration. We start the algorithm
by setting f[(.” to be some initial estimate of the formant, and we
consider the algorithm to have converged when the center frequency
does not change by more than 5 Hz. This iterative application of the
Gabor bandpass filter, the ESA, and the updating of the filter center
frequency, while keeping o fixed, is henceforth called the iterative
ESA. Note that during the iteration one need not apply the amplitude
estimation part of the ESA, except at the last iteration.

We have been using the iterative ESA for some time now and,
overall, the results are good. For well-defined spectral peaks and fairly
good initial estimates, the algorithm converges quickly. Fig. 2 shows
an example where the initial estimate was off by 140 Hz and only
one iteration was required for convergence. A poorer initial estimate
or a poorly defined peak requires more iterations.

In our experience, the algorithm converges to the spectral peak
closest to the initial estimate as long as the Gabor bandpass filter is
narrow enough to exclude neighboring formants. Problems can arise
for the first formant, when larger ESA errors due to a low F1 center
frequency may be compounded by undesired effects of a nearby F2.
Our solution has been to use narrower filters for formant estimates
below 1000 Hz, as described in Section IV. Another problem may
occur with back vowels, where the first two formant peaks may not
be well-separated and appear as one peak rather than two. As with
more standard formant finders, the iterative ESA could fail to find
two separate peaks.

In Fig. 3 we superimpose the results of the iterative ESA onto the
LPC spectrum for two vowels. In Fig. 3(a), the results of iteration
agree well with the peaks in both the speech and LPC spectrum.
However, in Fig. 3(b), the LPC spectrum has some peaks that are
difficult to distinguish, while the iteration results correspond well
with peaks in the speech spectrum. In addition, the iterative ESA has
the advantage over LPC that it also finds the modulations, i.e., the
signals |a(n)| and f(n).

Fig. 4 shows an example of how better positioning of the Gabor
filter due to iteration improves the output of ¥, and thus improves
the estimates of |a(n)| and f(n). In Fig. 4(a), we show the speech
spectrum with two Gabor filters superimposed. One filter is centered
on F2 and the other filter is off by several hundred hertz. Fig. 4(b)
shows the waveform and Fig. 4(c)—(d) demonstrates a clear difference
between /¥, for the two filters. Here, better positioning of the filter

results in additional modulations being revealed, but there may be
cases where it results in fewer modulations.

Since the iterative ESA seems to gravitate to peaks, one might
assume that it would be feasible to use the algorithm for finding
formants, where by “finding formants” we mean that there is no prior
information about where the formants might be located. That is, we
blindly start the algorithm with arbitrary values and it converges to a
formant. Note that this is not the same as what we described above,
which was to start the algorithm by giving it a push in the direction
where we thought a formant was located, and then letting it track or
refine the formant value. Extensive experience with the iterative ESA
has led us to conclude that it cannot be useful as a formant finder
when it has no prior information about the formant center frequencies.
In many cases where fp(l) was completely arbitrary, the algorithm
converged to a spectral plain if there was no strong peak within
about 500 Hz of the initial estimate. Instead, the algorithm seems
to be most useful when used in conjunction with a more standard
formant finder. We will describe this in Section IV.

We now briefly turn to the issue of how the iterative ESA may be
converging. We experimentally observed that the resulting average
value of the instantaneous frequency f(n) seemed to be drawn
close to peaks or local maxima in the power spectrum. Since the
output of Wy[x(n)] is proportional to the energy required to produce
x(n), we reasoned that the algorithm could be maximizing the mean
(modulation) energy of the bandpass filtered speech, We defined the
average energy for an iteration as F(j) = & Zﬁ':_ol U y[z9 (n)],
where 2 )(n) is the bandpass filtered speech on the jth iteration.
This quantity was then computed on each iteration while finding the
formants of speech segments. We have experimentally found that for
the majority of formants E(j) increased as the algorithm converged.
However, there were a few exceptions where it would rise and then
either oscillate a little, or fall slightly. We have also found that E(j)
peaks in the vicinity of formant peaks. Perhaps locally searching for
the peaks of the average energy E (as a function of f.) may be
useful as a convergence criterion. We are continuing to investigate
this issue.

