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Convex Regression

Data (xi, yi) from an unknown convex function f . How to estimate f?

Fundamental problem in optimization, signal processing, machine learning, and more!

Idea from Convex Analysis: Any convex function ≈ maximum of hyperplanes aᵀj x + bj.

Estimation problem becomes a set of nonlinear equations over (aj, bj)Kj=1:

max(aᵀ1x1 + b1, . . . , aᵀKx1 + bK) = y1
max(aᵀ1x2 + b1, . . . , aᵀKx2 + bK) = y2

. . .

(1)

How to search for solutions in this problem? and how to keep the required number of parameters as

small as possible?

Max-Plus Algebra

Originated from operations research and combinatorial optimization problems [1]. Has been ap-

plied successfully in areas such as Optimal Control, Nonlinear Signal and Image processing, Ma-

chine Learning.

Based on the tropical semiring (R ∪ {−∞}, max, +), instead of the usual one (R, +, ×), max-plus

algebra includes two key operations:

Vector "addition":
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Vector "multiplication":
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Basen on the above, (1) can be written as:
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Assuming known slopes (aj)Kj=1 (either by numerically calculating the gradients of the data, or

by discretizing an n-dimensional interval), this is a matrix max-plus equation over b. Max-plus

algebra equips us with tools to solve it optimally.

This approach works very well and yields a linear algorithm [2]. But can we be more flexible?

Sparsity and noise robustness

Key observation: If bj = −∞, then the whole aᵀj x + bj hyperplane can be neglected, since the

function never attains its value on it.

Thus, search for the solution of (2) that has the most −∞ values, i.e the sparsest.

Definition 1. We call a vector x sparse if it contains many −∞ elements.

Furthermore, we would like to account for the presence of noise in the data. That is, if yi =
f (xi)+ ε, then we expect equation (2) to hold only approximately. Thus, we are ultimately looking

for sparse approximate solutions of (2).

Notice that relaxing the equality constraint promotes simpler models, as well.

But, how can we search for this kind of solutions?

Optimization in max-plus algebra

Definition 2. The support set of a vector is the set of indices of its values that are not equal to

−∞, that is: supp(x) = {j | xj 6= −∞}.
Sparsity in max-plus algebra is computationally hard:

Theorem 1. Computing the sparsest solution of A � b = y is an NP-complete problem [3].

Note: It is essentially the minimum Set-Cover problem.

Based on the previous discussion on the convex regression problem, we formulate the following

optimization problem:

argmin
b

|supp(b)|

s.t. ‖y − A � b‖p
p ≤ ε,

A � b ≤ y, A ∈ Rm×n, y ∈ Rm.

(3)

Notes:

we minimize the cardinality of the support set of the solution, while controlling the

`p, p ≤ ∞, error.
we also add a relaxation constraint A � b ≤ y, that restricts the approximation to happen

from below (mainly for technical reasons).

Theorem 2. Problem (3) can be approximately solved in O(nm + n2) time with a greedy algo-

rithm.

Note: Submodular properties of the problem allows us to derive the approximation ratio of the algo-

rithm, O(log(m‖y‖p)).

`∞ estimators

Approximating data from below might be problematic!

`∞ estimators - cont.

Can we drop the A � b ≤ y constraint?

argmin
b

|supp(b)|

s.t. ‖y − A � b‖∞ ≤ ε, A ∈ Rm×n, y ∈ Rm.
(4)

Proposition 1.We can find a locally optimal solution of Problem (4) by solving Problem (3).

Technical details: Although a greedy algorithm for problem (4) might be arbitrarily bad, we can solve

problem (3), add to the solution half of its `∞ error, and get a vector b∗ that has the smallest `∞ error

among all vectors with the same support set.

Application to Multivariate Convex Regression

Based on the developed theory, we propose the following approach:

Input: Data (xi, yi) ∈ Rn+1, i = 1, 2, . . . , m.

Model: max(aᵀ1xi + b1, . . . , aᵀKxi + bK) = yi, i = 1, 2, . . . , m.

Step 1: Estimate slopes (aj)Kj=1:

Fixed values from an n-dimensional interval, or

Numerical gradients of data.

Step 2: Solve Problem (3) (method called Sparse Greatest Lower Estimate - SGLE) or Problem (4)

(called Sparse Minimum Max Absolute Error -SMMAE estimate), and calculate intercepts bk.

Complexity: O(K2 + K(n + 1)m) or O(K2 + K(n + 2)m), respectively.
Output: A PWL convex approximation of the data with the approximately minimum number of

affine regions needed for achieving the desired level of data fidelity.

Experiment on noisy paraboloid z = x2 + y2 + N (0, 1).

Figure 1:Approximation with 16 affine regions.

SGLE SMMAE

(ε, p) errorRMS error∞ errorRMS error∞ |supp|
(300, 1) 0.6681 1.5405 0.3506 0.7703 4
(120, 2) 0.4899 1.1268 0.2942 0.5634 31
(150, 2) 0.5465 1.1734 0.2729 0.5867 8
(50, 5) 0.5018 1.1268 0.2812 0.5634 23
(108, 150) 0.5560 1.1268 0.2574 0.5634 16

GLE [2] MMAE [2]

K errorRMS error∞ errorRMS error∞
10 0.6659 1.6022 0.3641 0.8011
25 0.5674 1.2779 0.3016 0.6389
100 0.5364 1.2828 0.3135 0.6414

Table 1:PWL approximations and their errors. K is the number of

affine regions in the resulting tropical polynomial.
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