IV. AUTOMATED SYSTEM

We now describe an automated system that we have been de-
veloping to automatically find the formant center frequencies and
modulations of a speech segment. In this system, the iterative ESA
described in the previous section is employed to determine the center
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(a) Spectrum of vowel /z/, female speaker. The frequency responses of two Gabor filters are superimposed, centered at 1262 Hz and 1700 Hz with

impulse responses g1(n) and go(n), respectively. (b) The speech waveform, s(n). (¢) /¥qls(n) * g2(n)]. (d) /¥ a[s(n) * g1 (n)].

frequencies of the resonances. Bandpass filtering is implemented
using a truncated, discretized Gabor filter with impulse response

g(n) = {GXP(—(anT)2) ccos(2nf.Tn), |nj <N

0, RSN @

N is chosen such that the envelope of g(n) is nearly zero at
n = N. We have found that a good choice is N such that
exp(—(aTN)?) =~ 107%, Through extensive experience, we have
found that it is reasonable to use fixed bandwidths of a = 800 Hz
when f. < 1000 Hz, and o = 1100 Hz for all other resonances. We
discuss the possibility of varying bandwidth values in the Conclusion.

An important issue for the system is getting good initial estimates
of the formant center frequencies. This is to ensure that the iterative
ESA does not converge to false formants. We now briefly discuss the
two methods that we have implemented: a standard method, LPC,
and a new method that we call morphological peak picking.

For LPC, the advantages are that is easy to implement and
often does a good job of estimating the spectral peaks. However,
it sometimes performs poorly, especially for female speakers or
children. Formant center frequencies can be estimated by finding the
roots of the LPC polynomial [1], or by peak picking the spectral
envelope [8). The former method is computationally expensive, while
the latter may be problematical when the peaks are not strong. We
have implemented the latter method.

Our other formant finding method is to perform a morphological
closing of the speech spectrum. A closing of a signal by a set B
is a nonlinear filter that is a cascade of a dilation (local maximum
within the moving window-B) followed by an erosion (local moving
minimum) [7], [12]. Formally, let S(k) be the speech magnitude
spectrum as a function of discrete frequency index k and let B =

— W=l ... WL} be the set of indices, with W being the window
w1dth The closmg of S(k) by DB is defined as the transformed

spectrum

S’B(k)—ﬂ%‘}g“fé%s(" i+7). 10)
Figs. 5(b)~(d) show examples of dilation, erosion, and closing of the
speech spectrum in Fig. 5(a). In the closing, the narrow valleys of
the spectrum get filled up, so to speak, and the peaks of the closing
correspond to peaks of the spectral envelope. Then it only remains
to pick the peaks and we have our initial formant estimates.

Extraneous peaks can be produced by this method, but if the
iterative ESA is started at one of these peaks, it almost always
converges onto an actual formant. The exceptions tend to be tiny
peaks occurring on the spectral plains that are often found at
frequencies above 5000 Hz.

A requirement of this method is to carefully choose the width
of the filter, W. If the filter is too wide, a formant that is close to
another stronger formant might be missed. At the same time, we must
keep it from being too narrow to avoid treating individual harmonics
as peaks. Due to the latter restriction, the minimum width of the
filter is essentially a function of the fundamental frequency, Fo. We
estimate Fp by peak picking the spectrum over the first 1000 Hz,
which, ideally, gives the location of the first five to ten harmonics.
The distance between these points is averaged for an estimate of
Fy. To avoid getting estimates that are too low due to spikes that
might occur between harmonics, we set a lower limit of 250 Hz on
the width of the filter. This lower limit is based on the fact that
the lowest fundamental frequency that we expect to encounter is, on
average, 100 Hz, and we would like the filter to overlap about three
harmonics.

Advantages of morphological filtering are that it is very cheap
to implement and can be used rigorously to extract peak or valley
features on arbitrary signals. In addition, it is nonparametric, i.e.,
it does not presuppose anything about the speech spectrum, while
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Fig. 5. Morphological filtering of a speech spectrum, using a 13-point window. The spectrum was obtained by a 512-point FFT, so the width of the filter
is about 255 Hz. In (b)—(d), the spectrum is indicated by a dashed line. (a) The speech spectrum. (b) The dilation of the spectrum in (a), indicated

by the solid line. (c) The erosion. (d) The closing.
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Fig. 6. The vowel /c/. (a) Initial values found by morphological peak picking. (b) Initial values found by peak picking the LPC spectrum.

LPC assumes that the vocal tract transfer function can be modeled
by an all-pole model. Finally, it formalizes what we most likely do
when we visually identify formants from a speech spectrum using
geometrical features.

Back vowels present a problem for many formant finding tech-
niques because if F'1 and F2 are not well-separated they could
be treated as one spectral peak. For morphological peak picking,
the problem could be compounded by high-pitched speech, when
F2 — F1 may be less than the filter width, . In such a case, the
closing will have a peak at either F'1 or F2, but not at both. This

will clearly not do. A possible solution is to perform the closing on
the spectrum with a logarithmic frequency axis and a narrower filter.
Not only might F'1 and F2 be better separated, but spurious peaks
at high frequencies could be avoided. Alternatively, the width of the
window could be increased exponentially as a function of frequency.
For the latter alternative, the window B in (10) is replaced with a
frequency-varying window By, where B, = {0,1,2.---,W(k)},
W (k) = |W(0)exp(Ck}}, and C is a constant that controls the rate
of exponential growth. We have tested the latter method and the initial
results are promising, as seen in Fig. 6. Fig. 6(a)—(b) show spectra for
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Fig. 7. Morphological filtering of a spectrum of the back vowel /a/. Dotted vertical lines indicate formant center frequencies found by the IESA. (a) For
normal style speech, a constant window of length W = 266 Hz separates the first two formants. (b) For angry style speech, Fo is high and W = 468 Hz
is used for the closing. However, F2 — F1 < W, so they are treated as a single peak. (c) Using a narrower window of W = 281 Hz separates the
first two formants of the angry style speech, but results in extraneous peaks at high frequencies. (d) W' is varied exponentially from 250 Hz to 750 Hz.
F1 and F2 are separated, while spurious peaks at high frequencies are smoothed.
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Fig. 8. Results of the automated system. (a) The vowel /if, from a male speaker. (b) The spectrum. Dotted vertical lines indicate formant center
frequencies following iteration.

the vowel /a/, spoken by a male speaker in normal and angry speech  superimposed on both spectra. For the normal speech style, F'1 and
styles. Closings computed using constant structuring elements are F?2 are separated in the closing, but for the angry style, Fo is high
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Fig. 9. (a)«d) Amplitude envelopes |a(n)| for the ith formant, 1 < ¢ < 4,
for the speech segment of Fig. 8.

so that W is quite wide, and F1 and F2 are not separated. Fig. 6(c)
shows the closing of the angry style spectrum, using a narrower, but
still constant window length. F'1 and F'2 are separated, but many
extraneous peaks are produced, particularly around 6000 Hz, where
there does not seem to be a spectral peak. Finally, Fig. 6(d) shows
the closing of the angry style spectrum using structuring elements
that increase exponentially with frequency, with W(0) and C' chosen
so that the initial width of the window is about 250 Hz and the width
at the high end of the spectrum is 750 Hz. Not only are the first two
formants separated, but use of the wider window at higher frequencies
has removed the extraneous peaks. These results are promising and
suggest that further testing of this method is warranted for possible
implementation in our system.

For the time being, we have implemented morphological peak
picking with constant filter width, and we give the user of our
system the choice of that or LPC. Fig. 7 shows an example of
the initial values that result for both methods. The results are
similar, except that for the peaks near 3800 Hz, LPC finds one
formant, while morphological filtering finds two. Overall, we have
found that LPC and morphological peak picking give similar results
after iteration, so it may be that morphological filtering is the best
choice, since LPC is more expensive. However, more rigorous testing
must be done to determine how their performance compares before
iteration. If morphological filtering requires many more iterations
due to extraneous peaks, then it may be no less expensive than
LPC.
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Finally, an example of the output of the automated system is
shown in Figs. 8-10. For this speech segment, the initial estimates
of formant center frequency were found using morphological peak
picking. Fig. 8(a) shows the speech waveform, while Fig. 8(b) shows
the speech spectrum, with the formant center frequencies found by
the iterative ESA indicated by vertical dashed lines. Figs. 9-10 show
|a(n)| and f(n) for the first four formants. For this example, there
are more modulations present in the higher formants than in the
lower formants. Median filtering has been applied to the extracted
instantaneous frequency signals to suppress the narrow spikes that
are due to pitch period effects or isolated numerical instabilities of
the ESA [5].

V. CONCLUSION

An automated system that finds formant center frequencies and
speech modulations using energy separation has been described.
Initial values for the formant center frequencies are found using LPC
or morphological peak picking. These values are then refined using
an iterative energy separation algorithm. The system has been shown
to be effective.

We are continuing to improve the system by investigating the fol-
lowing refinements. First, we would like to implement the automatic
selection of the filter bandwidths, based on the distance between
neighboring formants. We have done some preliminary work on
this, using synthetic AM-FM signals, and the results suggest that
the optimum choice of bandwidth could be a linear function of the
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distance between formants, Af. Our next step is to try to apply
this result to speech. Complications may occur, however, when we
try to incorporate this with the iterative ESA, because Af will
change during iteration. The solution that we propose is to apply
the iterative ESA to all formants in parallel. Then we can vary
the filter bandwidths on each iteration according to the values of

fc(])-

The other refinement is to possibly reduce discretization effects as
follows. Instead of convolving the speech signal s with a discrete-time
Gabor bandpass filter ¢ and then applying the discrete-time energy
operator, we apply the following combination of the continuous-time
energy operator and bandpass filtering, which introduces discretiza-
tion only at the very last step, i.., at sampling time ¢ = nT": ¥ [s(t)*
9IBl=nr - = [(5(t) % §(8))* = (s(t) % g(1))(s(t) * H(E)] _ >
where g(t) and j(t), the derivatives of the Gabor bandpass filter,
are functions with simple known formulas. In this way, we avoid
the approximation of the signal derivatives with first differences that
maps ¥, to ¥4 [4], [6], and this may improve the results of applying
the energy operator and the ESA to sampled speech signals.
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Split-Dimension Vector Quantization of Parcor
Coefficients for Low Bit Rate Speech Coding

Kwok-Wah Law and Cheung-Fat Chan

Abstract— A novel split vector quantization (SVQ) scheme for low
bit rate coding of speech signals is proposed. In this scheme, the LPC
parameter vector, which is represented by PARCOR coefficients, is
split into small-dimension subvectors, and each subvector is sequentially
quantized according to a multistage structure that resembles a segmented
lattice filter. The forward and backward prediction residuvals in the
segmented filter are coupled across VQ stages. The quantizer in each
stage operates on the principle of minimizing the forward and backward
prediction error energies similar to linear predictive analysis. Simulation
results show that the new split VQ scheme can achieve transparent
quantization of LPC parameters at 25 b/frame.

I. INTRODUCTION

Linear predictive coding (LPC) is a well-established technique for
speech compression at low rates. In order to achieve transparent
quantization of LPC parameters, typically 30 to 40 b are required
in scalar quantization [8]. Vector quantization can reduce the bit rate
to 10 b/frame [4], but vector. coding of LPC parameters at such a
bit rate introduces large spectral distortion that is unacceptable for
high-quality speech communications. In the past decade, structurally
constrained VQ’s such as multistage (residual) VQ and partitioned
(split) VQ [1], [6] have been proposed to fill the gap in bit rates
between scalar and vector quantization. In multistage schemes, VQ
stages are connected in cascade such that each of them operates on
the residual of the previous stage [3]. In split vector schemes, the
input vector is split into two or more subvectors, and each subvector
is quantized independently. Recently, Paliwal and Atal proposed
a split vector scheme to achieve transparent quantization of line
spectrum frequency (LSF) parameters using only 24 b/frame [8]. In
this correspondence, we propose a novel scheme to decompose LPC
parameters represented by PARCOR coefficients into subvectors for
split vector quantization. The structure of the proposed scheme re-
sembles a segmented lattice filter where PARCOR coefficients of each
segment are grouped as vectors for quantization. All lattice segments
are connected in a cascaded structure similar to the multistage VQ.

M. LATTICE ANALYSIS USING QUANTIZED PARCOR COEFFICIENTS

A lattice analysis filter for linear prediction of speech is depicted
in Fig. 1. During the analysis, the speech signal is fed to the input of
the lattice, and the prediction error is minimized with respect to each
PARCOR coefficient [7]. Let f..(n) and g..(n) be, respectively, the
forward and backward prediction errors of the mth stage lattice filter
at time n. Then, from the lattice structure shown in Fig. 1, two order
recursive equations are derived as

frg1(n) = fm(n} = kmyr19(n — 1) 1)
and

gm+1(n) = gm(n - 1) — kmt1 fm(n), 2)
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